A Mobile Peer-to-Peer System for Opportunistic
Content-Centric Networking

Olafur R. Helgason, Emre A. Yavuz, Sylvia T. Kouyoumdjieva,
Ljubica Pajevic, and Gunnar Karlsson

Laboratory for Communication Networks
KTH, Royal Inst. of Tech.
100 44 Stockholm, Sweden
{olafurr, emreya, stkou, ljubica, gk}@kth.se

ABSTRACT

In this work we present a middleware architecture for a mobile
peer-to-peer content distribution system. Our architecture allows
wireless content dissemination between mobile nodes without rely-
ing on infrastructure support. Contents are exchanged opportunis-
tically when nodes are within communication range. Applications
access the service of our platform through a publish/subscribe inter-
face and therefore do not have to deal with low-level opportunistic
networking issues or matching and soliciting of contents. Our ar-
chitecture consists of three key components. A content structure
that facilitates dividing contents into logical topics and allows for
efficient matching of content lookups and downloading under spo-
radic node connectivity. A solicitation protocol that allows nodes
to solicit content meta-information in order to discover contents
available at a neighboring node and to download content entries
disjointedly from different nodes. An API that allows applications
to access the system services through a publish/subscribe interface.
In this work we describe the design and implementation of our ar-
chitecture. We also discuss potential applications and present eval-
uation results from profiling of our system.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design |: Wireless communi-
cation

General Terms
Design

1. INTRODUCTION

Multimedia usage has spread from personal computers and In-
ternet into people’s palms as mobile phones have become smart
platforms for digital content. Today, there are two ways of dis-
tributing content for mobile devices: downloading when docked to
a computer with Internet access or by means of fixed infrastruc-
ture such as cellular networks/access points. The former mode is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MobiHeld 2010, August 30, 2010, New Delhi, India.

Copyright 2010 ACM 978-1-4503-0197-8/10/08 ...$10.00.

enabled by the massive storage available, but the distribution is lim-
ited to contents present at the time of docking. Access via public
802.11 networks may provide more frequent downloading oppor-
tunities when devices are on the move but their coverage is limited.
The cellular network provides good coverage and continuous ac-
cess to contents, however, cell capacity is a technological concern
due to saturation if downloading of multimedia contents becomes
very popular. Not to mention the high pricing along with the con-
cern of so-called wireless net neutrality.

In this paper we propose a middleware architecture that allows
applications on mobile devices to share contents: The devices can
utilize connections with access points when in range, or distribute
contents opportunistically among mobile nodes otherwise. This ex-
tends the availability of contents beyond the reach of the infras-
tructure while it enables their distribution. Contents are structured
to facilitate efficient lookup matching and downloading under dis-
ruptive node connectivity. This requires rethinking of networking
basics: While existing network architectures focus on addressing
nodes and forward packets between such nodes, our system aims at
addressing and disseminating contents. Hence, instead of relying
on end-to-end semantics between a requesting client and a provider,
our dissemination mechanism relies on opportunistic content for-
warding while abstaining from any routing substrate; contents are
routed implicitly through the combination of a receiver-driven so-
licitation protocol and the actual node mobility. As a result, so-
phisticated multi-hop communication protocols, where for example
routes have to be built up and maintained, are not necessary. Con-
sequently, the architecture does not assume a traditional network
layer.

With its content based routing and addressing, the system can be
seen as a pub/sub system that decouples the communicating entities
from the contents and thus it inherently allows for asynchronous
communication and leverages looser delay constraints. With re-
spect to content availability, scaling comes naturally as popular
contents are likely to be available at many nodes in the system. It is
particularly well suited for data-centric applications and distribut-
ing contents that are popular and tolerant to a modest delay such
as conducting local quizzes/surveys, audio/video broadcasting and
on-site networking/dating profile exchange. The proposed archi-
tecture also promotes openness: anybody who wishes to publish/re-
trieve contents is free to do so. We therefore believe that the system
has the necessary features to stimulate organic user growth, which
has led to the success of many systems and services on the net. The
architecture is inspired by podcasting and BitTorrent. Our operat-
ing scenario is however radically different than what is experienced
on the wired net since our architecture has to cope with sporadic

contacts, none or limited end-to-end connectivity and short contact
durations. Although a previous feasibility study for content distri-
bution among pedestrians in such environments shows promising
results [11] [5], there are still many challenges that need to be ad-
dressed and solved by an actual system design and it is the primary
focus of this work.

