Invariant theory for maximum likelihood estimation

Statistics Invariant theory

Given: statistical model Given: orbit G-v={g-v|ge G}
sample data Sy
Task: find maximum likelihood Task: compute capacity
estimate (MLE) = closest distance of orbit to origin

= point in model that best fits Sy
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The orbit of a vector v in a vector space V under an
action by a group G is

Gv={g-v|geG}cCV.

# v is unstable iff 0 € G.v

# v semistable iff 0 ¢ G.v

# v polystable iff v £ 0 and its orbit G.v is closed

¢ v is stable iff v is polystable and its stabilizer is finite

The null cone of the action by G is the set of unstable vectors v.
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Invariant theory

Null cone membership testing

Classical and often hard question: Describe null cone

Modern approach: Provide a test to determine if a vector v lies in null cone

The capacity of v is

capg(v) = inf g -vIj3

Observation: capg(v) =0 iff v lies in null cone

Hence: Testing null cone membership is a minimization problem.
~~ algorithms: [series of 3 papers in 2017 — 2019 by
Biirgisser, Franks, Garg, Oliveira, Walter, Wigderson]
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Moment map

Let Ke {R,C} and let G C GL,(K) be a subgroup. Assume that
& G is Zariski closed and

¢ self-adjoint (i.e., g€ G=g* € G).

For v € K™, consider %, : G — R, g — |lgv||?.
Note: capc(v) = inf %,(g)
geG

Its' differential at the identity matrix In, is D) 7, : Tj,, G — R, g +—— 2Re[tr(gvv*)].
The moment map assigns this differential to each vector v:

u: K™ — Homg(T;,G,R), vi— D;_%.
Note:

u(v)=0 < I is a critical point of %,
< v is a critical point of the norm minimization problem along its orbit.
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Kempf-Ness theorem

Theorem (Kempf, Ness '79 over C / Richardson, Slodowy '90 over R)
Let G C GL(K) be a Zariski closed, self-adjoint subgroup with moment map u.
For v € K™, we have:

(a) v is of minimal norm in its orbit < u(v)=0.

(b) If the orbit G- v is closed, there exists some w € G- v with pu(w) = 0.
(c) If u(v)=0, the orbit G- v is closed.

(d) v is polystable & 304w e G-v:u(w)=0.

(e) v is semistable < 30#w e G-v:u(w)=0.



Maximum likelihood estimation

Given:
& ./ a statistical model = a set of probability distributions
¢ Y =(Y1,...,Y,): nsamples of observed data

Goal: find a distribution in the model .# that best fits the empirical data Y

Approach: maximize the likelihood function

Ly(p):=p(Y1)---p(Yn), wherepe #.

A maximum likelihood estimate (MLE) is a distribution in the model .# that
maximizes the likelihood Ly .



Discrete statistical models

A probability distribution on m states is determined by is probability mass
function p, where p; is the probability that the j-th state occurs.

p is a point in the probability simplex

Am_1={q€R"|q; >0 and quzl}.

A discrete statistical model .Z is a subset of the simplex A, 1.




Discrete statistical models

maximum likelihood estimation

Given data is a vector of counts Y € ZT,
where Y; is the number of times the j-th state occurs.

The empirical distribution is Sy = %Y €NAp_1, where n=Y1+...+ Y.

The likelihood function takes the form Ly (p) = p1Y1 op¥m.  where p €. 4.

An MLE is a point in model .# that maximizes the likelihood Ly of observing Y.

- N
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Log-linear models
= set of distributions whose logarithms lie in a fixed linear space.
Let A e Z9<™ and define
Mp={p € Ap_1|logp € rowspan(A)}.

We assume that 1 :=(1,...,1) € rowspan(A)

Matrix A=[a1 | a2 | ... | am] also defines an action by the torus (C*)? on C™:

g € (C*)9 acts on x € C™ by left multiplication with

a
g
Bl adj

,  where g &1 8

gl

A is the orbit of the uniform distribution in A,,_; NRT,.
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Example
Mp={p € Apm_1|logp €rowspan(A)}. A= [

o N

52 &
g €(C*)? acts on x € C3 by [ g2 ] = [ 8182 :
g% &

i
(et gl)mAszio

. 1
3 —{3(g12,g1gz,g§) | 1,82 >0, g12+g1gz+g22—3}

={p Ry |p5 =p1p3,p1+p2+p3=1}




Example

///A:{pEAmd“ng erowspan(A)}- A [ (2) 1 g }
g g12

€ (C*)? acts on x € C3 by B2 = et

g% g22
) o
= ((C) )mAzﬁR
X3 :
l_" =1z gl,glgz,g2)|g1 g >0, g1+g1g2+g2—3

={p Ry |p5 =p1p3,p1+p2+p3=1}

other examples: independence model,
graphical models, hierarchical models, ...

X |




Maximum likelihood estimation

for log-linear models

An MLE in .#, given data Y is a point p in the model
such that

Ap = ASy,

The MLE is unique if it exists!

Model .#, is not closed: MLE may not exist if Sy has zeroes.
True maximizer could be on boundary of model.



