
An Economic Viability Analysis on Energy-Saving Solutions
for Wireless Access Networks

Sibel Tombaza,1,∗, Ki Won Sunga, Sang-wook Hana, Jens Zandera

aKTH Royal Institute of Technology, Wireless@KTH, Stockholm, Sweden

Abstract

As the energy bill for mobile operators rises with the continuing traffic growth, energy efficiency problems attract an increasing
attention in the telecommunication industry. However, the investment for the implementation of any energy-saving solution could
be so costly that it may not achieve the total cost reduction. Therefore, the economic viability of the proposed solutions is of
substantial importance for the operators in the process of investment decisions. In this paper, we present a methodology for
assessing the economic viability of energy-saving solutions. We conduct two case studies using the proposed methodology, and
analyze the cost-benefit tradeoff for: i) hardware upgrade enabling dynamic sleep mode operation at the base stations (BSs), ii)
energy efficient network deployment minimizing the network energy consumption. Simulation results show that the hardware
upgrade can save up to 60 percent of energy consumption particularly when the high data rate requirement forces low network
resource utilization. Consequently, the solution is shown to be increasingly cost effective as the unit energy cost increases. Network
deployment optimized for energy efficiency is shown to bring about further energy savings, but it demands denser deployment of
BSs. Thus, it is not deemed as economically viable considering today’s cost values.

Keywords: Energy efficiency, power consumption, economic viability, network planning, greenfield network deployment,
achievable daily energy savings, cell DTX, traffic profile, total cost of investment.

1. Introduction

In recent years, with the explosive growth of mobile traffic,
the energy consumption of wireless access networks has expe-
rienced a significant increase. Currently, information and com-
munications technology (ICT) is responsible for 3 percent of
worldwide electricity consumption, out of which wireless ac-
cess networks contribute approximately 10 percent with 60 bil-
lion kWh per year [1, 2, 3]. This situation poses a big challenge
for mobile operators since the rising energy consumption to-
gether with growing energy prices directly leads to an increase
in their operational expenditures (OPEX). In fact, operators’
cost figures show that nowadays the energy cost of running a
network constitutes almost 50 percent of overall OPEX [4, 5].

A multitude of models and approaches have been recently
proposed to increase the energy efficiency of these networks
at all levels, including hardware design, network management,
network deployment, and resource allocation [6, 7, 8, 9]. A
remaining issue is that most of these solutions require a new in-
vestment for the operators due to the need of hardware and soft-
ware upgrade, or the deployment of new sites, etc. Therefore
it is a non-trivial question if the proposed solutions, reducing
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the energy cost, can provide sufficient economic gain such that
they provide return on investment. To the best of our knowl-
edge, there is no study addressing this issue and analyzing the
total cost of investment of the solutions. Considering the fact
that the motivation of reducing the energy consumption of wire-
less access networks is driven not only by environmental con-
cerns, but mainly by economic reasons, it is essential to assess
the economic viability in order to identify whether or not the
additional expenditures required for energy efficient solutions
are compensated by the energy savings.

In this paper, we aim to answer the following question: Un-
der which circumstances an operator achieves a total cost re-
duction from an energy-saving solution?. For this, we propose a
methodology for assessing economic viability of energy-saving
solutions for wireless access systems. It incorporates the net
present value (NPV) of a given solution over the network life-
time in order to compare the energy saving benefit with the in-
crement in overall expenditures with respect to the existing net-
work where the solution is not implemented. Our methodology
builds upon widely accepted economic models [10, 11], and it
is easy to apply to a variety of energy-saving solutions.

With the aid of the proposed methodology, we conduct two
case studies and analyze the cost-benefit tradeoff of two popular
energy-saving solutions, i.e., hardware upgrade and energy effi-
cient deployment. We demonstrate in detail how our methodol-
ogy can be utilized to assess the economic viability of a general
energy-saving solution with these examples. Furthermore, the
case studies give us insights into the important parameters to be
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considered for the network-level energy efficiency analysis.
For the case of the hardware upgrade solution, we assume

that an operator decides to upgrade the existing BS transceivers
in order to enable dynamic sleep mode operations, also called
cell discontinuous transmission (DTX), in its network [7, 8, 12].
However, this fast traffic adaptability feature comes at the ex-
pense of increased CAPEX due to the necessity of a new hard-
ware. In order to analyze this tradeoff between reduced energy
cost and increased CAPEX, we first identify the annual energy
savings with cell DTX considering the daily variation of the
traffic and accordingly the variation of the cell loads in the net-
work. Then, we analyze the break-even cost of the hardware
upgrade below which the incremental increase in CAPEX is
compensated by the reduced energy cost, and thus the solution
provides total cost savings for the operator.

As for the energy efficient deployment solution, we assume
that a greenfield operator deploys the network guaranteeing the
minimum network energy consumption. Then, it is compared
to the traditional CAPEX-optimized planning which requires
the deployment of a minimum number of BSs to meet the net-
work coverage and capacity requirements. In order to analyze
this tradeoff between energy- and CAPEX-optimized planning,
we first propose a simple algorithm to identify the optimum net-
work deployment solutions taking into consideration the traffic-
dependent cell load variations which directly impact perceived
user data rate and annual energy consumption, based on our pre-
vious work [12]. We note that the solution approach adopted in
this paper for defining the energy-optimized network deploy-
ment significantly differs from the ones in the literature that are
mostly based on busy hour traffic conditions and full buffer traf-
fic model assumptions [3, 13, 14]. Finally, based on the defined
deployment solutions with respect to the considered objectives,
and the proposed viability assessment methodology, we obtain
the break-even cost of energy above which the energy oriented
design presents total cost savings during the network lifetime.

2. A Method for Analyzing Economic Viability of Energy
Efficient Solutions

Assume that a mobile operator aims at finding solutions for
minimizing the total network energy consumption while pro-
viding the required capacity. The resulted energy efficient solu-
tion might be a maintenance strategy such as to upgrade hard-
ware and/or software, or to apply an traffic adaptive resource al-
location scheme etc., for a given deployment. Moreover, the op-
erator might also be interested in identifying greenfield deploy-
ment strategies that provide the minimum energy consumption
in case of the rolling out the new technology in their network.
However, it should be noted that even though these solutions
will reduce operators’ energy expenses, they might be obtained
with an increase in the total cost due to required capital expen-
ditures. In this regard, it is essential to analyze the total cost
of investment of the solutions solely aimed at energy minimiza-
tion considering the fact that operators’ energy interest is driven
mainly by economic reasons.

In this section, we first introduce a detailed total cost of in-
vestment model, and then present our economic viability anal-
ysis methodology.

2.1. Total Cost of Investment Model

In this paper, a simple linear cost model is considered which
is widely adopted in cost analyses of wireless access net-
works [10, 11]. Based on this model, total cost of investment
for the whole wireless infrastructure can be approximated as

Ctot = cNBS , [e] (1)

where c is the cost per base station including CAPEX, such as
installation, radio equipment, and OPEX such as energy, site
rentals, maintenance, etc. NBS denotes the number of base sta-
tions needed to provide the desired service level in the network.

In order to incorporate the time aspect into the cost analysis,
we need to capture two main points. The first point is that in the
case of postponing the investment in the radio network, one can
earn interest by depositing the money into a bank. This implies
the fact that future costs are worth less [15]. Second, the price
of the equipment will decrease over the years. To this purpose,
we define the cost of a BS (c) by applying a discount rate, and
express it in terms of its NPV as below:

c =

N∑
n=1

cn
(1 + d)n−1

. [e/unit] (2)

where d is the discount rate, cn and N are the total cost in year
n and the network lifetime respectively. Here, price erosion
can be included into the model by letting cn diminish over the
years. Note that cn includes both the capital (ccapexn ) and the
operational (copexn ) expenditures during the year under exami-
nation.