The rest of the paper is organized as follows. Section 2 covers
related work and in section 3 we give an overview of the architec-
ture. Sections 4, 5, 6 and 7 present the detailed design of the system
and our implementation is described in section 8. Potential appli-
cations are discussed in section 9. We evaluate our implementation
in section 10 and conclude in section 11.

2. RELATED WORK

The Delay-Tolerant Network Architecture [1] and Haggle [10]
are two interesting communication architectures proposed in this
field. DTN consists of an overlay, called the bundle layer, which
operates above the transport layer. The goal is to deliver data units
called bundles from a sender to a receiver in the presence of oppor-
tunistic connectivity using different transport protocols assuming
that nodes store, carry and forward bundles to cope with link out-
ages. Haggle is an architecture for mobile devices that facilitates
the separation of application functionality from the underlying net-
work technology to provide seamless operation despite disruptions
in network connectivity. It achieves this through late binding of
network interfaces, protocols and names. It is thus different from
DTN since it is not a strict protocol architecture but rather pro-
poses a node design that allows nodes and applications to adapt
to the network connectivity level. 7DS [7] is another system for
opportunistic dissemination of data among mobile devices and al-
lows for extending legacy applications, such as web and e-mail,
to opportunistic environments. Our system differs from systems
in many fundamental aspects. It is data-centric with content-based
addressing and it provides applications group-based communica-
tion via pub/sub interface. In contrast, DTN focuses on unicast
source to destination communication and provides limited support
for pub/sub communication. Haggle and 7DS are general purpose
platforms to allow both new and legacy applications to operate in
challenged environments while ours explicitly targets applications
that can adapt to a pub/sub interface.

Other similar systems have been proposed. Cimbiosys [9] is
a platform that provides content synchronization and replication
through opportunistic peer-to-peer communication. It uses content-
based filters to specify which contents are synchronized and shared
by the system. BlueTorrent [4] is an opportunistic file sharing ap-
plication only for Bluetooth enabled devices.

The system design introduced here builds on the work in [5]
and [6]. [5] presents the original idea of a delay-tolerant broad-
cast system and evaluates its feasibility in an urban area while [6]
introduces podcasting as an application for DTN. Similar systems
to ours have been proposed.

Pub/sub systems have been widely adopted in the context of
wired networks recently. Such an approach is however not suitable
for mobile wireless scenarios where fixed infrastructure cannot be
assumed. In [2], Costa et al. present SocialCast; a content-based
routing scheme for pub/sub communications in a DTN environ-
ment. Another content routing scheme is presented in [12]. Mobile
nodes run a community detection algorithm and in each commu-
nity, the nodes with the highest closeness centrality act as mes-
sage brokers. In contrast, our system does not include an explicit
caching or message routing mechanism but is based on direct inter-
est sharing and dissemination of content. To the best of our knowl-
edge these content routing schemes have not been implemented but

incorporating such a scheme in the context of our platform might
be of interest.

3. ARCHITECTURE OVERVIEW

A general instantiation of the system can consist of three do-
mains as shown in Fig. 1(a). The system imposes a hierarchical
structure on contents by organizing them into feeds where each feed
consists of a number of entries. The sharing of contents is based
on a solicitation protocol by which a node solicits entries for one or
more feeds from a peer (a peer node can either be a mobile device
or a gateway to the Internet, such as 802.11 access points). The
content structure in the system allows for ease of searching and a
higher hit rate of content queries than if they were made for indi-
vidual unstructured contents. The system design does not assume a
traditional network layer with point-to-point unicast routing. Con-
tents disseminate in the network by means of node mobility, sharing
of local contents and a receiver-driven solicitation protocol.

