
1

A Middleware for Opportunistic Content
Distribution

Ólafur Helgason, Sylvia T. Kouyoumdjieva, Ljubica Pajevic, Emre A. Yavuz, Gunnar Karlsson
School of Electrical Engineering and ACCESS Linnaeus Center

KTH Royal Institute of Technology, Stockholm, Sweden
Email: {olafurr, stkou, ljubica, emreya, gk}@kth.se

Abstract—In this work we present a middleware architecture
for a mobile peer-to-peer content distribution system. Our ar-
chitecture allows wireless content dissemination between mobile
nodes without relying on infrastructure support. In addition,
it supports the dissemination of contents between the wireless
ad-hoc domain and the wired Internet. In the ad-hoc domain,
contents are exchanged opportunistically when nodes are within
communication range. Applications access the service of our
platform through a publish/subscribe interface and therefore do
not have to deal with low-level opportunistic networking issues
or matching and soliciting of contents. Our middleware consists
of three key components. A content structure that facilitates
dividing contents into logical topics and allows efficient matching
of content lookups and downloading under sporadic node connec-
tivity. A solicitation protocol that allows nodes to solicit content
meta-information in order to discover contents available at a
neighboring node and to download content entries disjointedly
from different nodes. An API that allows applications to access
the system services through a publish/subscribe interface. In
this work we present the design and implementation of our
middleware and describe a set of applications that use the services
provided by our middleware. We also assess the performance
of the system using our Android implementation as well as a
simulation implementation for large-scale evaluation.

I. INTRODUCTION

Multimedia usage has spread from personal computers and
Internet into people’s palms as mobile phones have become
smart platforms for digital content. Due to the popularity of
these devices, contents are frequently being produced and
accessed by users on the move. As a result, cellular data
traffic is growing at a rapid pace and it is predicted to be
doubled roughly every year [1] in the near future. Matching
this growth with a corresponding capacity increase in the
wireless infrastructure networks is a significant challenge. This
evolution calls for new architectures for disseminating contents
to mobile users.

Our work considers content-centric networking in the con-
text of mobile wireless networks. The main focus is on
opportunistic distribution of contents where mobile nodes
exchange content items when in direct communication range.
This communication mode enables dissemination of contents
between mobile nodes without relying on infrastructure, which
can be beneficial in cases when infrastructure may be: (1)
absent such as in rural or developing regions; (2) overloaded
due to the aforementioned traffic demand; (3) broken such as
in the case of a natural disaster; (4) unavailable or expensive

to use due to the data plan subscription of the user; or (5)
censored or limited to certain services or contents.

In this paper we propose a middleware architecture that
allows applications on mobile devices to share contents. The
devices can utilize connections with access points when in
range, and may distribute contents opportunistically among
mobile nodes otherwise. Contents are structured to facilitate
efficient lookup matching and downloading under disruptive
node connectivity. This requires rethinking of networking ba-
sics: While existing network architectures focus on addressing
nodes and forwarding of packets between such nodes, our
system aims at addressing and disseminating contents. Hence,
instead of relying on end-to-end semantics between a request-
ing client and a provider, our dissemination mechanism relies
on opportunistic content forwarding while abstaining from
any routing substrate; contents are routed implicitly through
the combination of a receiver-driven solicitation protocol and
the actual node mobility. As a result, sophisticated multi-hop
communication protocols, where for example routes have to
be built up and maintained, are not necessary. Consequently,
the architecture does not assume a traditional network layer.

Despite years of research there are not many mobile ad-
hoc systems that have been deployed and many of the devised
protocols and mechanisms have not seen practical use. We
believe that the end-to-end connectivity approach, adopted
from wired networks into traditional MANETs, is one of the
main reasons for lack of success and that the looser and less
restrained connectivity paradigm advocated by opportunistic
and delay-tolerant networks has greater potential to succeed.
Embracing mobility as an information carrier and incorporat-
ing connectivity disruptions into the system design, as opposed
to treating it as an exceptional error state, avoids much of the
complexity required for trying to maintain an end-to-end com-
munication path in a mobile environment. We acknowledge
that some types of applications may be difficult to support with
opportunistic networking, in particular applications with tight
delay constraints such as real-time audio/video conversations
and streaming. By designing the system to provide users
with access to contents instead of hosts we believe that a
further simplification can be achieved. Delivering a message
to a single particular host in a mobile environment with
opportunistic node contacts is difficult. Popular contents are
however likely to be available, and exist on many different
nodes, suggesting that content dissemination may perform
well.

2

With its content-based routing and addressing, our system
can be seen as a publish/subscribe system that decouples the
communicating entities from the contents and thus it inherently
allows for asynchronous communication and leverages looser
delay constraints. With respect to content availability, scaling
comes naturally as popular contents are likely to be available
at many nodes in the system. It is particularly well-suited
for data-centric applications and distributing contents that are
popular and tolerant to modest delay such as conducting
local quizzes or surveys, audio or video broadcasting and
on-site networking or dating profile exchange. The proposed
architecture also promotes openness: anybody who wishes
to publish/retrieve contents is free to do so. We therefore
believe that the system has the necessary features to stimulate
organic user growth, which has previously led to the success
of many systems and services. The architecture is inspired by
podcasting and BitTorrent. Our operating scenario is however
radically different than what is experienced on the wired
network since our architecture has to cope with sporadic
contacts, none or limited end-to-end connectivity and short
contact durations. Although a previous feasibility study for
content distribution among pedestrians in such environments
shows promising results [2], [3], there are still many challenges
that need to be addressed and solved by an actual system
design and this is the focus of the current work.

The rest of the paper is organized as follows. In Section II
we describe the design of our system. Section III describes our
middleware implementation for the Android platform along
with a set of implemented applications. In Section IV we
evaluate the performance of our system using both the Android
implementation and a simulator. Section V discusses related
work and Section VI summarizes our findings and concludes
the paper.

II. SYSTEM DESIGN

In this section we present the design of our system. Our
system supports content distribution in a wireless ad-hoc
network with opportunistic node contacts, as shown in Fig. 1.
Content can be generated by nodes in the Internet domain
as well as by mobile devices in the ad-hoc domain. The
Internet and ad-hoc domains are linked by gateways that assist
in disseminating contents between domains and perform any
necessary translations or proxy services. The focus of our work
is on the wireless ad-hoc domain but we emphasize that our
design allows for seamless distribution of contents between
the wired Internet and the wireless ad-hoc domain.

A. Service Overview

Our design imposes a hierarchical structure on contents
based on the publish/subscribe paradigm [4]. Nodes publish
entries on feed channels. A feed channel logically groups
together related contents and it consists of a number of entries
that contain, among other fields, the actual data object of
interest, which we refer to as an enclosure. Nodes express
interest in feeds by subscribing to them and the system
then implements the delivery of published entries to feed
subscribers.

<feed>
<title>Adhocpoets.org</title>
<id>feed:adhocpoets.org</id>
<updated>2015-06-01T18:30:02Z</updated>
<entry>

<title>Steinn Steinarr - Time and the Water</title>
<id>tag:steinn.steinarr@adhocpoets.org,

2015-06-01:Time_and_the_Water.mp3</id>
<updated>2015-06-01T18:30:02Z</updated>
<link rel="enclosure" title="Time_and_the_Water.mp3"

type="audio/mpeg" length="1378129" />
</entry>

</feed>

{
"feed" : {
"name" : "Adhocpoets.org",
"uri" : "http://adhocpoets.org/feed",
"updated" : "2015-06-01T18:30:02Z",
"entry" : {

"name" : "Steinn Steinarr - Time and the Water",
"uri" : "http://adhocpoets.org/feed/entry",
"updated" : "2015-06-01T18:30:02Z",
"enclosure" : {
"name" : "Time_and_the_Water.mp3",
"uri" : "http://adhocpoets.org/feed/entry/tw",
"type" : "audio/mpeg",
"length" : 1378129

}
}

}
}

Fig. 2. An example of a data structure based on the Atom format (above)
and the JSON format (below). Contents are grouped into feeds, and each feed
consists of one or more entries that contain actual data objects of interest. An
entry may in turn include a file attachment in the form of an enclosure.