Maximum likelihood estimation

for log-linear models

An MLE in .#, given data Y is a point p in the model
such that

Ap = ASy,

The MLE is unique if it exists!

Model .#, is not closed: MLE may not exist if Sy has zeroes.
True maximizer could be on boundary of model.

polyhedral condition for MLE existence:
For A=[a1|a2|... | am] € Z9*™, we define

P(A) =conv{ai,az,...,am} C R,

Theorem (Eriksson, Fienberg, Rinaldo, Sullivant '06)
MLE given Y exists in .#4 iff ASy is in relative interior of P(A).
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The action of the torus GTy given by the matrix A € Z9*™ is in fact well-defined on
projective space P™1.
A linearization is a consistent action on C™, given by a character b € Z9:

a1—b

g

g € GT4 acts on x € C™ by
gamfb
polyhedral conditions for stability:
Define sub-polytopes of P(A) = conv{a;,as,...,am} that depend on x € C™:

P(A) = conv{aj WES SUPP(X)}'

Theorem (standard, proof via Hilbert-Mumford criterion)
Consider the action of GTy given by matrix A € Z9*™ with linearization b € Z9.
(a)  xunstable <& b ¢ P(A)

(b) x semistable < b e Py (A)
(c) x polystable <« b e relintPy(A) closed orbit
(d) x stable & beintPy(A)
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Combining both worlds

Theorem
Let A=[a1]...|am] € Z9*™ and Y € Z™ be a vector of counts with n =Y.

MLE given Y exists in .#Z4 <« 1€ C™ is polystable under the action of (C*)
given by the matrix [na; — AY|...|nam, — AY]

A

attains its maximum & attains its minimum
How are the two optimal points related?

Theorem
If x € C™ is a point of minimal norm in the orbit (C*)9-1, then the MLE is

NE)

W, where x(?) is the vector with j-th entry |><J\2
X
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Algorithmic consequences

V- N

algorithms for finding MLE, e.g. <+ scaling algorithms to
iterative proportional scaling (IPS) compute capacity
maximize likelihood < minimize KL divergence minimize ¢3-norm
model lives in Ay, 3 NRT, orbit lives in C™

trivial linearization b =0 linearization b= AY



Gaussian statistical models

The density function of an m-dimensional Gaussian with mean zero and covariance
matrix X € R™*™M js

where y € R,

px(y) = Lt e (—1yTZ‘1y>,
\/det(27Y) 2

The concentration matrix W = ¥ ~1 is symmetric and positive definite.
A Gaussian model .7 is a set of concentration matrices, i.e. a subset of the cone
of m x m symmetric positive definite matrices.

Given data Y =(Y41,..., Yn), the likelihood is
Ly(\U)prf1(yl)~~~pw71(yn), where W € /.

likelihood Ly can be unbounded from above
MLE might not exist
MLE might not be unique
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Gaussian group model
The Gaussian group model of a group G with a representation G % GL,, on R™ is

s :={V;=0(&) 0(e) g€ G}.

We want to find an MLE, i.e. a maximizer of

logLy(Wg) == (nlogdetW, — ||g- Y||%) —? log(2m) for g € G.

N

Ly (Vg)
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Invariant theory classically over C — can also define Gaussian (group) models over C
For a group G C GL,(C), define #c :={g*g|g € G}.

Proposition
For Y =(Y1,...,Ys) with Y; € C™ and a group G C GL,;,(C) closed under non-zero
scalar multiples (i.e., g€ G,A € C,A #0=Ag€G),

Oy (V,)=— inf inf ||h-Y]|2) —nmlogt ).
see Vg fgﬂgm(f(hee%&m“ '2) "m°g)

If h-Y is a point of minimal norm in the G NSL,,-orbit of Y, then an MLE for the
Gaussian group model .Z is

th*h, where T is the unique value minimizing 7 |/h- Y||3 — nmlog .

All MLEs, if they exist, are of this form.
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Let Y and G as above.

Combining both worlds

If G is Zariski closed and self-adjoint (i.e., g € G = g* € G),
ML estimation for .#¢ relates to the action by GNSL,,(C) as follows:

(
(
(
(

a
b
c
d

)
)
)
)

Y unstable
Y semistable
Y polystable

Y stable

=

=
=
-

Ly not bounded from above
Ly bounded from above
MLE exists
finitely many MLEs exist

-\

=

unique MLE
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Theorem
Let Y =(Y1,...,Yn) with Y; € R™, and let G C GL,(R) be a group that is closed under
non-zero scalar multiples, but not necessarily Zariski closed and self-adjoint.
ML estimation for .#¢ relates to the action by GNSL;(R) as follows:
(@) Y unstable < ¢y not bounded from above
(b) Y semistable < Zy bounded from above
(¢) Y polystable = MLE exists

Example: Gaussian graphical models defined by transitive DAGs
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Real examples

Proposition
For Y =(Y1,...,Ys) with Y; € R™ and a group G C GL,(R) closed under non-zero
scalar multiples,

suply(Vg)=— inf (T( inf i||h-YH§>—nmlog‘L’).

geG 7€R>0 heGNSLE,

If h-Y is a point of minimal norm in the GOSLf,E,—orbit of Y, then an MLE for the
Gaussian group model .Z is

thT h, where 7 is the unique value minimizing 7||h- Y||3 — nmlogt.