Fig. 1(b) illustrates the node design and the main components
of our architecture. Applications access the services of the session
layer through an API that the middleware exports. The API im-
plicitly defines the content structure for applications and it allows
them to pub/sub to content feeds. The node design is composed
of a set of modules that implement the API, content solicitation
on behalf of the applications, service discovery and the solicitation
protocol. The architecture also contains a convergence sub-layer
for cross-layer interaction, particularly with the underlying radio
link such as 802.11/Bluetooth. Their architectures are quite differ-
ent and thus the session layer architecture abstracts most of the de-
tails of the underlying radio and the heterogeneity of the networks
away from the applications. The session layer assumes an under-
lying transport layer that preserves message boundaries, provides
flow control and process-to-process communication above an op-
tional network layer. Messages are delivered on a best-effort basis
with no guarantee that entries on a particular feed will be delivered
orderly to all receivers.

4. CONTENT STRUCTURE

Content addressing and organization adopts and extends the con-
tent structure of the Atom Syndication Format [8]. This format has
primarily been used for publishing web-feeds and podcasts on the
net. This content structure is quite generic and allows for more use
cases than what has commonly been tried and it also maps nicely
to the pub/sub semantics of our system. Contents are grouped into
feeds. A feed is an unlimited container for entries that contain the
actual data objects of interest. Each feed can have multiple entries
published at different times by different entities. Both feeds and
entries have associated meta-data. Each feed must contain a per-
manent globally unique ID assigned by the creator, a title and a
timestamp that indicates the latest update. A feed can also contain
other optional meta-information such as author, subtitle and cate-
gory. Similarly, each entry must also contain a globally unique ID,
a title and a release timestamp and it can optionally have a range
of other elements including zero or more enclosures. An enclosure
is a single file attachment and would typically be an audio, video,
or text file. To be able to efficiently transfer enclosures over the
opportunistic contacts, we divide the enclosures into chunks, small
data units of fixed size, which can be exchanged with high prob-
ability during a single contact of limited duration. Chunks are an
extension to the Atom format and they allow allow an incompletely
downloaded entry to be resumed with the same node or any other
node that also has the entry (or parts of it). They are indexed start-
ing from 1 and nodes can use these indices to resume interrupted

<«——Internet domain <«~—Gati y Wireless Ad-hoc Domain— — — —

(a)

Il
]

[Application

Session +A*PI Data Structure

Feed<l..n>

- SEntry<l..m>
Sync Manager - Enclosure
\ <l..s>

Discovery Module

/i

Transport Module

SChunk<l..r>!

Convergence sub-layer

(Transport
[Network (optional)

4 A\Bluetooth/, °

[Data link

Figure 1: (a) The system composed of servers, wireless gateways and mobile devices. (b) System architecture and data structures.

downloads. If a chunk is only partially received from a peer (e.g.
due to lost connection) it is discarded. The recommended chunk
size is 16 kB which we have found to tradeoff overhead and proba-
bility of incomplete reception well (study omitted in the paper).

5. INTERFACE

The API module implements the programming interface that ap-
plications use to access the services of the middleware. The API of
our system is inspired by the Java Message Service (JMS) publish/-
subscribe API [3]. JMS however was designed for wired networks
where dedicated brokers implement message delivery the discovery
of feeds also relies on centralize directory service.In our operat-
ing environment, central servers for performing these functions are
not available. Instead, both resource discovery and message distri-
bution are performed distributively with servers being replaced by
nodes. Thus in addition to the publish/subscribe functionality, we
need to augment the API with a mechanism for feed discovery and
for creating new feeds.

6. SYNCHRONIZATION & DISCOVERY

The synchronization manager processes content from applica-
tions and solicits contents on behalf of them. If the local content
database contains data that matches a subscription, the content is
delivered immediately to the application. The manager prioritizes
content solicitations such that different applications get a fair share
of the network resource.