In the ad-hoc domain content disseminates via a solicitation
protocol in which a node solicits entries for one or more feeds
from a peer (a peer node can be either a mobile device or a
proxy gateway, for instance an access point, that acts as a
bridge between the ad-hoc and Internet domains). Feeds and
entries contain a number of meta-information fields such as a
globally unique ID, author, date and time of last update. The
meta-information is primarily used to facilitate searching, fil-
tering and unique matching of contents. The content structure
in the system thus allows for ease of searching and a higher hit
rate of content queries than if they were made for individual
unstructured contents.

The publish/subscribe paradigm is well-suited for content-
centric networking and it has characteristics that are highly
attractive for opportunistic networks with intermittent connec-
tivity. In particular, it decouples publishers and subscribers
such that a subscriber neither needs to know who the publisher
of the content is, nor connect to it. Successful delivery of
content is not dependent on the original publisher being
up and running; as long as the content is available in the
network, either at other subscribers or at caching nodes, a
subscriber has a chance of obtaining it. This decoupling also
facilitates an asynchronous communication model with loose
delay constraints that helps to cope with the dynamic network
topology. Finally, it does not rely on particular nodes which
facilitates a decentralized implementation that is mandatory in
the wireless ad-hoc domain and highly desirable in the Internet
domain for performance, scalability and fault-tolerance.

3

GatewaysInternet domain Wireless Ad-hoc Domain

Server

Server

Fig. 1. The system supports content distribution on the fixed Internet and in a wireless ad-hoc network with opportunistic node contacts.

B. Content Structure

Content addressing and organization adopts and extends
the content structure of the Atom Syndication Format [5].
This format has primarily been used for publishing web-
feeds and podcasts on the Internet. The content structure is
however quite generic and allows for more use-cases than
what has commonly been implemented. It also maps nicely
to the publish/subscribe semantics of our system. We note
that the content structure is not bound only to the Atom
format, and can easily be migrated to other formats such
as JavaScript Object Notation (JSON). The listings in Fig. 2
show a sample content structure presented in the Atom and
JSON formats. We further provide a detailed description of the
content structure with respect to the Atom format. Contents
are grouped into feeds. A feed is an unlimited container for
entries that contain the actual data objects of interest. Each
feed can have multiple entries published at different times by
different entities. Both feeds and entries have associated meta-
data. Each feed must contain a permanent globally unique ID
assigned by the creator, a title and a timestamp that indicates
the latest update. A feed can also contain other optional meta-
information such as author, subtitle and category. Similarly,
each entry must contain a globally unique ID, a title and a
release timestamp. The feed and entry identifiers are URIs
(Uniform Resource Identifiers) which facilitate flexible naming
and allows a variety of existing naming mechanisms to be used
or new ones to be applied. An entry can optionally have a
range of other elements including one or more enclosures. An
enclosure is a single file attachment and would typically be
an audio, video, or text file. To transfer enclosures efficiently
over the opportunistic contacts, we divide the enclosures into
chunks, small data units of fixed size, which can be exchanged
with higher probability during a single radio contact of limited
duration. Chunks allow the downloading of a previously
incompletely downloaded entry to be resumed from the same
node or any other node that has the entry or parts of it. They
are indexed starting from 1 and we extend the Atom format to

include chunk information for enclosures. If a chunk is only
partially received from a peer (e.g. due to lost connection), it
is discarded.

C. Middleware for Wireless Ad-Hoc Domain
Nodes in the wireless ad-hoc domain are generally mobile

devices, equipped with a radio that can operate in ad-hoc mode
to establish contacts with other mobile nodes in range. When
two nodes are within communication range they associate and
exchange contents according to a solicitation protocol. Thus,
contents spread opportunistically from node to node in an
epidemic manner with susceptibility given by the popularity
of each feed.

In this section we present our middleware for opportunistic
content distribution. We first outline the general architecture,
and then describe in detail the main components of our design:
the API module, the synchronization and discovery module,
and the transport module. Finally, we discuss issues related to
security, caching and energy consumption.

Architecture Overview
In our design, the mechanisms for the opportunistic content

distribution system are implemented in a middleware in the
mobile nodes. The middleware allows different types of ap-
plications to be implemented on top of the basic opportunistic
content distribution service and its purpose is therefore to
abstract away the complexities of the underlying system from
the applications. In particular, the middleware is responsible
for discovering neighbors, while coping with sporadic contacts
with limited contact durations. Moreover, it implements the
matching, downloading and storing of content entries. In
other words, the middleware implements a session layer that
defines the content structure and hides networking details from
applications.

Fig. 3 illustrates our middleware design and the main system
components. Applications access the services of the middle-
ware through the Application Programming Interface (API)

4

1April 5, 2007
Data link

Transport

Session

Sync Manager

Transport Module

Feed<1..n>
Entry<1..m>

Enclosure
<1..s>

Chunk<1..r>

Convergence sub-layer

Content

Data Structure

Network (optional)

● ●
Bluetooth802.11

Discovery Module

Application

API

Fig. 3. The middleware design. Applications access the middleware through
an API, and the middleware implements service discovery, content discovery,
solicitation and storage in corresponding modules.

that it exports. The API implicitly defines the content structure
for applications, and it allows them to publish/subscribe to
content feeds. A set of modules implement the API, the
service discovery and the solicitation protocol. The middle-
ware assumes an underlying transport layer that preserves
message boundaries, provides flow control and process-to-
process communication. The system design does thus not
assume a traditional network layer with point-to-point unicast
routing. Contents disseminate in the network by means of
node mobility, sharing of local contents and a receiver-driven
solicitation protocol. Messages are delivered on a best-effort
basis without guarantee that entries on a particular feed will
be delivered in an ordered manner to all receivers.

The architecture also contains a convergence sub-layer for
cross-layer interaction, particularly with the underlying radio
link. Thus, the session layer architecture abstracts most of the
details of the underlying radio and hides the heterogeneity
of the networks away from the applications. This allows the
middleware to operate on top of different radio technologies,
from Wi-Fi and Bluetooth Low Energy currently available in
most modern mobile devices, to modifications of 802.11 such
as WLAN-Opp [6] and upcoming technologies designed for
opportunistic content distribution such as Wi-Fi Aware and
LTE-Direct.

Lastly, the architecture assumes that each node shares con-
tent available to the applications on its device, and it specifies
a protocol and mechanisms for efficient downloading of this
content between nodes in the ad-hoc domain. The system
does not mandate or specify a particular content caching or
forwarding mechanism in addition to the interest driven so-
licitations given by the application subscriptions. The content
structure and solicitation protocol specified in our design are
however general such that applications can implement their
own caching or replication strategies. We address this issue
later in Section IV-C.

Application Programming Interface

The API module implements the programming interface that
applications use to access the services of the middleware. The
API of our system is inspired by the Java Message Service

(JMS) publish/subscribe API [7]. JMS was however designed
for wired networks where dedicated brokers implement mes-
sage delivery. The discovery of feeds also relies on a central-
ized directory service. In the ad-hoc domain, central servers
for performing these functions are not available. Instead, both
resource discovery and message distribution are performed
distributively with servers being replaced by nodes. Thus,
in addition to standard publish/subscribe/notify functions, the
API needs to provide functions that allow applications to
discover and create new feeds.

Synchronization and Discovery

The synchronization manager module processes contents
from applications and solicits contents on behalf of applica-
tions. If the local content database contains data that matches
a subscription, the content is delivered immediately to the
application.

The discovery module is responsible for both neighbor and
service discovery; i.e. it discovers neighboring nodes that are
running the service and decides which of these are feasible
to associate with. Each node advertises its existence to its
neighbors with beacon notifications that contain the following
information:

• Node identifier: A URI that uniquely identifies the node.
• Content revision number: A revision counter for the local

content database. The revision number of a node is incre-
mented whenever new content is added to the database.
This helps peers to determine if re-synchronization might
be beneficial in case nodes remain in range for longer
durations or if they meet again after some time. In
particular, two nodes only need to re-associate if at least
one of them has obtained new contents since they last
associated.

• Feeds Bloom filter: The list of local feeds with available
contents in the form of a Bloom filter. A remote node can
compare the feeds of its subscriptions to the Bloom filter
to deduce if the local node has any contents of interest
and therefore decide whether it wants to associate or not.

Bloom filters [8] are space-efficient data structures that provide
a set-like representation of elements, requiring only a fraction
of the space needed for a corresponding set with the actual
elements. They trade space for accuracy since false positives
can occur with some probability; a membership test returns
a value of true but the element is not a member of the
corresponding set. False negatives are however not possible.
After receiving the Bloom filter, the node tests the ID’s of
its subscribed feeds against the filter. Occasionally, a false
positive will result in a request for a non-existing content item.
This is however not a serious issue compared to the benefits of
using Bloom filters: They allow us to include a large amount
of information about available contents in a possibly single,
small node advertisement message.