Under the assumption that capital expenditures occurs at the
beginning of the deployment, the total cost of investment of
deploying NBS BSs during N years can be written as

Ctot = NBS

(
ccapex +

N∑
n=1

copexn

(1 + d)n−1

)
. [e] (3)

Here ccapex denotes the capital expenditures of deploying a BS
in the first year, i.e., n=1.

For simplicity, we assume that all operational costs of a BS,
excluding energy cost, i.e., co, are constant during the network
lifetime, N years. Under this assumption, total OPEX of a BS
in year n can be written as below:

copexn = co + cenergyn , [e/unit] (4)

where cenergyn is the total energy cost per BS in year n.
Let En[Cenergy] denote the average annual energy cost of

the considered wireless access network with NBS BSs in year
n. Then, the total cost of investment presented in Eq. (3) can be
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expressed in detail as below:

Ctot = NBS

(
ccapex +

N∑
n=1

co

(1 + d)n−1

)

+

N∑
n=1

En[Cenergy]

(1 + d)n−1
. [e] (5)

Here, the average annual energy cost of a network in year
n ∈ N , i.e., (En[Cenergy]), depends on the average annual en-
ergy consumption (En) in kWh and the unit energy cost (en) in
e/kWh and is given by

En[Cenergy] = en × En(NBS). [e] (6)

Based on the given relationships, total cost of investment will
have the following dependence on number of BSs:

Ctot = NBS

(
ccapex + co × (1 + d)N − 1

d(1 + d)N

)
+

N∑
n=1

en × En(NBS)

(1 + d)n−1
. [e]

(7)

Note that we made several assumptions on capital and oper-
ational expenditures based on real-world scenarios in order to
increase the applicability of the total cost of investment model
for general use. However, these assumptions are not valid for all
scenarios. For example, we might expect a case where a mobile
operator progressively pays the capital expenditures over the
years, instead of making one-time investment. Furthermore,
operators may have different deal regarding electricity prices
throughout the years. Therefore, we encourage the readers to
revise the model if the assumptions are not applicable for their
scenarios.

2.2. Methodology for Economic Viability Analysis
We define economic viability as the operator’s ability to raise

enough income from energy-saving solutions to cover the re-
quired investment costs, and to make a profit during the network
lifetime.

Let i and Citot denote a candidate solution to reduce the total
network energy consumption and the total cost of implementing
the ith solution, respectively. Then, in order to identify whether
or not the additional capital investments required for the ith

solution can be compensated by reduced energy cost, we make
the following relative comparison:

Citot

Creftot

=
ciN i

BS

cref Nref
BS

≶ 1 (8)

Here, Creftot denote the total cost of investment for the basic ref-
erence system with Nref

BS BSs; each costs cref .
According to this, an operator will get total cost benefit from

the chosen energy oriented solution if the ratio Ci
tot

Cref
tot

is less than
one. In order to compare the OPEX term, consisting of annual
savings related to energy consumption, with the CAPEX term,

consisting mostly of a one time expenditure, total cost of in-
vestment analysis will be performed over the network lifetime
using the model introduced in the previous section.

Based on Eq.(7) and Eq.(8), we observe that economic viabil-
ity of ith solution is highly dependent on important parameters
such as unit cost values, e.g., ccapex, en, discounting factor, d,
number of BSs required in each system, i.e., N i

BS and Nref
BS ,

as well as the time dependency of annual energy consumption,
unit cost values and the BS density.

In order to enhance the practicality of the proposed method-
ology and maintain simplicity, we make the following assump-
tions. Firstly, we restrict the economic viability analysis to the
BSs considered in the first year for both systems, i.e., Nref

BS

and N i
BS . This means that despite the fact that the number of

BSs in the network changes over the years with respect to an-
nual traffic growth, the viability comparison in Eq.(8) is made
based on the same number of BSs over the network lifetime,N .
Respectively, we assume that average loads of the considered
BSs stay constant over network lifetime. This can represent a
reasonable expectation that the mobile operator maintains the
same design strategy over the years resulting in steady resource
utilization in each BS despite the increasing BS density in the
network. Regarding the time dependency of unit cost values,
we assume that the annual increase in unit energy cost equals
to the discount rate, i.e., en = en−1 (1 + d). Finally, we ignore
the indirect cost saving through energy consumption reduction
in our analysis. An example of this can be the reduction in BS
unit CAPEX due to the reduced need for battery backup in case
of lowering the energy consumption of the site.

Note that the considered assumptions are made to encourage
the widespread usage of this methodology by minimizing the
complexity of the expressions. However, these will not make
an impact on the validity of the proposed methodology since
it is applicable for different set of assumptions with a simple
modification.

2.3. Case Studies

We carry out two case studies to analyze the economic viabil-
ity using the methodology explained above. More specifically,
we aim at identifying whether or not the investment for the im-
plementation of the considered two energy-saving solutions can
be compensated by the reduced energy cost. Here we will use
the traditional minimum-CAPEX solution as the reference sce-
nario. The details of the considered energy efficient solutions
and the related viability approaches are introduced below.

2.3.1. Hardware Upgrade200

Here we assume that an incumbent operator aims at reducing
its energy consumption through a hardware upgrade. In this re-
spect, it is decided to change the existing BS transceivers so as
to enable a short-term sleep mechanism at the BS, also called
cell DTX [7, 8, 12]. Cell DTX, or micro sleep, is a new hard-
ware feature enabling the deactivation of some components of
a BS during the empty TTIs, and thus significantly lowers the
idle power consumption when there is no traffic. This solu-
tion enables node-level power consumption adaptation in ac-
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cordance with traffic variation in a very short time scale (mil-
lisecond level) without necessitating any network level cooper-
ation schemes. However, it comes at the expense of increased
expenditures.

Let ∆c denote the additional capital expenditures required
for the hardware upgrade per BS. On the other hand Erefn and
En are the annual energy consumption (in year n) of the ref-
erence network, i.e., BSs does not have cell DTX capability,
and the upgraded network, i.e., cell DTX is enabled, respec-
tively. Note that in this scenario, number of BSs in the reference
system and the improved system are the same. Moreover, we
assume that the BS reconfiguration to reduce the energy con-
sumption occurs at the beginning of first year.

Under these assumptions and using the total cost of invest-
ment model in Eq.(7), we can define the condition where the
total cost of investment of the proposed solution is lower com-
pared to the current static deployment without cell DTX using
(8) as

N∑
n=1

en × (Erefn − En)

(1 + d)n−1
> NBS ×∆c. (9)

Here, the left hand side (LHS) denotes the total energy cost
saving during N years by upgrading the hardware in the first
year, whereas the right hand side (RHS) shows the incremental
increase in capital expenditures to achieve this energy saving.

In this scenario, we aim to analyze the break-even cost of the
new hardware ∆cb, defined as the point where the energy cost
saving with hardware upgrade is equal to the required capital
expenditures. Consequently, for all hardware cost values below
the break-even cost, the considered solution will bring total cost
savings.

2.3.2. Energy Efficient Deployment

As a second scenario, we consider a greenfield operator that
builds a network from scratch. We assume that the initial idea
is to conduct the deployment for minimum energy consumption
which is shown to require higher capital investments compared
to the traditional CAPEX-minimum deployment in our previous
study [12]. Therefore, in this paper, we aim to answer ”How
expensive the energy must be so that energy-oriented design
will result in lower net present value during network lifetime?”