The discovery module finds which neighbors are running the ser-
vice and decides which ones are feasible to associate with. The
module is split across the main session layer and the convergence
sub-layer. The latter implements neighbor discovery specific to
the underlying radio subsystem and notifies when a neighbor has
been discovered. This notification includes the node-ID and the
revision number of the content database. The revision num-
ber of a node is incremented whenever new content is added to the
database. This helps peers to determine if re-synchronization might
be beneficial in case that nodes remain in range for longer dura-
tions, and thus avoid constant re-synchronization with all the neigh-
bors only to discover if any new contents have become available.
The node-1ID is a globally unique node identifier that does not
have any particular structure. The only requirement is that nodes
shall choose unique addresses such as a MAC address.

Our design does not assume any existing service discovery mech-
anisms and includes a basic mechanism by which nodes periodi-

cally broadcast hello messages to their link-layer neighbors, in-
cluding the node-ID and the revision constructs described
above. It is expected that in many cases nodes will support more
advanced and efficient service discovery than the default hello
method such as the Service Discovery Protocol (SDP) in Bluetooth.

7. TRANSPORT MODULE

This module module performs session management and imple-
ments a request-reply protocol to download and discover available
contents at a peer. Protocol messages are in XML format with the
message element being the kernel of a protocol message. A pro-
tocol message has a single node-id element containing the ID
of the message source and each message has a unique element that
determines its type, given by one of the following message types:
hello, request, reply and reject. All other elements of a
protocol message are child entries for the header fields associated
with the message type.

Session Management

When a node discovers a new peer, it first sends a request mes-
sage to the peer to initiate a unilateral session for downloading.
The request contains either a query for a particular feed entry or for
meta-data to discover content availability. The peer sends a reply
message, establishing the session and replying to the query. Each
download session thus consists of a client node sending request
messages and a server node sending reply messages (or reject if
the server is unavailable). The server is stateless with each reply
message being independent of any previous requests. Processing
a request only consists of verifying that the requested contents or
meta-data exist and then to deliver them.

Content solicitation in our system is entirely pull-based. At the
client, a typical session alternates between discovery and down-
load states. In the former state, the client node queries the server
for content-meta information whereas it downloads contents that
match the subscriptions of applications during the latter state. With
this approach, each node has full control of the contents it down-
loads and decisions are based only on the client state with the server
being stateless. If the client node wants to filter the contents it solic-
its from a particular feed (such as only soliciting content published
after a certain time) it first needs to solicit feed meta-information
before it can directly request the entries available at the serving
node that match the request criteria.

In general, a node can have multiple active sessions simultane-
ously with the node being either a client (when it is downloading)

or server (when it is uploading) in each session. Note that the sys-
tem does not explicitly enforce any mechanism to share download
time between sessions; we simply rely on the mechanisms of the
MAC layer to share the radio channel fairly. Ungraceful session
termination (e.g. when nodes move out of range) is handled by a
soft-state timer; if there is no activity from the peer for a certain
time, the session is closed and any allocated resources are freed up.

Content Solicitation

A request message contains the bloom, selector, feed,
entry, and chunks elements. These messages are also used to
query for meta-information to discover available content at a neigh-
bor and discover new content, previously not known to the query-
ing node. Discovering which previously known feeds or entries are
available at a peer node is done efficiently by having each node
maintaining a Bloom filter populated with the ID’s of available
feeds and entries at the node. A Bloom filter is a space-efficient
data structure that provides a set-like representation of elements,
requiring only a fraction of the space needed for a corresponding
set with the actual elements. When a node receives a request
with an empty XML bloom element, it delivers its Bloom filter
in a reply message. After receiving the filter, the client node
tests the ID’s of its subscribed feeds or partially downloaded en-
tries against the filter. Since false negatives are not possible, an ID
not found in the Bloom filter does certainly not exist at the peer.
Although false positives will occasionally result in requests being
sent for ID’s that are not available, the number of bytes transmit-
ted to discover available contents is drastically reduced speeding up
the content synchronization process. A Bloom filter does not allow
for iterating through the element it contains and thus it cannot be
used to discover previously unknown contents at a peer. The pro-
tocol therefore implements additional mechanisms for discovering
previously unknown feeds and new entries on already known feeds.