How beacon notifications are implemented and transmitted
to other nodes may depend on the underlying radio. Therefore
the discovery module is split across the main session layer
and the convergence sub-layer. Typically, one would send out
periodic beacons including the notification but some radios

5

include advanced support for neighbor and service discovery,
such as the Service Discovery Protocol (SDP) in Bluetooth.

Transport Module

The transport module performs session management and
implements a request-reply protocol to download and discover
available contents at a peer. Protocol messages are in XML
format with the message element being the kernel of a
protocol message. A protocol message has a single node-id
element containing the ID of the message source and each
message has a unique element that determines its type, given
by one of the following message types: request, reply
and reject. All other elements of a protocol message are
child entries for the header fields associated with the message
type.

When a peer is discovered by the discovery module, the
transport module is notified which sends a request message
to initiate a unilateral session for downloading. The request
contains either a query for a particular feed entry, or meta-
data to check content availability. The peer sends a reply
message, that answers the query establishing the session.
Each download session thus consists of a client node sending
request messages and a server node sending reply mes-
sages (or reject if the server is unavailable). The server
is stateless with each reply message being independent of
any previous requests. Processing a request only consists
of verifying that the requested contents or meta-data exist,
followed by delivery.

Content solicitation in our system is entirely pull-based. At
the client, a typical session alternates between discovery and
download states. In the discovery state, the client node queries
the server for meta-data whereas it downloads contents that
match the subscriptions of applications in the download state.
With this approach, each node has full control of the contents
it downloads and decisions are based only on the client state
with the server being stateless.

In general, a node can have multiple active sessions si-
multaneously, either as a client (when it is downloading) or
server (when it is uploading). Note that the system does not
explicitly enforce any mechanism to share download time
between sessions; we simply rely on the mechanisms of the
MAC layer to share the radio channel fairly. Ungraceful
session termination (e.g. when nodes move out of range) is
handled by a soft-state timer; if there is no activity from the
peer for a certain time, the session is closed and any allocated
resources are freed up.

A request message is used both for downloading and
discovery of contents. Discovering previously known feeds or
entries that may be available at a peer node is done efficiently
using Bloom filters. Nodes maintain a Bloom filter with the
IDs of available feeds in addition to a Bloom filter for each
feed that includes the IDs of available entries. When a node
receives a request with an empty XML Bloom element, it
delivers the corresponding Bloom filter in a reply message.
After receiving the filter, the client node tests the IDs of
its desired feeds or entries (or partially downloaded entries)
against the filter. Then it sends individual requests for each

<message version="0.1">
<node-id>olafur.helgason@ee.kth.se:1</node-id>
<request>
<entry>

<id>tag:steinn.steinarr@adhocpoets.org,
2015-06-01:Time_and_the_Water.mp3</id>

<link rel="enclosure" type="audio/mpeg"
ns:chunks="2-5"/>

</entry>
</request>

</message>

Listing 1. An example request message.

entry that it wishes to retrieve. Listing 1 illustrates an example
request message that requests four chunks from an entry
that has an audio/mpeg file as enclosure.

A Bloom filter does not allow for iterating through the
elements it contains and thus it cannot be used to discover
previously unknown contents at a peer. The protocol therefore
implements additional mechanisms for discovering previously
unknown feeds and new entries on already known feeds,
see Fig. 4. A request message can either contain an empty
feedlist element or an empty entrylist element to
indicate that it wants to receive the list of available feeds or
entry ID’s at the peer. The selector element of a request
message can also be used to solicit meta-data for contents
that match a particular selection criteria given by a content
selector. A content selector is a string whose syntax is based
on a subset of the SQL conditional expression syntax [7]. A
node that receives a request message with a selector
as top-level element of a request, evaluates the selector on
the attributes of each of its available feeds. The feed elements
for which the selector evaluates as true are delivered in a
reply message. Similarly, a selector specified inside a feed
element is evaluated against all entries of the specified feed and
only those entry items that are evaluated as true are delivered.
An empty selector matches all feed/entry elements and the
unspecified attributes are evaluated as true by default. Since
nodes can have large content libraries, specifying a selector
when discovering feeds can significantly reduce the amount
of meta-data delivered in a reply message.

Security

Our design intentionally does not include any special se-
curity mechanisms. Applications may have different security
requirements and must implement the security features needed.
Our design and the publish/subscribe abstraction enforces that,
if needed, content should be secured rather than the commu-
nication channel. Entries can for example be encrypted and/or
signed using standard public or private key cryptography
(assuming that keys can be distributed in a secure manner).

As most other peer-to-peer systems, our system is vulnera-
ble to security related issues such as spam, misuse and free-
riding. Different solutions have been proposed to mitigate such
vulnerabilities [9], [10], [11].

Caching

Nodes only store and carry contents that are of direct interest
to them. Caching contents that are not relevant to a device is

6

Local Node

(Discoverer)

Remote Node

(Discoveree)

REQUEST (feedlist = ” ”)

REPLY (feedlist = ”feed1, feed2 ... feedk”)

REQUEST (feed = ”feed1”, entrylist = ” ”)

REQUEST (feed = ”feed1”, entry = ”entry1”)

 REPLY (feed = ”feed1”, entrylist = ”entry1, entry2 ... entryj”)

REPLY (feed = ”feed1”, entry = ”entry1”, chunk=1)

REPLY (feed = ”feed1”, entry = ”entry1”, chunk=2)

REPLY (feed = ”feed1”, entry = ”entry1”, chunk=n)

STEP 1: Discover available feeds

STEP 2: Discover available entries

 on a particular feed

STEP 3: Download an entry

. . .

Fig. 4. Discovering previously unknown contents on a remote node. An empty feedlist followed by an empty entrylist element allow the local node
to first discover all available feeds on a remote node, and then - all available entries under a particular feed. Finally, the local node downloads a single entry.

not included into the primary design of the middleware. Due to
the node mobility, contact durations are often short. We believe
that they should be utilized primarily to deliver contents of
interest to nodes participating in the opportunistic content
distribution system. In Section IV-C we evaluate different
caching strategies and we discuss further the benefits and
drawbacks of including caching as part of the design.

Energy Consumption

Although energy is not a direct component of the pro-
tocol design, it should be taken into consideration since
mobile nodes are battery-powered devices. We have previously
shown [12] that simply turning on the Wi-Fi interface of
a mobile device in ad-hoc mode significantly decreases the
battery lifetime of the device, even when no data is exchanged
via the wireless interface. Thus, for our middleware to be
adopted widely, the energy consumption of mobile devices
operating in ad-hoc mode should be reduced. In Section IV-C
we compare the performance of three different energy saving
mechanisms that can operate below our protocol design.

D. Internet Domain

As illustrated in Fig. 1, the opportunistic content distribution
system should not be considered in isolation of existing
infrastructure. Instead, the system should be viewed as an
extension of current network deployments. Integrating the
wireless ad-hoc domain and the Internet domain could be done
in existing access points. For instance, current access points
could be upgraded with a dual-stack capability in order to
translate incoming requests from the ad-hoc domain into the
Internet domain and vice verse.

III. IMPLEMENTATION

We have implemented a prototype of our middleware design
for the ad-hoc domain described in the previous section along
with a set of applications that use the services provided by the
middleware. Our implementation runs on the Google Android
Platform. The system is implemented in Java and our code
consists of 55 classes and roughly 3500 lines of code. The
implementation is currently based on 802.11 in ad-hoc mode
and Android 4.0. The Android Java libraries (version 4.0) do
however not support the ad-hoc mode of 802.11 although it is
supported by both the driver and the hardware interface on the
HTC Hero device. Therefore, our implementation requires the
device to be run in privileged user mode (i.e. rooted mode) so
that the interface can be reconfigured to run in ad-hoc mode.
We note that even in the latest version of the Android Java
libraries (version 6.0) there is still no support for the ad-hoc
mode of 802.11.

A. Software Modules

Our implementation consists of software modules that im-
plement the functionality of the corresponding modules in our
design in Fig. 3. We will now describe some implementation
details of these modules.