Despite the fact that BS types can be arbitrary, in this pa-
per we consider deployments with same type of BSs ensuring
a tractable analysis. Let Ne

BS and N c
BS denote the number of

base stations required to provide the desired service level with
minimum energy consumption and minimum capital expendi-
tures respectively, i.e., Ne

BS ≥ N c
BS . On the other hand Erefn

and En are the respective annual energy consumption of these
deployment solutions in year n, i.e., En ≤ Erefn .
Then, based on Eq. (7) and Eq. (8) , the energy efficient net-
work deployment will be more cost-effective compared to the
CAPEX-minimum deployment if the following condition is ful-

filled:

N∑
n=1

en × (Erefn − En)

(1 + d)n−1
>

[
(Ne

BS −N c
BS)×(

ccapex + co
(1 + d)N − 1

d(1 + d)N

)] (10)

Here, the LHS denotes the total energy cost saving during N
years due to energy-oriented network planning, whereas the
RHS shows the resulted increase in both capital and energy-
independent operational expenditures.

3. System Model

This section introduces the system model and assumptions
underlying the approaches followed in this paper in order to
conduct the economic viability analysis.

3.1. Network Layout
We consider an OFDM network withM number of BSs cov-

ering a compact regionR (km2). We assume the network to be
modeled as a hexagonal grid with density ρBS = 1

3
√

3R2/2

where each site is equipped with one omni-directional antenna.
Here R denotes the cell range. Within the area, users are uni-
formly distributed with density ρu (users/km2).

3.2. Traffic Model
In order to provide a realistic analysis of the energy efficiency

in wireless access networks, it is essential to know the area traf-
fic demand variation in the network. In this respect, the long-
term large-scale traffic model presented in [16] has a significant
importance which is defined based on real traffic measurements
of the downlink traffic in Europe and the mobile traffic forecast
in [17]. Based on this model, the daily generated traffic T (t)
over a given area is written as below:

T (t) = ρu α(t) r̄ [Mbps/km2]. (11)

Here α(t) represents a typical daily traffic variation in terms of
percentage of active users in different time intervals t, whereas
r̄ denotes the average data rate demand per user.

In this paper, we consider two different user types, i.e., heavy
and ordinary users, which differ based on users’ monthly data
usage. Consequently, a heavy user is assumed to utilize the net-
work significantly more compared to an ordinary user. Based
on the data traffic model in [16], we assume that %% of the users
are classified as heavy users.

Let Ωheavy and Ωordinary denote the hourly data demand per
heavy and ordinary user respectively given in MB/hour. Then
average offered throughput per user will be:

r̄ = τ
%Ωheavy + (100− %) Ωordinary

100
[Mbps]. (12)

where τ = 8
3600 . Note that under these assumptions, average

area throughput T (t) (Mbps/km2) during a certain hour t ∈
[1, 24] is generated by N t

act = ρu×α(t)×R number of active
users, each requesting r̄ Mbps in a given network areaR.
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3.3. Network Coverage

We define network coverage A as the fraction of the area
where the received power is above a given level, Pmin.

Let user i be connected to BS bi and the set βk = {i : bi = k}
contain the users connected to base station k. Pk is the power
spectral density per minimum resource unit in scheduling in cell
k. Consider a time instant where the link gain between base
station k and user i is stationary and given by gik. Then, the
coverage of cell k can be mathematically written as below:

Ak :=
1

|R|

∫
R
r P[gikPk ≥ Pmin]drdφ. (13)

where A =
⋃M
k=1Ak.

3.4. Radio Link Performance

3.4.1. Propagation Model
Received power at a terminal is affected by multiplication

of three components which are; distance dependent path loss,
shadowing and multipath. When we neglect the effect of multi-
path and shadowing, link gain between base station k and user
i can be written as below:

gik[dB] = G[dB]− PLik[dB] (14)

In this paper, we use COST-231 Hata propagation model to
calculate the mean path loss given below:

PLik[dB] = 46.3 + 33.9 log(fc)− 13.28 log(hb)− a(hm)

+ [44.9− 6.55 log(hb)]log(dik) + cm. (15)

where fc represents the operating frequency in MHz, dik de-
notes the distance between the BS k and user i, hb and hr are
the antenna height of base station and receiver height respec-
tively. Here the parameter cm is equal to 3 for urban areas and
a(hm) is the mobile station antenna height correction factor,
i.e., a(hm) = [1.1 log(fc)− 0.7]hm − [1.56 log(fc)− 0.8].

3.4.2. Radio Link Quality
We define the average SINR of a user i ∈ βk that is served

by BS k is defined as

γi(η) =
gibiPj∑M

k 6=j ηk gikPk + σ2
(16)

where σ2 is the noise power and ηk ∈ [0,1] denotes the load
of BS k in the network. The entire network load is given by
a vector η=(η1, η2, ...., ηM ), where ηk ∈ [0, ηmax], ∀ k. Here
ηmax ≤ 1 denotes the maximum allowed load for each cell.

The load or cell resource utilization is defined as the fraction
of time-frequency resources that are scheduled for data trans-
mission in a given cell. It also represents the probability of BS
k is transmitting. Therefore in (16),

∑M
k 6=j ηk gikPk denotes the

time averaged interference power.
The corresponding achievable data rate of user i per resource

block (RB), which is the minimum time-frequency scheduling

unit, is modelled based on Shannon capacity considering aver-
age SINR, i.e.,

ri(γi(η)) = WRB min
[
ξ1log2(1 + ξ2γi(η)), νmax

]
, (17)

whereWRB bandwidth of a RB and νmax reflects the maximum
sustainable link spectral efficiency in practice by the highest
modulation and coding scheme. According to [18], the model
parameters ξ1 and ξ2 are defined as the bandwidth efficiency
coefficient and SINR gap respectively.

3.4.3. User-Perceived Throughput
In this paper, we consider user-perceived throughput as user

QoS metric given by the product of the achievable data rate and
the idle time of serving BSs. Considering the user i ∈ βk,
served by BS k, it can mathematically be written as below:

ci(γi(η)) = (1− ηk)NRB ri(γi(η)) (18)

= NRBWRB (1− ηk) min
[
ζ1log2(1 + ζ2γi(η)), νmax

]
.

Here NRB denotes the maximum number of RBs in frequency
space depending on available bandwidth W .

Note that user-perceived throughput is monotonically de-
creasing in ηk. Therefore, reducing the cell load significantly
improves the user QoS in the network.

3.5. Cell Load

As defined in the previous subsection, cell load describes the
fraction of time-frequency resources allocated for transmission,
where zero load corresponds to no active user in the cell. On
the other hand, full load describes the case where all resources
available are provided to one or more users in the cell.

Let N denote the total number of resource units in a consid-
ered observation period of frequency-time domain, then based
on the definition, load of cell k can be written as

ηk =
1

N

∑
i∈βk

φki , ∀ k ∈M. (19)

Here φki represents the required resource consumption of cell k
to serve user i ∈ βk under the assumption that the demand of
user i is Ωi ∈ {Ωheavy,Ωordinary} which is given by

φki =
Ωi

ri(γi(η))
(20)

By these definition, we have the following equations,

ηk =
∑
i∈βk

φki =
∑
i∈βk

Ωi
Nri(γi(η))

, (21)

=
∑
i∈βk

Ωi

Nri(
gikPk∑M

j 6=k ηj gijPj+σ2 )
. (22)

It is observed from (22) that the load of cell k is a function
of the load levels of the other cells in the network. It is due to
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the fact that load of interfering BSs has a direct impact on the
SINR of the users for a cell k. This coupling relation creates the
”feasible load problem” [19] in which the objective is to find
a load vector η that balances the resource utilization with the
interference-dependent resource demand in all cells which can
be written mathematically as below:

T ηk =
∑
i∈βk

Ωi

ri(
gikPk∑M

j 6=k ηj gijPj+σ2 )
(23)

In order to define the feasible load levels ηt of the cells for a
given area traffic demand during an observation period t, dif-
ferent techniques are recently proposed in literature [19]-[20].
These techniques provides simple and tractable iterative algo-
rithms to find feasible load levels for a given deployment and
traffic variation compare to intractable flow level models.