The selector element of a request message can be used to
solicit meta-information for contents that match a particular selec-
tion criteria given by a content selector that has the same semantics
as the message selectors previously described in section 5. A con-
tent selector is a string whose syntax is based on a subset of the
SQL92 conditional expression syntax [3]. A node that receives a
request message with a selector as top-level element of a
request, evaluates the selector on the attributes of each of its
available feeds. The feed elements for which the selector evaluates
to true are delivered in a reply message. Similarly, a selector spec-
ified inside a feed element will be evaluated against all entries of
the specified feed and only those entry items that evaluate to true
are delivered. An empty selector will match all feed/entry elements
and those attributes not specified in the selector evaluate to true
by default. Since nodes can have large content libraries, specify-
ing a selector when discovering feeds can significantly reduce the
amount of meta-data delivered in a reply message.

8. IMPLEMENTATION

We have implemented our system in Java for the Google Android
OS platform. Our implementation is based on 802.11 in ad-hoc
mode but we also intend to support Bluetooth in the future. The
Android Java libraries (version 2.2) do not currently support the ad-
hoc mode of 802.11 although this is supported by both the driver
and the hardware interface on the HTC Hero device. Therefore,
our implementation requires the device to be run in privileged user
mode (i.e. rooted mode) so that the interface can be reconfigured to
run in ad-hoc mode.

The middleware is implemented as an Android service which
runs in the background and uploads and downloads data from peers

interface IServiceAPI {
void publish(in String feedID, in Entry entry);
void subscribe (in String feedID);
void unsubscribe (in String feedID);
void discover (in String selector);
void undiscover();
void registerCallback (IClientCallback cb);
void unregisterCallback (IClientCallback cb);
}

oneway interface IClientCallback {
void notify(in String feedID, in Entry entry);
void discoveryNotify(in String availableContents);

Listing 1: Interfaces for the service API and the application
callback function.

that it discovers. Client applications can bind to the service and
communicate with it by means of remote procedure calls (RPCs)
through the pub/sub interface that it exposes. A client application
wishing to receive a notification when an entry matching one of
its subscriptions is downloaded, needs to implement and register a
callback function that the service uses for notification. The inter-
faces for the service API and the application callback function are
shown in listing 1. The remote methods exported by the service
through the IServiceAPT interface are executed synchronously,
thus blocking the local thread at the caller. In the service process,
a method call is executed in a dedicated thread chosen from a pool
of threads that is maintained by the Android system. The callback
method in the IC1ientCallback interface is however executed
asynchronously (specified by the oneway keyword) and therefore
the service does not block when it notifies a client application.

The discovery module is implemented as two threads. One thread
periodically broadcasts hello messages on a well-known UDP
port and a listener thread waits for incoming hello messages
from other nodes. The discovery module maintains a contact his-
tory cache along with the revision number for each peer in the
cache. When a new peer is discovered, the discovery module noti-
fies the transport module which initiates a download session with
the peer. If a peer, already in the contact history cache, is seen, the
transport module is notified if the peer has obtained new contents
since the last association or if there are new subscriptions locally.

The transport module implements both the client and server sides
of a download session. The solicitation protocol is currently im-
plemented on top of a simple transport protocol that implements
message boundaries on top of TCP. The server side implementa-
tion listens on a socket and spawns a new session thread for each
client. Similarly, if multiple nodes are in communication range the
transport module can create a separate client thread for each ses-
sion. Currently we set the maximum number of concurrent client
and server sessions to 6 in total (3 for each). If a new node tries
to associate when the maximum number of sessions is reached, the
server sends a re ject message.