Application Programming Interface

The middleware is implemented as an Android service
which runs in the background and uploads and downloads
data from peers that it discovers. Client applications can bind
to the service and communicate with it by means of remote
procedure calls (RPCs) through the publish/subscribe interface
that it exposes. A client application wishing to receive a
notification when an entry matching one of its subscriptions
is downloaded, needs to implement and register a callback

7

interface IServiceAPI {
void publish(in String feedID, in Entry entry);
void subscribe(in String feedID);
void unsubscribe(in String feedID);
void discover(in String selector);
void undiscover();
void registerCallback(IClientCallback cb);
void unregisterCallback(IClientCallback cb);

}

oneway interface IClientCallback {
void notify(in String feedID, in Entry entry);
void discoveryNotify(in String availableContents);

}

Listing 2. Interfaces for the service API and the application callback function.

function that the service uses for notification. The interfaces
for the service API and the application callback functions
are shown in Listing 2. The remote methods exported by
the service through the IServiceAPI interface are exe-
cuted synchronously, thus blocking the local thread at the
caller. In the service process, a method call is executed in
a dedicated thread chosen from a pool of threads that is
maintained by the Android system. The callback method in
the IClientCallback interface is however executed asyn-
chronously (specified by the oneway keyword) and therefore
the service does not block when it notifies a client application.

Discovery Module

The discovery module is implemented as two threads. One
thread periodically broadcasts hello messages on a well-
known UDP port and a listener thread waits for incoming
hello messages from other nodes. The discovery module
maintains a contact history cache along with the revision
number for each peer in the cache. When a new peer is
discovered, the discovery module notifies the transport module
which initiates a download session with the peer. If a peer,
already in the contact history cache, is seen, the transport
module is notified if the peer has obtained new contents since
the last association or if there are new subscriptions locally.

Transport Module

The transport module implements both the client and server
sides of a download session. The solicitation protocol is
currently implemented on top of a simple transport protocol
that implements message boundaries on top of TCP. The server
side implementation listens on a socket and spawns a new
session thread for each client. Similarly, if multiple nodes are
in communication range, the transport module can create a
separate client thread for each session. Currently we set the
maximum number of concurrent client and server sessions to
6 in total (3 for each). If a new node tries to associate when
the maximum number of sessions is reached, the server sends
a reject message.

Content Database

Meta-data for all available feeds and entries is stored in
a SQLite database and this information is accessible to all
applications on the device through the ContentProvider

(a) (b)

Fig. 5. The GUI of the Personal Profile Sharing application. (a) Profile
configuration and voting view. (b) Received profiles view.

and ContentResolver Android Java classes. The enclo-
sures themselves (i.e. data files) are however not stored in this
database but in the corresponding Android Content Providers.
Images, audio and video contents are for example stored in
the Android MediaStore content provider. Thus, all media
content published or downloaded by our system is available
to all applications in a standard Android manner.

B. Applications

To illustrate the versatility of our middleware, we have
implemented the following applications on top of it:

• Opportunistic media blog [13] — This application allows
users to take photos or videos with their phones, caption
them and publish them on a feed.

• Personal profile sharing [14] — This application allows
users to create personal profiles (i.e. electronic business
cards) and share them with other participants at a con-
ference venue. The application also allows participants
to vote on events related to the conference organization.
Fig. 5 illustrates the application GUI.

• Collaborative music sharing [15] — Users can share
music files stored on their personal mobile devices, and
play them through a shared jukebox in communication
range. The jukebox streams each audio file directly from
the mobile device which stores it.

• Participative light show [16] — By using spectators’
movements and ambient sounds, this application creates
artistic light and sound effects in order to reflect and
enhance the mood of an audience during a concert.

IV. EVALUATION

In this section we evaluate our system and dimension system
parameters. The evaluation uses three methods: analysis of
connectivity traces, experimentation and large-scale simula-
tion.

8

Fig. 6. Probability that two peers can download at least one chunk each
under average throughput of 185 kbps.

A. Chunk Size Dimensioning

The purpose of dividing an entry into fixed-size chunks is
to allow disjoint downloading of contents from different nodes
and to make the most out of all contacts, even those that
are short due to node mobility. With large chunks there is an
increased risk of reduced performance since in the proposed
design partially downloaded chunks are discarded. This issue
is especially important for devices with low bit-rates. Fig. 6
shows the probability that a contact is longer than a transfer
time of ttr = 2 × (chunksize/throughput) for different chunk
sizes. (Observe that a transfer time is defined as the time
during which both peers in a contact can obtain at least one
chunk each.) For the evaluation we use the Rollernet [17]
and Toronto [18] traces, which log the contacts and contact
durations of mobile Bluetooth devices carried by humans. To
make the system compatible also with low bitrate radios such
as IEEE 802.15.4 we evaluate the performance for data rates
of 185 kbps. The results in Fig. 6 demonstrate that under short
contacts and low data rates, the larger the chunk size, the lower
the system performance. For more details on the chunk size
dimensioning problem we refer the reader to [19].

B. Single Node Perspective

The experimental evaluation is performed on our Android
implementation. We measure some key implementation met-
rics, such as application-level throughput (i.e. goodput), in a
small and simple static scenario. The experiments are per-
formed on identical HTC Hero A6262 mobile devices. These
devices have a 528 MHz Qualcomm MSM7200A processor,
a ROM of 512 MB and RAM of 288 MB and a Lithium-
ion battery with capacity 1350 mAh. During our experiments,
communicating nodes were stationary in an indoor office
environment and placed within one meter from each other.

We have profiled our implementation of the solicitation
protocol to verify correct behavior and to assess performance.
For our measurements we have instrumented the code with

hooks where we stamp the system clock (which provides
millisecond precision). During a measurement run we turn
off logging and collect the measured timestamps into a list
which is printed to a file after the code section being measured
has completed running. This minimizes the effect of any I/O
operations due to logging or measurements on our results.

As shown in Fig. 4, a typical download session consists
of three steps: (1) feed discovery, (2) entry discovery and (3)
entry download. In Fig. 7(a) we show the mean delay for steps
1 and 2. We have conducted measurements for three different
enclosure sizes and for each enclosure size we conduct one
set where the content database only contains the actual feed
and entry of interest (left-side bars) versus the case when
the database has 100 other feeds available (right-side bars).
For each measurement we conduct 10 runs and in the figure
we show the mean value and the standard deviation. The
results confirm that the total discovery delay (i.e. the sum
of the feed discovery and entry discovery delays) does not
depend on the size of the downloaded enclosure. When the
number of feeds in the content database increases, the feed
discovery delay increases due to an increase in the number
of bytes transmitted in the feedlist in the reply message
and processing delay at the server. (Observe that we do not
rely on a Bloom filter during the feed discovery process, but
instead request all available feeds at the remote node.) We see
also that the entry discovery delay remains the same since the
number of entries on the feed of interest is the same in all
experiments.

Our implementation supports multiple concurrent download
sessions and in Fig. 7(b) we show the average goodput of a
session when the number of devices concurrently downloading
is between 1 and 3. Our measurement setup is as follows.
Between one and three nodes (referred to as clients) are within
range of a single node (referred to as server) which publishes
a single entry on a feed that the client nodes are subscribed to.
When the client nodes receive the first hello message sent
by the server after the entry publication, the clients see that the
server has new content and therefore simultaneously associate
with it. The client nodes discover the entry and download it.
We measure the goodput G of each session as G = B/T
where B is the total number of bytes transmitted and T is
the duration of the download session, i.e. the elapsed time
from when the client discovers the node until it receives the
full entry and the enclosure. The figure shows that although
the implementation supports concurrent download sessions,
the throughput is still reduced because access to the wireless
interface is serialized by the operating system at the server. The
performance drop is however clearly less than 50% which is
what would be seen if each node only were to serve a single
client at once.

C. Multi Node Perspective

In addition to the Android implementation of our system,
we have also implemented the core modules of our design
for the OMNeT++ simulator, using the framework in [20].
The simulator implementation allows us to study system
performance on a large scale in an urban area. A mobile node

9

(a) (b)

Fig. 7. (a) Profiling results for the mean feed and entry discovery delays. Each group of two bars contain results with one feed in the content database (left)
and 100 feeds in the content database (right). (b) The mean goodput of a download session when the number of concurrent clients is varied between one and
three.

in the simulator implements the service discovery, synchro-
nization and transport modules of our architecture described
in Section II.