Here we adopt the iterative time static simulation methodol-
ogy proposed in [19] that solves (23). This algorithm uses as
input the parameters related to daily area traffic demand vari-
ation T Mbps/km2, such as the user density ρu, the active
users percentages in different hours, i.e., α(t), t ∈ [1, 24], the
amount of data delivered to each heavy and ordinary users Ω ∈
{Ωheavy,Ωordinary}, together with initial load vector η0 and
accuracy parameter ε, and returns feasible load vector during
the given hour ηt. The details of the algorithm used in the nu-
merical evaluations is provided in Appendix A.

3.6. Energy Consumption Model

In this paper, we assume that a cell can be either in active
state, i.e., there is at least one user requesting a service, or in idle
state, i.e., there is no active user. Based on the linear model pro-
posed in [3], a cell consumes a considerable amount of power
even when there is no user in the cell, i.e, P0. However, with
hardware improvement a cell can be put into DTX mode during
idle state which decreases the baseline power consumption to
Ps = δ P0, where 0 ≤ δ < 1. Based on these assumptions,
average energy consumption per unit time (or average power
consumption) of cell k with the load of ηk ∈ η can be written
as below [12]:

Ek = ζ Pk ηk + (1− δ)P0ηk + δP0 (24)

Here, as we mentioned, Pk denotes the power spectral density
per minimum resource unit in scheduling in cell k, whereas ζ
represents the portion of the transmit power dependent power
consumption due to feeder losses and power amplifier.

Note that δ = 1 represents the case where the BS does
not have the DTX capability and therefore consumes Ek =
ζ Pk ηk + P0. In this case, cell load only impacts the trans-
mission related power consumption, i.e., ζ Pk.

3.7. Annual Energy Saving With Cell DTX

Let En represents the annual energy consumption of a net-
work withM BSs coveringA = M×3

√
3R2/2 km2 in year n.

Under the assumption that area traffic demand T and its vari-
ation α(t) are constant throughout year under exam, En will

have the following dependence on hourly energy consumption400

of the network at the tth hour , Et =
∑M
k=1 Etk, t ∈ [1, 24]:

En = 365×
24∑
t=1

M∑
k=1

Etk, (25)

= 365×
24∑
t=1

M∑
k=1

ζ Pk η
t
k + (1− δ)P0η

t
k + δP0.

Here Etk denotes the average energy consumption of the BS
k during the observation hour t introduced in Eq. (24) which
is calculated based on the defined feasible load vector ηt =
(ηt1, η

t
2, ...., η

t
M ), during the hour under consideration.

Let Sn(M, δ) denote the achievable daily energy saving in
year n by upgrading the existing BSs’ transceivers so as to en-
able cell DTX in a given network with M BSs. Then, we have
the following formula,

Sn(M, δ) = En|δ=1 − En|δ<1. (26)

Here En|δ=1 denotes the daily energy consumption of the net-
work with the old hardwares lack of the DTX capability. On the
other hand, En|δ<1 represents the daily energy consumption of
the same network when the cells gain fast power consumption
adaptation capability in accordance with traffic with the hard-
ware upgrade.

Based on the given definitions, the saving is expressed in de-
tail:

Sn(M, δ) = 365×
24∑
t=1

M∑
k=1

(
Etk|δ=1 − Etk|δ<1

)
,

= 365×
24∑
t=1

M∑
k=1

P0 (1− δ) (1− ηtk). (27)

As can be seen in Eq. (27), the saving is highly dependent on
cell DTX performance represented with δ and the load of the
BSs in the network. As mentioned before, δ denotes the fraction
of the baseline power that is reduced during an idle state due to
cell DTX. On the other hand, cell load represents the average
resource utilization determining the deactivation time of each
cell for a given traffic demand.

4. Viability of Hardware Upgrade

The viability condition of hardware upgrade has been intro-
duced in Section 2.2 as

N∑
n=1

en × (Erefn − En)

(1 + d)n−1
> NBS ×∆c. (28)

This condition indicates that in order to identify the circum-
stances under which upgrading the hardware with cell DTX ca-
pability is economically preferable, we need to calculate the
achievable energy savings with cell DTX throughout the net-
work lifetime, N . To this end, the mathematical derivation in-
troduced in Eq. (27), indicating the annual energy saving with
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cell DTX, and the aforementioned assumptions in Section 2.2
are of great importance.

As we indicated before, we assume that average loads of the
considered M BSs stay constant over network lifetime. More-
over, the annual increase in unit energy cost is assumed to be
equal to discount rate, i.e., en = en−1 (1 + d). Under these
assumptions, Eq. (28) can be expressed as below:

N∑
n=1

en × Sn(M, δ)

(1 + d)n−1
> M ×∆c. (29)

Based on the given relationships, the viability condition for
hardware upgrade can be formulated in detail as follows:

N∑
n=1

en−1 (1 + d)

(1 + d)n−1
×
(

365×
24∑
t=1

M∑
k=1

P0 (1−δ) (1−ηtk)

)
> M×∆c.

(30)
It can be observed in Eq. (30) that the break-even cost of

the new hardware ∆cb, the point where the energy cost sav-
ing with hardware upgrade equals to required capital expendi-
tures, is highly dependent on unit energy cost en, and the cell
DTX performance of the hardware δ. Therefore, we identify the
break-even cost for various en and δ values by means of system
level simulations and present the results in Section 6.

5. Viability of Energy Efficient Deployment

The viability condition of energy efficient deployment has
been introduced in Section 2.2 and formulated in Eq. (10). This
condition indicates that in order to identify the circumstances
under which the energy-oriented design results in lower total
cost of investment compared to CAPEX-oriented deployment,
we need to identify the network deployments based on two dif-
ferent objectives, namely, minimizing total energy consumption
and minimizing the initial capital investments.

In this section, we first introduce the greenfield deployment
problems for the considered objectives and provide an solution
approach. Finally, we explain in detail how the provided so-
lutions can be used to analyze the viability of energy efficient
deployment.

5.1. Energy-Optimized Network Planning

Despite the fact that energy efficient network deployment is
mostly determined based only on the busy hour energy con-
sumption, in this paper we consider the objective of minimiz-
ing the annual energy consumption which is more relevant for
achieving truly energy efficient networks. The basis of this
novel approach has been presented in our previous work [12].

This problem can be formulated as

Minimize
M

En = 365×
24∑
t=1

Et, (31a)

subject to Fχ%

[
c(ηbh)

]
≥ rmin, (31b)

gikPk ≥ Pmin, ∀ k (31c)

where Fχ%[.] denotes the χ percentile of the cumulative dis-
tribution function (CDF) of the random variable in the blanket.
Here, the first condition ensures that χ percentile perceived user
data rate at busy hour, i.e., cχ% = Fχ%

[
c(ηbh)

]
, is higher than

rmin Mbps, and the second condition ensures full network cov-
erage, which means that the received power of user i in a cell k
is above a given threshold, Pmin.

For simplicity, we assume that the number of BSs (M ) in
the network is constant, whereas network coverage A = M ×
3
√

3R2/2 is changing based on the control variable, i.e., cell
range R. With this respect, the problem of energy-optimized
planning equals to optimizing cell range that minimizes the
daily average area power consumption Et[Ptarea(R)] under the
same service requirements. Below, the objective function is ex-
pressed in detail:

Et[Ptarea(R)] =
1

|t|

24∑
t=1

∑M
k=1 ζ Pk η

t
k + (1− δ)P0η

t
k + δP0

A(R)

(32)
Here, we choose Pk as the minimum transmit power required
to ensure full coverage, i.e., Pk : gikPk = Pmin. This also
represents the optimum transmit power for interference limited
systems considering that energy consumption is strictly increas-
ing with Pk.