The content database of the system is implemented as an An-
droid Content Provider. Meta-information for all available feeds
and entries is stored in a SQLite database and this information is
accessible to all applications on the device through the Content -
Provider and ContentResolver Android Java classes. The
enclosures themselves (i.e. data files) are however not stored in
this content database but in the corresponding Android Content
Providers. Images, audio and video contents are for example stored
in the Android MediaStore content provider. Thus, all media
content published or downloaded by our system is available to all
applications in a standard Android manner.

9. APPLICATIONS

The opportunistic pub/sub service presented by the system ar-
chitecture is quite generic and provides developers with variety of
possibilities for application development. In this section we give
examples of application categories that can be built on top of our
system. Those categories encompass applications that differ in their
spatial scope, as well as in the involvement of users to the data gen-
eration and the data exchange.

Local quiz: With this application, users can opportunistically
initiate a local quiz or a poll. When a user initiates a new quiz
instance it creates a feed and publishes the quiz as the first entry.
Participants subscribe to the feed and publish their answers as new
entries on the feed. Information on available quizzes could also be
distributed on a dedicated discovery feed. When participants come
into communication range they exchange published entries and lo-
cally update their results. In the simplest scenario where no result
aggregation is needed, each user can receive the answers from other
participants and then, based on higher level logic, create its own
representation of the quiz results.

Social networking: Many of the current social applications that
are popular on the Internet (such as Facebook or Twitter) lend them-
selves well to the pub/sub abstraction and can be extended into the
opportunistic domain. Each user has a feed that followers subscribe
to. Status updates, blogs or media files can be published as entries
by the user. The actual data to be shared in each entry will be
specified in the enclosure field, and users could for example define
different feeds for separating content, e.g. an audio feed, a video
feed etc. Applications falling into the social networking category
are not expected to have any spatial limitations, thus the content
can be spread opportunistically as long as there is interest in it.

Relaying sensor data: This category relates to applications that
require transporting sensor data from devices in the field to a sink
node or infrastructure network. Nodes that participate in the relay-
ing of data subscribe to feeds that the sensors publish data on.

10. SYSTEM EVALUATION

The evaluation in this section is performed on identical HTC
Hero A6262 mobile devices. These devices have a 528 MHz Qual-
comm MSM7200A processor, a ROM of 512 MB and RAM of
288 MB and a Lithium-ion battery with capacity 1350 mAh. Dur-
ing our experiments, communicating nodes were stationary in an
indoor office environment and placed within one meter from each
other.

Energy consumption

We have measured the effect of our system on the battery life of
the device. The Android system sends out an event notification (In-
tent) whenever the remaining life of the battery changes (in units of
1%). We have created a simple application that registers for these
events and logs the time whenever the battery status changes. This
way we can track how fast the battery is drained when various sys-
tem services and applications are turned on or off. In Fig. 2 (a),
we compare the battery profile for 5 scenarios: a) with the 802.11
interface turned off and our system not running, b) with the 802.11
interface turned on in ad-hoc mode but our system not running, and
with our system running with the interval between hello mes-
sages set to c¢) 0.1 sec, d) 1 sec and e) 10 sec. All measurements
were performed on the same device with no other active devices in
range at the same time. During all measurements the display back-
light was turned on. This drains the battery faster than in normal
mode but prevents the device from going into idle battery saving
mode which reduces the comparability of our measurements.

From Fig. 2 (a), we clearly see that the 802.11 interface sig-
nificantly increases energy consumption. Running our system (in
idle mode, only sending he1l1o beacons) in addition to the 802.11
interface does not add considerably to the energy consumption be-
yond what is required by 802.11. When beaconing every 0.1 sec-
onds', the battery lasts approximately 40 minutes shorter then when
the he11lo messages are sent every 10 sec. We intend to add Blue-
tooth support to our system as well since it is significantly less
power hungry than 802.11.