Mobility Scenarios

For our evaluation, we use the Walkers traces [21] captured
in Legion Studio [22], a commercial simulator for designing
and dimensioning large-scale spaces via simulation of pedes-
trian behaviors. Each trace file contains a snapshot of the
positions of all nodes in the system every 0.6 s.

Fig. 8(a) and 8(b) present the scenarios considered in our
evaluation: an outdoor urban scenario, modeling the Öster-
malm area of central Stockholm, and an indoor scenario,
recreating a two-level subway station. Both scenarios are
representative of typical day-time pedestrian mobility. We here
summarize the main characteristics of the scenarios; a detailed
description can be found in [23].

The Östermalm scenario consists of a grid of interconnected
streets. Fourteen passages connect the observed area to the
outside world. The active area is 5872 m2. The nodes are
constantly moving, hence the scenario can be characterized as
a high mobility scenario.

The Subway station has train platforms connected via es-
calators to the entry-level. Nodes arrive on foot from any of
five entries, or when a train arrives at the platform. The train
arrivals create burstiness in the node arrivals and departures.
Nodes congregate while waiting for a train at one of the
platforms, or while taking a break in the store or the coffee
shop at the entry level. The active area is 1921 m2.

For fair comparison, the input parameters of the Östermalm
and the Subway scenario result in approximately the same
mean node density of 0.1 nodes/m2.

Performance Metrics

We focus on two performance metrics: goodput (i.e. ap-
plication throughput) and energy consumption from a system

perspective. Since we study an open system, it is important that
the metrics are normalized with respect to the nodes’ sojourn
time in the simulation. The system goodput is simply the sum
of the number of bytes downloaded Bi by each node divided
by the sum of the lifetimes of nodes in the simulation ti, or
G =

∑
Bi/

∑
ti. We only count bytes of fully downloaded

content items, so the goodput is a measure of the system
usefulness for the users, i.e. how much contents it can provide.
Similarly, the energy consumption of the system is defined as
E =

∑
Ei/

∑
ti where Ei is the energy consumed by the

radio interface.

Caching

In this section we study the effects of introducing caching on
top of the proposed architecture. We assume that nodes have
enough battery to be altruistic and share contents with others in
their vicinity, thus in this section we only evaluate the system
performance in terms of goodput. For each node we introduce
two types of caches: a private cache and a public cache. The
private cache stores content items that the node is subscribed
to; the public cache accommodates items that the node is
willing to carry and forward on behalf of others. The private
cache is populated when nodes obtain contents of interest from
peers in direct communication range. To populate the public
cache, a node downloads contents on behalf of another peer.
However, nodes are initially not aware of content items that
are not part of their private subscriptions. To discover and
potentially download public contents, we allow nodes to relay
incoming requests from peers in vicinity as if they were the
request initiators. We introduce the following three strategies
for relaying requests for content items that a node is unable
to serve from its own caches:

• Altruistic Relay Request — A node relays every incoming
request it cannot serve to peers in its vicinity. Due to node
mobility [23], the relay outreach is limited to two or three
hops away from the initial requesting node.

10

(a) (b)

Fig. 8. Urban scenarios: (a) a grid of streets representing a part of downtown Stockholm, Östermalm, and (b) a two-level subway station.

• Greedy Relay Request — A node prioritizes downloading
contents for its private cache instead of its public cache.
Thus, if a node discovers a neighbor which can contribute
to its private subscriptions while downloading public
contents on behalf of another peer, it will interrupt the
current download session and initiate a new one with the
neighbor offering to contribute to the private interest of
the node.

• Weighted Relay Request — A node performs ordinal
ranking of all requested content items during a single
beaconing period based on the number of incoming re-
quests for each item. It then allocates a certain predefined
number of positions m for public requests and divides
them evenly among the most and the least requested
content IDs. Relaying a most requested item allows peers
to contribute simultaneously to a number of requesting
nodes; relaying a least requested item prevents penal-
izing nodes with less popular interests. If any of those
categories exceeds m/2, the node chooses uniformly at
random which content items to request.

In our evaluation scenarios we assume that all nodes carry
devices that support 2 Mbps download rate from neighboring
nodes, and that there are 1000 available content items (entries)
in the area. The popularity distribution of those 1000 content
items follows a Zipf distribution with parameter α=0.368. Ev-
ery device is subscribed to 10 content items upon entering the
observed area, and its private cache is initially populated with
5 randomly chosen content items out of these subscriptions.
The public cache is empty upon arrival. Thus, throughout its
lifetime in the simulation, each node strives to obtain the rest
of the content items that belong to its subscription. Entries
have a mean size of 3 KB, and a standard deviation of 1 KB.

We define private goodput as the amount of bytes down-
loaded in the private cache of a node, divided by the lifetime
of that node in the system. Similarly, public goodput denotes
the amount of bytes downloaded in the public cache of a node,

Notation Relay Strategy
1 No caching
2a Altruistic relay request with 2 hops limit
2b Altruistic relay request with 3 hops limit
3a Greedy relay request with 2 hops limit
3b Greedy relay request with 3 hops limit
4a Weighted relay request with m = 2
4b Weighted relay request with m = 4
4c Weighted relay request with m = 6

TABLE I
NOTATIONS FOR DIFFERENT RELAYING STRATEGIES

divided by the lifetime of that node in the system. We denote
the mean private and mean public goodput with Gpri and Gpub

respectively. All values of Gpri are normalized with respect
to the value of the No Caching strategy; nodes that follow the
No Caching strategy only store contents of private interest on
their devices.

Fig. 9 shows the normalized private goodput and the
overhead ratio Gpub/Gpri for the Östermalm scenario. (Ta-
ble I summarizes the notations used to represent the relaying
strategies in the figures.) The introduction of both altruistic
(strategies 2a and 2b) and greedy (3a and 3b) hop-limited relay
request strategies significantly increases the private goodput,
however this increase comes at a price of high overhead. Since
battery capacity is considered to be an unlimited resource, the
increase in overhead may at first appear acceptable. However,
in the context of battery-powered handheld mobile devices, a
feasible caching strategy should provide high private goodput
with low overhead. Restricting the amount of data requested
on behalf of others to only m=2 content items (strategy 4a)
produces low overhead, Gpub/Gpri < 1 while increasing
private goodput. With the increase of m however a small
additional gain in private goodput comes at a price of a high
overhead.

11

(a) (b)

Fig. 9. Comparison of the performance of different relay request strategies in the Östermalm scenario: (a) normalized private goodput Gpri and (b) overhead
ratio Gpub/Gpri

The results for the Subway scenario are presented in Fig. 10.
Due to the longer contact durations among nodes (while
waiting at a platform for a train to arrive, or queuing at
the escalators) the increase in overhead is higher than for
the constantly mobile nodes in the Östermalm scenario for
both the altruistic and the greedy hop-limited relay request
strategies. The increase in private goodput is negligible at best;
in fact, in the case of altruistic relay requests, engaging in
downloads on behalf of others harms the private interest of
nodes. Introducing weights to the publicly downloaded con-
tents again reduces the overhead, however without significant
improvement in terms of private goodput.

Energy Consumption

We have previously shown that when the 802.11 radio
interface of a mobile device is turned on, the battery life
is reduced to only 25% of what it is with the interface
turned off [12]. This is despite the fact that no data has been
transmitted or received via the interface. Once the interface
is turned on, it consumes relatively high power regardless of
being in a transmit or receive state since listening in idle state
consumes almost as much energy. This suggests that reducing
or eliminating the idle energy cost of the 802.11 interface
may be a promising strategy to reduce the overall energy con-
sumption and prolong battery life thus enabling opportunistic
communication as a viable communication mode.

To decrease the energy consumption in mobile nodes, we
evaluate the following three energy saving mechanisms imple-
mented on top of our middleware:

• Dual-Radio Architecture (DR) [24]—a low-power low-
energy radio interface is used for node and service
discovery, and a high-power high-bitrate radio is only
woken up on demand when a neighbor of interest is

discovered. Thus, the high-power interface is only used
for actual data transfer.

• Asynchronous Duty Cycling (DC) [25]—the radio inter-
face is duty-cycled in order to decrease the energy con-
sumption in idle state. Nodes choose uniformly at random
the duration of the listening interval at the beginning of
every cycle; when not in use, the radio is suspended. All
nodes adhere to the same cycling interval.