Further, we will introduce the key property of the objective
function as follows.
Property (Unimodality): Based on the given relationships, daily
average area power consumption will have the following depen-
dence on cell range:

Et[Ptarea(R)]

≈ f1(Rx+c2−2) + f2(Rx−2) + f3(R−2)

Here f1(.), f2(.) and f3(.) denote the relationship between
each term of Et[Ptarea(R)] with R. It is clearly ob-
served that Et[Ptarea(R)] is a unimodal function since, while
f1(Rx+c2−2) + f2(Rx−2) is monotonically increasing with R,
f3(R−2) is monotonically decreasing. Therefore, there always
exists a non-null and finite cell range (REEopt ) that minimizes
Et[Ptarea(R)], ∀ δ ∈ [0, 1].

The proof of this property is provided in Appendix B.

5.2. CAPEX-Optimized Network Planning

In this subsection, we will introduce the network planning
problem aiming to minimize the initial capital expenditures un-
der certain coverage and QoS constraints. As mentioned ear-
lier, this traditional deployment strategy will be used as the
reference scenario in order to determine whether or not addi-
tional capital investments required for energy-minimum design
is compensated by reduced energy cost.

Due to the linear relationship between the capital expendi-
tures and the total number of BSs in the network introduced
in Section 2.1, the CAPEX minimization problem is exactly
equivalent to finding the maximum cell rangeRcapexopt that meets
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the introduced user QoS and coverage requirement in (31b)-
(31c) respectively.

Considering the fact that with full network coverage is ver-
ified by the chosen transmit power, i.e., Pk : gikPk = Pmin,
the total capital expenditures only depends on the QoS require-
ment. Therefore we can simplify the problem as

Rcapexopt = argmax
R∈R

[
R : Fχ%

[
c(ηbh)

]
≥ rmin

]
(33)

Here, R indicates the considered cell ranges varies between
Rmin and Rmax, i.e., R = [Rmin, Rmax], whereas Rcapexopt

is the optimum cell range ensuring that χ percentile perceived
user data rate at busy hour is higher than rmin Mbps.

5.3. Solution Proposal

We observe that it is difficult to formulate a closed form
expression for the objective functions introduced in (31) and
(33) due to the coupling relationship between cell load ηtk(ηt)
∀t ∈ [1, 24] and cell range R which directly impacts the per-
ceived user data rate and the daily energy consumption. For
this reason, we propose a simple algorithm to optimize the cell
range enabling minimum annual energy consumption or mini-
mum capital expenditures. A detail description of the algorithm
used in the numerical evaluations is provided in Appendix C.
Here we provide a short summary as follows.

The algorithm takes as input 1) daily area traffic demand vari-
ation T (t) Mbps/km2, 2) system requirements such as coverage
and QoS constraints i.e., rmin and Pmin, 3) the set of feasible
cell rangesR = [Rmin, Rmax].

• The algorithm starts with an initial cell range Rmin and
defines the minimum transmit power satisfying the cover-
age requirement, i.e., Pk : gikPk = Pmin.

• For each hour t ∈ [1, 24], the algorithm determines the
feasible load vector ηt = (ηt1, η

t
2, ...., η

t
M ) by using Al-

gorithm 1 that solves (23) and returns hourly energy con-
sumption Etk, ∀k ∈ M , and the CDF of the perceived user
data rates Fχ%

[
c(ηt)

]
.

• The algorithm iterates through the set of feasible
cell ranges and computes area power consump-
tion Et[Ptarea(R)] and perceived user data rate distribution
for busy hour Fχ%

[
c(ηbh)

]
.

• Finally, the algorithm searches over feasible cell ranges
and determinesREEopt andRcapexopt which minimize the daily
average area power consumption for a given δ and the ini-
tial capital expenditures respectively.

5.4. Viability Analysis of Energy-Optimized Network Planning

As aforementioned in the previous subsections, energy- and
CAPEX-optimized network planning are completed by finding
the optimum cell size by assuming that the number of BSs are
constant, M . This indicates that the proposed solution pro-
vides the optimized BS densities, i.e., ρEEopt = 2M

3
√

3(REE
opt )2

and

ρcapexopt = 2M
3
√

3(Rcapex
opt )2

, instead of optimum number of BSs for

each deployment objective. Therefore, we update the viability
condition for energy efficient deployment presented in Eq. (10)
as below:

N∑
n=1

enNh ×
(
Et[Ptarea(Rcapexopt )]− Et[Ptarea(REEopt )]

)
(1 + d)n−1

>

[
(ρEEopt − ρ

capex
opt )×

(
ccapex + co

(1 + d)N − 1

d(1 + d)N

)]
.

(34)

Here,Nh is the total number of hours per year, i.e.,Nh = 8760.
On the other hand, Et[Ptarea(Rcapexopt )] and Et[Ptarea(REEopt )]
are the daily averaged area power consumption (Watt/km2),
for CAPEX- and energy-optimized deployments, respectively.
As a result, the LHS denotes the total energy cost saving per
km2 during N years due to energy-oriented network planning,
whereas the RHS shows the resulted increase in both capital
and energy-independent operational expenditures per km2.

It can be observed in Eq. (35) that the economic viability of
energy efficient deployment is highly dependent on unit cost
values, i.e., ccapex, co, en, and the discounting factor, d. More-
over, the annual energy savings throughout the network lifetime
is dependent on the variation in the utilization of the BSs. In or-
der to incorporate these aspects, we made several assumptions
as summarized in Section 2.2. Firstly, we assume that the BSs,
deployed in the beginning of the first year based on the chosen
network deployment objective, will have a steady resource uti-
lization throughout the network lifetime despite the increasing
BS density in the network. This can represent a reasonable ex-
pectation that the mobile operator will maintain the same design
strategy over the years. As a result, the annual energy savings
through energy efficient deployment will be the same during N
years compared to CAPEX-optimized network deployment.

Moreover, in order to investigate the circumstances under
which energy-oriented network planning is more cost-efficient
in the long run, we identify the break-even cost of electricity
for various ccapex and co values by means of system level sim-
ulations and present the results in Section 6.

6. Simulation Results

In this section, we present the simulation results which con-
sists of two main parts. First, we focus purely on introduced en-
ergy efficient solutions, and present the achievable energy sav-
ings for i) Case 1: Hardware upgrade enabling DTX in the BSs600

in a given deployment; ii) Case 2: Energy efficient network de-
ployment for minimum energy consumption. Note that energy
efficient network deployment is achieved for two sub-cases: i)
Case 2.1: δ ∈ [0, 1) (Cell DTX is incorporated with clean-slate
network deployment); ii) Case 2.2: δ = 1 (Cell DTX is not in
the planning phase, but it is in operation). Second, with the help
of obtained technical results, we will conduct an economic via-
bility analysis in order to define the circumstances under which
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Table 1: Simulation Assumptions

Deployment and Traffic Specific Parameters
Cell range R ∈ [100-800] m
Number of BSs/Number of cells M=19 / 19
Deployment area A = M 3

√
3/2R2 km2

User density ρu = 1000 users/km2

Data demand per heavy user per month Ωheavy=21 GB/month
Traffic per ordinary user per month Ωordinary=3.5 GB/month
Fraction of heavy users in the system %=20%
Daily traffic profile α(t), t ∈ [1, 24] [3]

Radio Link Performance Specific Parameters
Carrier frequency fc=2GHz
Bandwidth W=10 MHz
Number of RBs NRB=50
Antenna gain G=15 dBi
Thermal noise N0=-174 dBm/Hz
Antenna height hb=25 m
Receiver height hm=1.5 m
Min received power Pmin=-70 dBm
Max spectral efficiency νmax=5 bps/Hz
Bandwidth efficiency coefficient ξ1=0.83
SINR gap ξ2=1

Power Consumption Parameters
Power slope ζ=4.7
Baseline power consumption P0=130 W
Cell DTX performance δ ∈ [0,1]

resulted energy savings from considered solutions compensate
the increase in capital expenditures.