Solicitation protocol profiling

We have profiled our implementation of the solicitation protocol to
verify correct behavior and assess performance. For our measure-
ments we have instrumented the code with hooks where we stamp
the system clock (which provides millisecond precision). During
a measurement run we turn off logging and collect the measured
timestamps into a list which is printed to a file after the code sec-
tion being measured has completed running. This minimizes the
effect of any I/O operations due to logging or measurements on our
results.

As described in section 7, a typical download session consists
of three steps: 1) the client discovers available feeds at a server,
2) then it discovers available entries for a given feed and 3) finally
downloads the entry of interest. In Fig. 2 (b) we show the mean
feed discovery and entry discovery delay (steps 1 and 2). We have
conducted measurements for three different enclosure sizes and for
each enclosure size we conduct one set where the content database
only contains the actual feed and entry of interest (left-side bars)
versus the case when the database has 100 other feeds available
(right-side bars). For each measurement we conduct 10 runs and in
the figure we show the mean value and the standard deviation. The
results confirm that the total discovery delay (i.e. the sum of the of
the feed discovery and entry discovery delays) does not depend on
the size of the downloaded enclosure. When the number of feeds in
the content database increases, the feed discovery delay increases
due to an increase in the number of bytes transmitted in the reply
message (which contains the list of available feeds) and processing
delay at the server. We see also that the entry discovery delay re-
mains the same since the number of entries on the feed of interest
is the same in all experiments.

Our implementation supports multiple concurrent download ses-
sions and in Fig. 2 (c) we show the average goodput of a session
when the number of devices concurrently downloading is between
1 and 3. Our measurement setup is as follows. Between one and
three nodes (referred to as clients) are within range of a single node
(referred to as server) which publishes a single entry on a feed that
the client nodes are subscribing to. When the client nodes receive
the first he11o message sent by the server after the entry publica-
tion, the clients see that the server has new content and therefore si-
multaneously associate with it. The client nodes discover the entry
and then download it and we measure the goodput G of each ses-
sion as G = B/T where B is the total number of bytes transmitted
and T is the duration of the download session, i.e. the elapsed time
from when the client discovers the node until it receives the full
entry and enclosure.

Since the client nodes are being served concurrently, it is the re-
sponsibility of the MAC layer to share the radio channel between
the download sessions. If the server would only support one session
at a time the clients would be served sequentially and contention at
the MAC layer is reduced. For a server that does not support con-
current sessions, the mean goodput for N sequentially served client

"This is the beacon period commonly used by 802.11 access points.

NN - - - System off, 802.11 off
sof N~ —— System off, 80211 on %00
i N Beacon period 10's

C—JFeed discovery
[E= Entry discovery

-~ Beacon period 1 800
- - —Beacon period 0.1 5
700
600

500

400

Battery level [%]
Goodput [Mbit/s]
o

300

o
g
Discovery delay [msec]

20| i Y 200

) N
10 \ 100

5676 1 3

3574 2
Enclosure size [kB] Number of concurrent sessions

(b)

10
Time [hour]

(@) ©

Figure 2: (a) Comparison of battery profiles when 802.11 is turned on/off and our system is turned on/off. (b) Profiling results for the
mean feed and entry discovery delays. Each group of two bars contain results with one feed in the content database (left) and 100
feeds in the content database (right). (c) The mean goodput of a download session when the number of concurrent clients is varied

between one and three.

nodes is given by Gy = + (B/T + B/2T + --- + B/NT), as-
suming that the client nodes are not further sharing the entry among
themselves. For N = 2 and N = 3 we we get G2 = 0.75 G and
G3 = 0.61 G1. In our measurements we obtain the mean value
G1 = 2.86 Mb/sec. Using this value in the expressions for G2 and
Gi3 gives G2 = 2.13 and G3 = 1.73 Mb/sec which are lower and
higher respectively than measured values in Fig. 2 (c). This indi-
cates that serving nodes concurrently may not be beneficial when
more then two nodes are interested in the same content. In our
future work we intend to conduct measurements on an implemen-
tation where nodes are served sequentially to verify if this holds in
practice.