• Asynchronous Duty Cycling with Progressive Selfishness
(DC-PS) [26]—a node duty cycles as described above
while searching for content items; once a node obtains
all content items belonging to its subscription it follows a
progressive selfishness algorithm. Progressive selfishness
allows nodes to further decrease their energy consumption
by prolonging the time during which the radio interface is
suspended; the duration of inactivity of the radio interface
is based on the demand for the contents a node carries at
any given moment.

We compare the above energy saving mechanisms to the
performance of a system in which the radio interface of nodes
is always turned on (ON) and to a benchmark (BM), an
idealized system in which global knowledge is assumed for the
location and the subscriptions of each node in the system; such
a system concentrates on evaluation of the energy consumed
for the actual data exchange and abstracts the discovery phase,
thus it provides a lower bound for the energy consumption
and an upper bound for the goodput. In the results to follow
we normalize energy consumption with respect to the energy
consumed by ON, and we normalize goodput with respect to
the benchmark.

In our evaluation scenarios we assume that all nodes carry
devices that support 2 Mbps download rate from neighboring
nodes, and that there are 100 available content items in the

12

(a) (b)

Fig. 10. Comparison of the performance of different relay request strategies in the Subway scenario: (a) normalized private goodput Gpri and (b) overhead
ratio Gpub/Gpri

area. Items are organized in 10 feeds, each feed containing 10
items. The popularity distribution of the feeds again follows
a Zipf distribution with parameter α = 0.368. Every device
is subscribed to a single feed upon entering the area, and its
cache is initially populated with 5 randomly chosen content
items belonging to this feed. Thus, throughout its lifetime in
the simulation, each node strives to obtain the rest of the
content items that belong to its subscription. Entries have a
mean size of 10 KB, and a standard deviation of 2 KB. We note
that the choice of a larger entry size in this part of the study
does not contradict the conclusions in the previous section.
The mean entry size affects the amount of data that could be
transferred over a single contact; however the entry size does
not have an impact on the normalized goodput as long as the
mean download time for an entry does not exceed the mean
contact duration.

Fig. 11 presents the results for the Östermalm scenario when
the communication range is r = 10 m and r = 50 m, respec-
tively. At r = 10 m the dual-radio architecture outperforms
the asynchronous duty cycling in terms of energy consumption
without compromising goodput. However, we see that combin-
ing duty cycling with progressive selfishness achieves similar
reduction in terms of energy consumption as DR (around 75%)
at the cost of a slight decrease in goodput (less than 10%).
Due to the the short contact durations, nodes tend to miss some
contact opportunities while their radio interfaces are turned off.
With the increase of the communication range, Fig. 11(b), the
contact durations become longer, and the goodput achieved by
DC-PS becomes comparable to that of the benchmark.

The results for the Subway scenario are shown in Fig. 12.
For both values of the communication range, the DC-PS
scheme achieves the highest energy savings, outperforming
both the dual-radio architecture and the asynchronous duty

cycling scheme. Furthermore, increasing the communication
range to r = 50 m deteriorates the performance in terms of
goodput for the dual-radio with up to 40%, while DC-PS
maintains the goodput achieved by the benchmark. Table II
reveals that the drop in goodput is due to the fact that many
of the nodes in the Subway scenario do not obtain any content
throughout their lifetime when operating with a dual-radio.

To conclude, dual-radio architectures provide an energy
saving mechanism that functions best in sparser environments.
Duty cycling in combination with progressive selfishness on
the other hand provides a stable solution across a larger range
of configurations. Even when DC-PS experiences a slight loss
in goodput (in scenarios with high mobility and short contact
durations), the gain in energy savings is significant.

Scenario BM ON DC DC-PS DR
Östermalm, r = 10m 2.3% 3.6% 4.7% 8.6% 3.8%
Östermalm, r = 50m 0.3% 0.6% 0.5% 2.0% 1.2%
Subway, r = 10m 0.5% 0.6% 0.6% 1.8% 3.4%
Subway, r = 50m 0.0% 0.2% 0.1% 0.1% 22.7%

TABLE II
PERCENTAGE OF NODES THAT DO NOT OBTAIN A SINGLE CONTENT ITEM

DURING THEIR LIFETIME.

V. RELATED WORK

Our system design builds on the work in [3] and [27]. The
work in [3] presented the original idea of a delay-tolerant
broadcast system and evaluated its feasibility in an urban area
while [27] introduced podcasting as an application for op-
portunistic networking. We here extend these previous works
by defining a general purpose publish/subscribe system for
challenged networks and by specifying a detailed middleware

13

Energy consumption Goodput
0

0.2

0.4

0.6

0.8

1

1.2

ON
DR
DC
DC−PS
Benchmark

(a)

Energy consumption Goodput
0

0.2

0.4

0.6

0.8

1

1.2

ON
DC
DC
DC−PS
Benchmark

(b)
Fig. 11. Normalized energy consumption and normalized goodput for the Östermalm scenario with a cycling interval of 10 s and communication range (a)
r = 10 m and (b) r = 50 m.

Energy consumption Goodput
0

0.2

0.4

0.6

0.8

1

1.2

ON
DR
DC
DC−PS
Benchmark

(a)

Energy consumption Goodput
0

0.2

0.4

0.6

0.8

1

1.2

ON
DR
DC
DC−PS
Benchmark

(b)
Fig. 12. Normalized energy consumption and normalized goodput for the Subway scenario with a cycling interval of 10 s and communication range (a) r =
10 m and (b) r = 50 m.

and protocol design. Furthermore, we perform a large-scale
evaluation and implement a set of applications as a proof-of-
concept.

Other Wireless Peer-to-Peer Systems

Recently, there have been systems proposed that utilize
peer-to-peer contacts of mobile hosts for distributing and
sharing information in a similar way as we consider in our
work. Table III summarizes the main differences of these
systems with respect to our design based on the following
four characteristics:

• (C1) Content-centric design;
• (C2) Presence of a well-defined content structure;

• (C3) Design based on a publish/subscribe paradigm;
• (C4) Infrastructure-independence.

7DS [28] is a system for opportunistic dissemination among
mobile devices of Internet data objects, identified by URL’s.
As such, 7DS was originally intended mainly for extending
web browsing and e-mailing of mobile nodes beyond the
reach of access points. There is now ongoing work in up-
dating and extending the original 7DS architecture to provide
a generic platform for communication in disruption-tolerant
networks [29].

Haggle [30] is an architecture for mobile devices that
facilitates the separation of application functionality from
the underlying network technology. The goal is to allow

14

Peer-to-peer architecture Design Characteristic
C1 C2 C3 C4

7DS [28], [29] × ×
Haggle [30], [31] ×
DTN Architecture [32] × ×
PeopleNet [33] × ×
BlueTorrent [34] ×
AllJoyn [35] ×
CAMEO [36] ×
BBS-ONE [37] × ×
DTN-messaging [38] ×
Rio [39] × × × ×

TABLE III
COMPARISON BETWEEN OUR DESIGN AND OTHER SYSTEMS THAT UTILIZE
PEER-TO-PEER CONTACTS BETWEEN MOBILE DEVICES FOR DISTRIBUTING

AND SHARING INFORMATION. SYMBOL × DENOTES THAT A
CHARACTERISTIC IS NOT PRESENT IN A SYSTEM.

applications to operate seamlessly across different networking
environments and architectures. Haggle is thus not a strict
protocol architecture for disruptive networks but rather pro-
poses a node design that allows nodes and applications to
adapt to the network connectivity level. In a recent redesign
of Haggle [31], the focus is shifted away from point-to-point
communication towards a more content-centric view, therefore
making it more similar to the interest-driven dissemination
of our architecture, originally proposed in [3]. There are
however some notable differences in the design. In Haggle,
content is unstructured but in both systems, contents have
associated meta-data that facilitates searching and organizing
of contents. We use a hierarchical content structure to associate
content items with particular content feeds. Moreover, the
actual data objects are further divided into fixed size chunks
to facilitate distributed and disjoint content download. The
Haggle architecture is push-based as opposed to the pull-
based solicitation protocol in our architecture. It is unclear how
the push-based approach avoids redundant data transmissions
of already available content and how nodes can prioritize
downloads according to their own preferences.