6.1. Simulation Scenario

We consider a LTE-like network with a regular hexagonal
layout consisting ofM = 19 sites adopting a wrap around tech-
nique where the cell radius varies between 100 and 800 meters.
We assume deployments with macro type BSs with one omni-
directional antenna. Users are randomly distributed over the
network area with a density of ρu=1000 (users/km2). It corre-
sponds to a population density of 3500 (people/km2) under the
assumption that the operator of interest has 30% market share
and overall service penetration is 95%. In order to provide re-
alistic traffic analysis, we consider the scenario defined as the
most relevant for Europe in 2015 with the daily traffic variation
presented in [3]. In this model, 20% of the users are classified
as heavy users, each consuming 21 GB per month whereas an
ordinary user demands for 3.5 GB per month.

Here, COST-231 Hata path loss model for an urban area is
utilized based on 3GPP specifications [21] with 8 dB user noise
figure, and ξ1=0.83 and ξ2=1 are considered as the modified
LTE capacity parameters [18]. For the proposed algorithm,
we set νmax = 5 bps/Hz, pmin=-70 dBm, ηmax = 1, ζ=4.7,
P0=130 W. The detailed assumptions on system and power con-
sumption parameters are listed in Table 1.

6.2. Analysis on Achievable Energy Savings

Firstly we illustrate the relationship between daily average
area power consumption Et[Ptarea(R)] and the cell range in
Fig. 1 for the considered daily traffic variation T (t) for var-
ious δ values. Note that here increasing cell ranges repre-
sent higher average load levels in the network (η̄t = Ek[ηtk],
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Figure 1: The relationship between annual energy consumption per area, cell
range and δ.

Table 2: Energy savings with hardware upgrade (η̄ = 0.11)

Cell DTX Performance δ=0.1 δ=0.3 δ=0.5 δ=0.8

Daily Average Area Power Cons. [W/km2] 68.6 91.5 114.2 148.5

Annual Energy Cons.per Area [KWh/km2] 600.9 801.5 1000.4 1300.9

Annual Energy Saving [%] 60% 46.6% 33.3% 13.3%

k = 1, 2, ...,M = 19) due to the fact the number of active users
in a cell increase with R2. Moreover, with the resulting higher
probability of receiving interference from the neighbor cells,
the average resource utilization further increases. Therefore,
for the considered cell ranges, i.e., 100 meters to 800 meters,
the average cell load at busy hour varies between 10−3 and 0.9
resulting in a growth rate of more than R2.

Based on the given descriptions, the results in Fig. 1 can be
interpreted in two aspects. First, it shows that significant energy
savings are achievable by upgrading the hardware that enables
cell DTX feature in a given deployment (given R) in which the
savings are inversely proportional to δ. Also, it is evident that
the current situation of the network, i.e., how loaded the cells
are, significantly impacts the achievable energy savings which
reduces as the network becomes highly loaded.

In order to indicate the potential energy savings through cell
DTX, we consider a network deployment with R=600 meters,
where the daily average resource utilization is 11% (busy hour
load is 23%). This scenario represents a good illustration of
the existing networks where the average load of a mature 3G
network is shown to be 12.2% in [22]. Based on this assump-
tion, the daily average area power consumption of the base-
line network, i.e., BSs are without cell DTX capability δ = 1,
is defined from Fig.1 as Et[Ptarea(R)]|δ=1=171.3 Watts/km2.
Thus, the annual energy consumption per area can be calcu-
lated as Earea = 365

A ×
∑24
t=1 Et = Nh × Et[Ptarea(R)] =

8760 × 171.3 = 1500.6 kWh/km2. Accordingly, using the re-
sults from Fig.1, we present the annaul energy consumption per
area and the achievable energy savings in percentage in Table 2,
for various δ values.
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Figure 2: Optimized network deployments and resulted energy savings.

The results show that up to 60 percent energy saving is
achievable with cell DTX when δ=0.1, representing the case
where a significant part of the BS components can be switched
off and be activated upon request in milliseconds level. How-
ever, the achievable energy savings reduces to 13 percent when
the cell DTX performance is insufficient, i.e., the reduction in
baseline power consumption is only 20 percent when there is
no traffic in the cell, i.e., δ=0.8.

Secondly, Fig. 1 illustrates what has been mathematically
proved in Section 5.1, that is in the case of greenfield deploy-
ment, there always exists a non-null and finite cell range mini-
mizing the daily average area power consumption regardless of
power consumption parameters. This simply occurs because of
the tradeoff between the reduced power consumption in small
cells due to lower load levels and the additional baseline power
consumption due to the increase in the number of BSs in the
network. Furthermore, we observe that when cell DTX is in-
corporated at the planning stage, i.e., δ¡1, higher number of
BSs tend to be preferred which also brings additional energy
savings. This is mainly because network planning with cell
DTX takes into consideration that lower cell load levels cre-
ating longer deactivation periods can be efficiently exploited by
cell DTX.

Based on the illustrated relationships between the daily aver-
age area power consumption, the cell range and the cell DTX
capability, in Fig. 2 we present the optimized network deploy-
ment solutions based on different objectives, and the obtained
annual energy savings with energy-optimized network deploy-
ment compared to the CAPEX-minimum deployment strategy.
Fig. 2a depicts the optimum cell ranges, i.e., REEopt (for δ=1
and δ=0.1) and Rcapexopt , as a function of various QoS require-
ments. We observe that the optimum network planning signifi-
cantly depends on the QoS constraint, i.e., busy hour perceived
throughput for the worst 5th percentile of users. Due to the
fact that user throughput is monotonically decreasing with the
load, higher requirements for rmin favor for smaller cell sizes
in order to reduce the average resource utilization.

It is also shown that if the objective is that of obtaining the
minimum energy solution, the optimum design requires denser
deployment for all δ values compared to minimum-capex solu-
tion, which, as a consequence, increases the installation cost.
However, we observe that the tradeoff between lower capital
investment and the reduced energy cost is only valid for low
and medium level QoS requirements. A very high QoS con-
straint inactivates the network planning objective and indicates
a unique solution for both energy and CAPEX-optimized plan-
ning.

On the other hand, Fig. 2b illustrates the annual energy sav-
ings through energy-optimized greenfield network planning so-
lutions for a moderate QoS target, rmin=3 Mbps which is de-
fined as the minimum requirement to enable consistent user ex-
perience in [23]. Note that the obtained optimum cell ranges for
energy optimized planning (REEopt (δ)) in this scenario are 440
meters and 620 meters for δ=0.1 and δ=1, respectively. On the
other hand, CAPEX-optimized solution indicates Rcapexopt =720
meters in order to satisfy the given QoS requirement with min-
imum capital expenditures. It should be noted that, for the
greenfield network deployment scenario, we assume that all the
BSs have DTX capability regardless of the considered network
planning objective. Consequently, unlike Case 1, i.e., hardware
upgrade, δ=1 represents the case, where cell DTX is not in-
corporated into the network planning stage, however, it is in
operation. Therefore, the savings in Fig. 2b is calculated based
on the assumption that all the BSs in the network can reduce
their baseline power consumption by 90 percent when there is
no traffic regardless of the assumptions made at the planning
stage. This ensures that the presented energy savings in Fig. 2b
only originate from energy-oriented network planning.