11. CONCLUSION AND DISCUSSION

We have presented a middleware architecture for mobile peer-
to-peer content distribution. Content spreads via sharing and direct
interest-based dissemination and our design includes a set of basic
mechanisms for efficiently discovering and downloading content in
opportunistic networks.

We have described the design and implementation of our system
for the Google Android platform. Our experience from the imple-
mentation is that Android is a very powerful platform and quite
mature despite its young age. The Java based environment pro-
vides a familiar environment with good support for most common
OS primitives such as threads and concurrency, database and con-
tent storage and inter process communication through the Android
service binding mechanism. Some features are however still miss-
ing, in particular support for the 802.11 ad-hoc mode (which needs
to be implemented in native code).

We believe that our design is general and facilitates the imple-
mentation of advanced content-centric applications. There are how-
ever some issues that are not, or only partially addressed by our de-
sign. We do currently not address particularly the issues of privacy,
security and power management. As we showed, the 802.11 inter-
face draws significant power and it is probable that an implemen-
tation based on Bluetooth would be less battery demanding. Blue-
tooth however has other limitations, such as a long and inefficient
discovery process, which make it ill-suited for mobile scenarios.
Also, content dissemination in our system is purely interest-driven
and nodes do not cache or forward any contents beyond what they
are privately interested in. Content caching and forwarding is one
of our primary directions for future work. We intend to release an
implementation of our system as a research prototype.

12. REFERENCES

[1] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst,

K. Scott, K. Fall, and H. Weiss. Delay-Tolerant Networking
Architecture. RFC 4838, April 2007.

P. Costa, C. Mascolo, M. Musolesi, and G.P. Picco.
Socially-aware routing for publish-subscribe in
delay-tolerant mobile ad hoc networks. IEEE JSAC,
26(5):748-760, June 2008.

Java message service (jms).
http://java.sun.com/products/jms/.

Sewook Jung, Uichin Lee, Alexander Chang, Dae-Ki Cho,
and Mario Gerla. BlueTorrent: Cooperative Content Sharing
for Bluetooth Users,. In Proc. PerCom, White Plains,USA,
March 2007.

Gunnar Karlsson, Vincent Lenders, and Martin May.
Delay-tolerant broadcasting. In Proc. ACM SIGCOMM,
CHANTS Workshop, Pisa, Italy, September 2006.

Vincent Lenders, Martin May, and Gunnar Karlsson.
Wireless ad hoc podcasting. In Proc. IEEE SECON, San
Diego, CA, June 2007.

Arezu Moghadam, Suman Srinivasan, and Henning
Schulzrinne. 7ds - a modular platform to develop mobile
disruption-tolerant applications. In Proc. IEEE NGMAST,
Washington, DC, USA, 2008. IEEE Computer Society.

M. Nottingham and R. Sayre. The Atom Syndication Format.
RFC 4287, December 2005.

Venugopalan Ramasubramanian, Thomas L. Rodeheffer,
Douglas B. Terry, Meg Walraed-Sullivan, Ted Wobber,
Catherine C. Marshall, and Amin Vahdat. Cimbiosys: a
platform for content-based partial replication. In Proc.
USENIX NSDI, Boston, Massachusetts, 2009.

Jing Su, James Scott, Pan Hui, Jon Crowcroft, Eyal de Lara,
Christophe Diot, Ashvin Goel, Meng Lim, and Eben Upton.
Haggle: Seamless networking for mobile applications. Proc.
UbiComp, pages 391-408, 2007.

Vladimir Vukadinovic, Olafur Helgason, and Gunnar
Karlsson. A mobility model for pedestrian content
distribution. In Proc. Simutools, SCENES Workshop, Rome,
Italy, March 2009.

Eiko Yoneki, Pan Hui, ShuYan Chan, and Jon Crowcroft. A
socio-aware overlay for publish/subscribe communication in
delay tolerant networks. In Proc. MSWiM, Crete Island,
Greece, 2007.

(2]

[3

—

[4

—_

(5]

[6

—_

[7

—

(8]

(91

[10]

[11]

(12]