The DTN architecture [32] is a general communication
architecture to enable communication in the presence of in-
termittent connectivity. It consists of an overlay, called the
bundle layer, which operates above the transport layer. The
architecture specifies the format of variable length application
data units, called bundles. The goal is to deliver bundles
from a sender to a receiver in the presence of intermittent
and opportunistic connectivity, possibly over a wide range of
different networks using different transport protocols. This is
achieved by assuming that nodes store, carry and forward
bundles to cope with link outages. The DTN architecture
is node-centric and mainly focuses on unicast delivery of
messages although some extensions for group communication
have been proposed [40]. Its design philosophy is therefore
significantly different from the content-centric approach we
advocate in our work.

PeopleNet [33] is a distributed geographic database where
information is stored at people’s mobile devices. Query re-
quests and responses are forwarded from a mobile device via
the cellular network to the geographic location which supports

that particular type of request (named Bazaar). Users within
the Bazaar then spread queries via peer-to-peer contacts. When
a response is found for a query request the user who placed the
query request is informed through the cellular infrastructure.
In contrast to what we propose, PeopleNet heavily relies on
a fixed infrastructure and is targeted at seeking information
in contrast to broadcasting information. BlueTorrent [34] is
an opportunistic file sharing application for Bluetooth enabled
devices. The concept of distributing large files using small
resumable atomic chunks follows our approach. However,
BlueTorrent relies on Bluetooth whereas our design leverages
any link-layer technologies. Furthermore, we propose to struc-
ture the data into feeds and rely on a receiver-driven content
dissemination protocol.

AllJoyn [35] is an open-source platform by Qualcomm
that has similar goals as our platform, namely to provide a
system that relieves application developers from many of the
hard problems associated with running distributed applications
in a mobile environment with intermittent connectivity. The
design of the AllJoyn system is however quite different from
ours. AllJoyn implements a virtual distributed software bus
that devices use to communicate when in range. This bus
implements mechanisms such as naming, service discovery,
communication sessions and a Remote Method Invocation
interface that applications use to communicate. From a devel-
opers perspective the AllJoyn system can be seen as an RMI
system for opportunistic networks. In contrast, we explicitly
target opportunistic publish/subscribe communication.

In [36] the authors present CAMEO, a context-aware mid-
dleware for opportunistic mobile social network. The notion of
context consists of user-, device- and environmental informa-
tion. Similar to our design, in CAMEO each user discovers
direct neighbors through periodic beaconing. However as
opposed to our proposal CAMEO also has the possibility
to take optimized forwarding decisions by evaluating the
probability for neighboring nodes to deliver a message to a
particular destination. Moreover, in CAMEO a beacon carries
all the information for node and service discovery packed in a
hash value, while our implementation presents a hierarchical
structure of contents stored in a node as well as a full request-
reply content exchange protocol.

BBS-ONE [37] is a bulletin board system that allows for
exchange of bulletin messages in networks with high mobility
and churn rate, without relying on a centralized server. It
supports both communication with fixed infrastructure, as well
as pure peer-to-peer data exchange by exploiting IEEE 802.11
ad-hoc connections. However, as opposed to our design,
messages are not structured in a hierarchical manner, but are
instead mapped via keyword search. Moreover, BBS-ONE
uses primarily pull- and push-based methods for transferring
information among nodes while we rely solely on the pub-
lish/subscribe paradigm.

In [38] the authors present a DTN-like messaging system
built on top of a peer-to-peer replication platform. The authors
adjust the filtering capabilities of the peer-to-peer replication
platform and explore four different routing algorithms in order
to achieve high delivery ratio in a delay tolerant network.
Thus every node obtains not only information relevant to its

15

interest, but also carries data on behalf of other participants
in the network. As opposed, our design does not assume any
underlying routing protocols, and data is exchanged on a per-
hop basis only when nodes that share a subscription come into
contact.

In [39] the authors present Rio, a system solution that allows
sharing of I/O such as camera, speaker or modem between
mobile devices. The sharing however is not bound to nodes in
proximity, and is thus infrastructure-dependent. Furthermore,
the design tackles predominantly low-level system issues by
splitting the stack at the device file boundary. As opposed,
our middleware does not modify the I/O stack of the device,
and data is exchanged among nodes in direct communication
range without the help of infrastructure.

Caching and Energy Consumption

Most studies that evaluate the performance of opportunis-
tic networks exploit pairwise contact opportunities between
nodes. In the context of content caching, devised strategies
exploit the users’ social networks to try to identify nodes they
frequently meet and solicit contents for them [41], [42], [43].
Few studies take an orthogonal approach, attempting to deliver
data that is immediately available in a close neighborhood to
the interested user [44], [45] however it has been shown that
such caching strategies consume a lot of resources without
increasing the gain at the interested node [46]. In terms
of energy savings, asynchronous duty-cycling schemes are
suggested with respect to the inter-contact times of node
pairs [47], [48]. However, in urban scenarios with users on-
the-go the assumption of two nodes meeting in the future
may not be appropriate since the inter-meeting times may
be on the scale of days, and keeping track of all possible
contacts during a node’s lifetime is not feasible. We believe
that a common case for users in urban areas is that they are
regularly connected to infrastructure networks where they have
access to a vast amount of contents. One of the main benefits
of an opportunistic content distribution system is then that
it allows users to access some contents while on the move
between these occasions of Internet connectivity, such as when
traveling to/from work. We therefore believe that the goal of
caching and energy saving mechanisms should be to bring
what is immediately available in a close neighborhood to the
interested user at a low energy cost.

VI. CONCLUSION

In this work we presented the architecture and design of
a mobile peer-to-peer content-distribution system based on
a publish-subscribe paradigm. Content spreads via sharing
and direct interest-based dissemination and our design in-
cludes a set of basic mechanisms to discover and download
contents efficiently in opportunistic networks. The system
uses a decentralized content solicitation scheme that allows
the distribution of contents between mobile devices without
requiring Internet connectivity and infrastructure support. This
scheme is efficient in the presence of intermittent contacts
and short contact durations. The system design addresses key
issues, in particular the structuring of content to facilitate

efficient lookup and matching of contents. We believe that
our design is general and facilitates the implementation of
advanced content-centric applications.

As a proof of concept, we have implemented our middle-
ware on the Android platform along with a set of applications.
We have demonstrated our system publicly and verified its
correctness and experimentally evaluated performance on a
small scale.

We have also implemented our system in a simulator
environment and performed a large-scale evaluation in terms
of both application throughput (i.e. goodput) and energy con-
sumption. The simulator implementation consists of a detailed
node and protocol implementation and uses a realistic mobility
model of pedestrians in a city. Our results confirm that the
system performance scales well with the number of nodes
since performance improves when more nodes participate. We
have further evaluated two features on top of our design:
caching and energy saving mechanisms. We presented three
relay request strategies, and showed that caching contents
on behalf of other nodes can significantly increase resource
consumption for downloading and storage but often does not
lead to any considerable increase in system performance in
terms of goodput. We also introduced three energy saving
mechanisms, and showed that energy consumption in nodes
could be decreased by 80% without greatly harming the system
performance in terms of goodput. Thus, we claim that energy
saving mechanisms should be considered as part of the system
design, whereas caching should be regarded as an add-on
application-specific feature; if implemented, caching mecha-
nisms should be such that they increase system performance
while still being light on resource consumption.

ACKNOWLEDGMENTS

This work has been partially funded by the Swedish Re-
search Council and the ACCESS Linnaeus Center at KTH,
The Royal Institute of Technology.

REFERENCES

[1] “Cisco visual networking index: Global mobile data traffic forecast
update 2014 - 2019 white paper,” 2015.

[2] V. Vukadinović, Ó. R. Helgason, and G. Karlsson, “An analytical model
for pedestrian content distribution in a grid of streets,” Mathematical
and Computer Modelling, vol. 57, no. 11-12, pp. 2933 – 2944, 2013,
information System Security and Performance Modeling and Simulation
for Future Mobile Networks.

[3] G. Karlsson, V. Lenders, and M. May, “Delay-Tolerant Broadcasting,”
in Proc. of ACM SIGCOMM Workshops (CHANTS), 2006.

[4] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM Comput. Surv., vol. 35, no. 2,
pp. 114–131, 2003.

[5] M. Nottingham and R. Sayre, “The Atom Syndication Format,” RFC
4287, Dec. 2005.

[6] S. Trifunovic, M. Kurant, K. A. Hummel, and F. Legendre, “Wlan-
opp: Ad-hoc-less opportunistic networking on smartphones,” Ad Hoc
Networks, vol. 25, Part B, no. 0, pp. 346 – 358, 2015.