The results show that energy efficient network deployment
solutions bring striking energy savings compared to CAPEX-
minimum deployment. Especially when the network is de-
signed by taking into account BSs’ fast traffic adaptation ca-
pabilities (δ=0.1), up to 70 percent energy savings can be ob-
tained at busy hour by deploying slightly faster than the ac-
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tual requirement warrants. It is interesting to observe that the
energy-optimum deployment does not always bring energy sav-
ing throughout a day as shown in Fig. 2b. In the least busy
hours, this approach comes with a higher energy consump-
tion since the incremental increase in load-independent base-
line power consumption due to densification can not be com-
pensated by the energy savings arising from longer deactiva-
tion periods. Table 3 summarizes the results obtained through
energy efficient network deployments with δ=0.1 and δ=1. It
clearly shows that energy-optimized deployment can lead to 37
and 51.4 percent average annual energy savings at the cost of
deploying 35 and 160 percent more BSs in the network, respec-
tively. We can conclude that with energy efficiency oriented
network planning, the installation costs grow while the total en-
ergy consumption decreases.

Table 3: Energy savings through energy-optimized network planning

Network Planning Objective Base Station
Density
(1/km2)

Annual Energy
Cons. per Area

(kWh/km2)

Energy
Saving

(%)
CAPEX-optimized 0.74 1201 -

Energy-optimized δ = 1 1.00 648.9 37 %

Energy-optimized δ = 0.1 1.98 380.6 51.4 %

We would like to note that the presented energy saving results
with hardware upgrade and energy-optimized network planning
would be affected by large number of parameters, such as num-
ber of sites, system bandwidth, carrier frequency, antenna gain,
transmit power, traffic density at busy hour, traffic variation dur-
ing the day, etc. However, we focus on few important parame-
ters which characterize each example for clearer illustration of
our proposed methodology. The impact of various parameters
remains as an interesting further study.

6.3. Economic Viability Analysis
Based on the obtained energy savings from the considered

solutions solely aiming at energy minimization, in this sec-
tion we perform an economic viability analysis based on the
methodology introduced in Section 4 and Section 5, in order to
answer ”Under which circumstances an operator will get a to-
tal cost saving from the considered energy efficient solutions?”.
To this end, we identify the circumstances under which Eq. (30)
and (35) are satisfied based on the stated assumptions.

For numerical evaluations, we assume that unit installation
cost of a BS is ccapex=15 Ke, whereas annual operational costs
excluding energy is co=7.5 Ke [24]. Moreover, the lifetime of
the networks is assumed to be N = 15 years.

We first present the results for the existing deployment with
an average load of η̄ = 0.11 in which the achievable energy
savings through hardware upgrade is given in Table 2. With
this respect, Fig. 3 shows the break-even cost of the hardware
upgrade enabling cell DTX with respect to its unit CAPEX, i.e.,
∆cb/ccapex. Here the break-even cost is illustrated as a func-
tion of two important parameters that impact the achievable en-
ergy cost saving with cell DTX, i.e., unit electricity price, en in
e/kWh and the cell DTX performance represented by δ. Re-
sults reveal that the break-even cost of hardware upgrade is an
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Figure 3: Break-even cost for hardware upgrade in existing deployment (η̄ =
0.11).

increasing function of the unit energy cost. Thus, upgrading
the existing BS transceivers’ is increasingly cost effective as
the unit energy cost increases. It may come as no surprise that
higher δ values, resulting in lower energy savings, indicates that
hardware upgrade might not bring total cost saving for the oper-
ators. This is mainly because the energy cost reduction with cell
DTX is insufficient despite the fact that the network is lightly
loaded.

Considering todays’ electricity prices and highly capable
hardware (δ = 0.1), we can conclude that the resulted energy
cost saving via hardware upgrade can compensate the incre-800

mental increase in CAPEX when the price ∆c is below the
break-even cost of 8% and 42% (of a BS CAPEX) for the coun-
tries in low (en=0.1 e/kWh) and high (en=0.5 e/kWh) elec-
tricity price zones respectively. If we look from a different an-
gle, we can also conclude that for a country with 0.2 e/kWh
unit electricity cost, and a hardware upgrade cost of 22% of the
CAPEX, there is no actual benefit of hardware upgrade if δ is
equal to or higher than 0.3. We believe thay the presented via-
bility results have a substantial importance for the operators in
the process of investment decisions.

In case of energy efficient deployment, we perform the eco-
nomic viability analysis based on the assumptions introduced in
Section 5. The optimum network deployments, achieving min-
imum energy consumption or minimum capital expenditures,
are determined for a given perceived data rate requirement of
rmin=3 Mbps for the worst 5th percentile of the users. Note
that, here we consider a constant CAPEX per BS despite the
fact that small cells with lower capital expenditures, e.g., micro
or pico, can be utilized as the cell range is reduced. The main
reason behind this assumption is that the considered cell ranges
are typically covered by the same type of BS. In other ranges
(e.g., applicable for rural areas), different parameters should be
considered, which will be analyzed in a future work.

With these assumptions in mind, we first show the discounted
total cost of investment results for a limited operation time of
N=15 years in Fig. 4. Here we illustrate the achievable energy
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cost savings through energy-oriented deployment for δ=1 and
its consequences in terms of the required increase in CAPEX
and OPEX, compared to CAPEX-optimized planning. The re-
sults are presented as a function of the operation year n ∈ N for
various unit electricity cost in e/kWh. As aforementioned, we
assume that the capital expenditures occur at the beginning of
the first year, and thus it is independent of the network lifetime.
Based on this scenario, Fig. 4 shows that the energy-oriented
design (δ=1), enabling 37% saving per year, leads to a signif-
icant cost saving over the network lifetime especially for the
countries with higher electricity cost. However, it is observed
that despite the fact that the energy cost saving possibly can off-
set the incremental increase in capital expenditures, i.e., 3882
Euro/km2, it is inadequate to compensate the annual increase in
OPEX arising due to denser network deployment. The compen-
sation during network lifetime might only be feasible if there is
some hidden benefits of energy saving for the operators, e.g.,
marketing, spectrum cost reduction, etc.

Finally Fig. 5 illustrates the break-even electricity costs for
energy-optimized deployment considering the cases of δ=1 and
δ=0.1 as a function of unit capital and operational expendi-
tures. The results indicate how expensive energy must be so
that energy-oriented deployments result in the same net present
value as the traditional minimum-CAPEX solution. We ob-
serve that energy-optimized network planning, which incorpo-
rates cell DTX already in the planning stage, i.e., δ=0.1, is
decreasingly cost effective as the unit CAPEX and OPEX in-
crease, despite the fact that the solution enables 51.4 percent
annual energy saving compared to CAPEX-optimized solution.
This mainly arises from the fact that the energy-optimized so-
lution with δ=0.1 indicates significant densification, i.e., 160
percent more BSs, in order to increase the deactivation periods
of the BSs that is efficiently exploited by cell DTX. However,
we observe that even though the energy-oriented network de-
ployment, ignoring BSs’ capability at the planning stage, i.e.,
δ=1, results in lower energy saving, it is more cost effective ap-
proach compared to the case of δ=0.1, due to the need for less
densification.

0 2 4 6 8 10

10
15

20
25

30
0

2

4

6

8

10

12

 

co[KEuro] 
c

capex
 [KEuro]

 

B
re

ak
 e

ve
n 

co
st

 o
f e

le
ct

ric
ity

 [E
ur

o/
kW

h]

Energy−optimized δ=0.1

Energy−optimized δ=1

Figure 5: The break-even cost of electricity vs. unit cost values.

We can conclude that energy-optimized network planning,
which favors deploying slightly faster than the actual require-
ment warrants, brings significant energy savings. However, if
the cost savings are restricted to the direct saving due to reduced
energy consumption, the achieved savings are not sufficient to
compensate the increase in other expenditures.

We would like to note that the this economic viability analy-
sis is valid for the considered scenario and thus the break-even
cost will be different for different setups. We believe that the
detailed analysis on the impact of system parameters threshold
point of δ and en would provide direct guidance on decision
making for the operators, which will the scope of our future
study.

7. Conclusions

In this paper, we presented a novel methodology to assess the
economic viability of the technical solutions for energy efficient
wireless access networks. We demonstrated the usability of the
proposed methodology by performing cost-benefit analysis for
two different energy efficient solutions applicable to existing
and greenfield deployment scenarios.

Regarding the hardware upgrade solution, we considered dy-
namic sleep mode operation of BSs, namely cell DTX. Based
on the load-dependent performance evaluation, we have quanti-
fied the achievable energy saving of the hardware upgrade with
the cell DTX feature. Then, we derived the break-even cost
of the new hardware below which the increment in CAPEX is
compensated by the reduced energy cost. It is shown that up
to 60 percent of cost saving is achievable with the cell DTX
by taking advantage of low resource utilization in the current
networks due to the high data rate requirements. Consequently,
the resulted energy cost saving via hardware upgrade can com-
pensate the required investment, and thus brings the total cost
saving, when the additional hardware cost for each BS is lower
than 8% of unit CAPEX in the countries with energy cost of 0.1
e/kWh.

Regarding the greenfield network deployment scenario, we
identified the network planning that enables minimum annual
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energy consumption without degrading perceived user QoS by
using BSs with cell DTX capability. To this end, we proposed a
simple algorithm to obtain the optimum BS density considering
the average load levels in the network varying with the daily
traffic fluctuations. We have shown that the optimal topology
from the deployment cost point of view does not match with
the network density which is optimal for the energy consump-
tion. Consequently, if the energy-awareness is incorporated at
the initial deployment phase, a significant energy saving is fea-
sible over CAPEX-minimized network planning. However, it
comes at the expense of increased BS density. In that respect,
our viability analysis illustrates that, unless the operators ac-
quire additional cost benefits besides the direct electricity con-
sumption, the energy-optimal deployment strategy is not viable
under today’s cost values.

Appendix A
Defining Feasible Load Levels

In order to define the feasible load levels of the cells for a
given area traffic demand during an observation period t, an
iterative time static simulation approach is adapted in this paper
that solves (23).

Algorithm 1 Calculate feasible load vector at time t ηt

Require: α(t), A, Ω, ρu, M, δ, ε, η0,
1: Calculate active user at time t, N t

act

2: Define the set βk = i : bi = k, ∀k ∈M
3: Initialize load vector, η0

4: repeat
5: Compute ηnew = (ηnew1 , ηnew2 , ...., ηnewM ) from (22)
6: if ηnew − ηt > ε then
7: ηt ← updateLoad(ηnew)
8: else
9: return ηt ← ηnew

10: end if
11: until ηnew − ηt < ε

Appendix B
Proof of Unimodality

In order to present the dependence of the objective function
on the cell edge, we first provide the functional relationship
between ηtk and R in the following corollary.

Corollary 1 The feasible load level of each cell ηtk, ∀ k,
∀ t ∈ [1, 24] is increasing with Rx, where x > 2.

Proof of Corollary 1: Under the constant user density as-
sumption, number of active users in a cell during a given hour
t is increasing with R2. On the other hand, user’s data rate
ri(γi(η)), ∀ i ∈ βk is decreasing with R due to higher inter-
ference level. Therefore, the feasible load level of each cell
ηtk =

∑
i∈βk

φki =
∑
i∈βk

Ωi

Tri(γi(η
t))

will increase with Rx,
x > 2. �

Regarding Pk, as mentioned, we we choose its value as the
minimum transmit power required to ensure full coverage, i.e.,
Pk : gikPk = Pmin. Therefore, based on the general form of

the path loss model, i.e., gdBik = 10 log10(c1)+10 c2 log10(dik),
the functional relationship between transmit power and cell
range will be Pk(R) = Pmin

c1
Rc2 . Here c1 and c2 denote the

model parameters.
Based on the introduced relationships, daily average area

power consumption will have the following dependence on cell
range:

Et[Ptarea(R)]

=
1

|t|

24∑
t=1

∑M
k=1 ζ Pk(R) ηtk(R) + (1− δ)P0η

t
k(R) + δP0

A(R)

≈ f1(Rx+c2−2) + f2(Rx−2) + f3(R−2).

(35)

This proves that under the stated assumptions, the objective
function of energy-optimized network planning problem is a
unimodal function, and thus there is always non-null and finite
cell range that minimizes annual energy consumption. �

Appendix C
Defining Optimal Network Planning

Algorithm 2 first defines the minimum transmit power that
satisfies the coverage requirement for each cell range R ∈ R.
Then, for each hour t, feasible load vector ηt at time t is deter-
mined by using Algorithm 1 that solves (23). The determined
feasible load vector ηt is then used to calculate the average area
power consumption Ptarea(R) and CDF of the perceived user
data rates F [c(ηt(R))] during that hour t. We finally determine
the daily average area power consumption Et[Ptarea(R)] and χ
percentile user data rate at busy hour cχ% for a given R ∈ R.

The search over cell ranges aims at finding the optimum cell
range REEopt that minimizes the daily average area power con-
sumption for a given δ. This overall search algorithm increas-
ing R by a step size4 will be stopped if the objective value are
increasing Et[Ptarea(R)] > Et[Ptarea(R −4)] or χ percentile
user data rate at busy hour, i.e., cχ% = Fχ%

[
c̄(ηbh)

]
, is less

than rmin Mbps. This is due to the fact that while Et[Ptarea(R)]
has a convex relation with R, cχ% is non-increasing function of
R.

On the other hand, the search that aims at finding the op-
timum cell range Rcostopt that minimizes the total initial capi-
tal investments will only consider the defined performance re-
quirement regardless of the energy consumption and it will stop
when cχ%, is less than rmin Mbps. This will indicate maximum
cell range that satisfies the user QoS requirement.
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Algorithm 2 Calculate the cell ranges REEopt and Rcostopt that op-
timizes (31) and (33)

Require: α(t), Ω, ρu, rmin, Pmin, R = [Rmin, Rmax]
1: for all R = Rmin to Rmax do
2: Compute Pk(R) = Pmin

c1
Rc2 for all k

3: Compute A(R) = M × 3
√

(3)/2
4: for all t ∈ [1, 24] do
5: Calculate active user at time t, N t

act(R)
6: Using N t

act, find ηtk(R) for all k from Algorithm 1
7: Compute ri(γi(ηt(R))) for all i
8: Compute Ptarea(R) and F [c(ηt(R))]
9: end for

10: Compute Et[Ptarea(R)] and Fχ%

[
c(ηbh)

]
11: if Et[Ptarea(R)] < Et[Ptarea(R−4)]

and Fχ%

[
c̄(ηbh)

]
≥ rmin then

12: Update R = R+4
13: else
14: Return REEopt = R
15: end if
16: if Fχ%

[
c̄(ηbh)

]
≥ rmin then

17: Update R = R+4
18: else
19: Return Rcostopt = R
20: end if
21: end for

References

[1] S. Tombaz, A. Västberg, J. Zander, Energy and cost efficient ultra high ca-
pacity wireless access, IEEE Wireless Communications Magazine 18 (5)
(2011) 18–24.

[2] A. Fehske, G. Fettweis, J. Malmodin, G. Biczok, The global footprint of
mobile communications: The ecological and economic perspective, IEEE
Communications Magazine 49 (8) (2011) 55–62.

[3] G. Auer, V. Giannini, C. Desset, I. Godor, P. Skillermark, M. Olsson,
M. Imran, D. Sabella, M. Gonzalez, O. Blume, A. Fehske, How much
energy is needed to run a wireless network?, IEEE Wireless Communica-
tions Magazine 18 (5) (2011) 40–49.

[4] 3GPP TSG-RAN WG1, Enhanced network energy efficiency (January
2010).

[5] D. Zeller, M. Olsson, O. Blume, A. Fehske, D. Ferling, W. Tomaselli,
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