[7] “Java message service (jms),” http://java.sun.com/products/jms/.
[8] B. H. Bloom, “Space/time trade-offs in hash coding with allowable

errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.
[9] S. Trifunovic, F. Legendre, and C. Anastasiades, “Social trust in op-

portunistic networks,” in INFOCOM IEEE Conference on Computer
Communications Workshops , 2010, March 2010, pp. 1–6.

[10] S. Trifunovic, M. Kurant, K. A. Hummel, and F. Legendre, “Preventing
spam in opportunistic networks,” Computer Communications, vol. 41,
no. 0, pp. 31 – 42, 2014.

16

[11] S. Trifunovic and A. Hossmann-Picu, “Stalk and lie - the cost of sybil
attacks in opportunistic networks,” Computer Communications, no. 0,
pp. –, 2015.

[12] Ó. R. Helgason, E. A. Yavuz, S. T. Kouyoumdjieva, L. Pajevic, and
G. Karlsson, “A mobile peer-to-peer system for opportunistic content-
centric networking,” in Proc. of ACM SIGCOMM 2010, MobiHeld
workshop, 2010.

[13] Ó. Helgason, E. A. Yavuz, S. Kouyoumdjieva, L. Pajevic, and G. Karls-
son, “Demonstrating a Mobile Peer-to-Peer System for Opportunistic
Content-Centric Networking,” in demonstration at ACM Mobiheld work-
shop, 2010.

[14] S. Kouyoumdjieva, E. A. Yavuz, Ó. Helgason, L. Pajevic, and G. Karls-
son, “Opportunistic Content-Centric Networking: The Conference Case
Demo,” in demonstration at IEEE Infocom, 2011.

[15] Z. Chen, E. Yavuz, and G. Karlsson, “What a juke! a collaborative music
sharing system,” in Proc. of IEEE WoWMoM, June 2012, pp. 1–6.

[16] I. Marfisi-Schottman, G. Karlsson, and J. C. Guss, “Demo: Opphos - a
participative light and sound show using mobile phones in crowds,” in
Proc. of ExtremeCom, August 2013.

[17] P. U. Tournoux, J. Leguay, F. Benbadis, V. Conan, M. D. de Amorim, and
J. Whitbeck, “The Accordion Phenomenon: Analysis, Characterization,
and Impact on DTN Routing,” in Proc. of IEEE Infocom, 2009.

[18] J. Su and S. Saroiu, “CRAWDAD data set toronto/bluetooth (v. 2006-
08-29),” http://crawdad.cs.dartmouth.edu/toronto/bluetooth, Aug. 2006.

[19] O. Helgason, “Opportunistic content distribution,” Ph.D. dissertation,
KTH Royal Institute of Technology, 2011.

[20] Ó. R. Helgason and K. V. Jónsson, “Opportunistic networking in
omnet++,” in Proc. of ICST SIMUTools, OMNeT++ workshop, 2008.

[21] S. T. Kouyoumdjieva, Ó. R. Helgason, and G. Karlsson, “CRAW-
DAD data set kth/walkers (v. 2014-05-05),” Downloaded from
http://crawdad.org/kth/walkers/, May 2014.

[22] “Legion studio,” http://www.legion.com/.
[23] Ó. Helgason, S. T. Kouyoumdjieva, and G. Karlsson, “Opportunistic

communication and human mobility,” Mobile Computing, IEEE Trans-
actions on, vol. 13, no. 7, pp. 1597–1610, July 2014.

[24] S. T. Kouyoumdjieva, Ó. Helgason, E. A. Yavuz, and G. Karlsson,
“Evaluating an energy-efficient radio architecture for opportunistic com-
munication,” in Proc. of ICC E2Nets workshop, 2012.

[25] S. T. Kouyoumdjieva and G. Karlsson, “Energy savings in opportunistic
networks,” in Proc. IEEE/IFIP WONS, 2014.

[26] S. Kouyoumdjieva and G. Karlsson, “Energy-aware opportunistic mobile
data offloading for users in urban environments,” in Proc. IFIP/TC6
Networking, 2015.

[27] V. Lenders, M. May, and G. Karlsson, “Wireless Ad Hoc Podcasting,”
in Proc. of IEEE SECON, June 2007.

[28] M. Papadopouli and H. Schulzrinne, “Effects of power conservation,
wireless coverage and cooperation on data dissemination among mobile
devices,” in Proc. of ACM MobiHoc, 2001.

[29] A. Moghadam, S. Srinivasan, and H. Schulzrinne, “7DS - A Modular
Platform to Develop Mobile Disruption-tolerant Applications,” in Proc.
of NGMAST 2008, 2008.

[30] J. Su, J. Scott, P. Hui, J. Crowcroft, E. de Lara, C. Diot, A. Goel, M. Lim,
and E. Upton, “Haggle: Seamless Networking for Mobile Applications,”
Proc. of ACM UbiComp, pp. 391–408, 2007.

[31] E. Nordström, P. Gunningberg, and C. Rohner, “A search-based network
architecture for mobile devices,” Uppsala University, Tech. Rep. 2009-
003, Jan. 2009.

[32] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall,
and H. Weiss, “Delay-Tolerant Networking Architecture,” RFC 4838,
Apr. 2007.

[33] M. Motani, V. Srinivasan, and P. S. Nuggehalli, “Peoplenet: engineering
a wireless virtual social network,” in Proc. of ACM MobiCom, 2005.

[34] S. Jung, U. Lee, A. Chang, D.-K. Cho, and M. Gerla, “BlueTorrent:
Cooperative Content Sharing for Bluetooth Users,,” in Proc. of IEEE
PerCom, White Plains,USA, March 2007.

[35] “Alljoyn,” http://www.alljoyn.org/.
[36] V. Arnaboldi, M. Conti, and F. Delmastro, “Implementation of cameo:

A context-aware middleware for opportunistic mobile social networks,”
in Proc. of IEEE WoWMoM, 2011, pp. 1–3.

[37] K. Sung, S. Srinivasan, and H. Schulzrinne, “Bbs-one: Bulletin board
and forum system for mobile opportunistic networks,” in Proc. of IEEE
WCNIS, 2010, pp. 370–375.

[38] P. Gilbert, V. Ramasubramanian, P. Stuedi, and D. Terry, “Peer-to-peer
data replication meets delay tolerant networking,” in Proc. of ICDCS,
2011, pp. 109–120.

[39] A. Amiri Sani, K. Boos, M. H. Yun, and L. Zhong, “Rio: A system
solution for sharing i/o between mobile systems,” in Proc. of ACM
MobiSys, New York, NY, USA, 2014, pp. 259–272.

[40] M. Demmer and K. Fall, “The design and implementation of a session
layer for delay-tolerant networks,” Comput. Commun., vol. 32, pp. 1724–
1730, October 2009.

[41] P. Costa, C. Mascolo, M. Musolesi, and G. P. Picco, “Socially-aware
routing for publish-subscribe in delay-tolerant mobile ad hoc networks,”
IEEE Journal on Selected Areas in Communications, vol. 26, no. 5, pp.
748–760, June 2008.

[42] E. Yoneki, P. Hui, S. Chan, and J. Crowcroft, “A socio-aware overlay for
publish/subscribe communication in delay tolerant networks,” in Proc.
of ACM MSWiM, 2007.

[43] C. Boldrini, M. Conti, and A. Passarella, “ContentPlace: social-aware
data dissemination in opportunistic networks,” in Proc. of ACM MSWiM,
2008.

[44] L. Hu, J.-Y. Le Boudec, and M. Vojnovic, “Optimal channel choice for
collaborative ad-hoc dissemination,” in Proc. of IEEE Infocom, 2010.

[45] J. Reich and A. Chaintreau, “The age of impatience: Optimal replica-
tion schemes for opportunistic networks,” in Proc. of ACM CoNEXT,
December 2009.

[46] S. Kouyoumdjieva, S. Chupisanyarote, O. Helgason, and G. Karlsson,
“Caching strategies in opportunistic networks,” in IEEE WoWMoM, June
2012, pp. 1–6.

[47] W. Gao and Q. Li, “Wakeup scheduling for energy-efficient communi-
cation in opportunistic mobile networks,” in Proc. INFOCOM, 2013.

[48] E. Biondi, C. Boldrini, A. Passarella, and M. Conti, “Optimal duty
cycling in mobile opportunistic networks with end-to-end delay guar-
antees,” in Proc. European Wireless, 2014.