All MLEs, if they exist, are of this form.
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Real examples

Proposition
For Y =(Y1,...,Ys) with Y; € R™ and a group G C GL,(R) closed under non-zero
scalar multiples,

suply(Vg)=— inf (T( inf i||h-YH§>—nmlog‘L’).

geG 7€R>0 heGNSLE,

If h-Y is a point of minimal norm in the GOSLf,E,—orbit of Y, then an MLE for the
Gaussian group model .Z is

thT h, where 7 is the unique value minimizing 7||h- Y||3 — nmlogt.
All MLEs, if they exist, are of this form.
Remark

If G contains an orthogonal matrix of determinant —1, then we can work with SL,,
instead of SL.



Gaussian graphical models

Directed acyclic graphs
Important family of statistical models that represent interaction structures between
several random variables:

o Consider a directed acyclic graph (DAG) ¢ with m nodes.
¢ Each node j represents a random variable X; (e.g., Gaussian).
& Each edge j — i encodes (conditional) dependence: X; ‘causes’ X;.

o The parents of j are pa(i)={j|j — i}

The model is defined by the recursive linear equation:

X Z A,;J'XJ'-I-S;
Jj€pa(i)

where A;; is the edge coefficient and ¢&; is Gaussian error.

It can be written as X = AX 4 & where A € R™*" satisfies A;; =0 for j /i in ¥4
and € ~ N(0,Q) with Q diagonal, positive definite.



Gaussian graphical models

coming from groups

From X = AX + €, we rewrite
XK= (I—N) e

so that X ~ N(0,X) with
Y ={EN OGS AEE S (= N ).

The Gaussian graphical model .7’ consists of concentration matrices W of this form.
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Gaussian graphical models

coming from groups

From X = AX + €, we rewrite
XK= (I—N) e

so that X ~ N(0,X) with
Y ={EN OGS AEE S (= N ).

The Gaussian graphical model ./’ consists of concentration matrices W of this form.
Consider the set

G(¥9)={gcGL,|gj=0for i withjAiin¥}.

Proposition
The set of matrices G(¥) is a group if and only if ¢ is a transitive directed acyclic
graph (TDAG), i.e., k —j and j — i in &4 imply k — i. In this case,

My = M)



TDAG group models

Example Gﬁo
Let ¢4 be the TDAG

The corresponding group G(%) C GL3 consists of invertible matrices g of the form

wee (0F0
g = O |
0) - (0) 83



TDAG group models

Example Gﬁo
Let ¢4 be the TDAG

The corresponding group G(%) C GL3 consists of invertible matrices g of the form

wee (0F0
g = O |
0) - (0) 83

The Gaussian graphical model .7’ is a 5-dimensional linear subspace of the cone of
symmetric positive definite 3 x 3 matrices:

My ={g"g|g € G(Y)}={VePD;|y12=yo =0}.



TDAG group models

Example Gﬁo
Let ¢4 be the TDAG

The corresponding group G(%) C GL3 consists of invertible matrices g of the form

wee (0F0
g = O |
0) - (0) 83

The Gaussian graphical model .7’ is a 5-dimensional linear subspace of the cone of
symmetric positive definite 3 x 3 matrices:

My ={g"g|g € G(Y)}={VePD;|y12=yo =0}.

Note that G(¥) is not self-adjoint!



MLE existence
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Let Y € R™*" be a tuple of n samples. If some row of Y corresponding to vertex i
is in the linear span of the rows corresponding to the parents of /,

& then Y is unstable under the action by G(¢)NSLy,,
i.e. the likelihood is unbounded;

o otherwise, Y is polystable, i.e. an MLE exists.
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MLE existence

Theorem
Let Y € R™*" be a tuple of n samples. If some row of Y corresponding to vertex i
is in the linear span of the rows corresponding to the parents of /,

& then Y is unstable under the action by G(¢)NSLy,,
i.e. the likelihood is unbounded;

o otherwise, Y is polystable, i.e. an MLE exists.

Example Let n=2 in G% and consider three different pairs of samples:

9 1550 1%
yl=10 1], Y?=[0 1), Y3=[0 1
040 i 3. %2

Using the theorem, we see that Y! and Y? are unstable and Y3 is polystable.
The null cone has two components: V/(y11y32 — y12y31) U V(y21¥32 — y22¥31).



Null cones of TDAGs

Corollary Let 4 be a TDAG with m nodes and n samples.

Each irreducible component of the Zariski closure of the null cone under the action
of G(4)NSLy, on R™*" is defined by the maximal minors of the submatrix whose
rows are a childless node and its parents.
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Null cones of TDAGs

Corollary Let 4 be a TDAG with m nodes and n samples.

Each irreducible component of the Zariski closure of the null cone under the action
of G(4)NSLy, on R™*" is defined by the maximal minors of the submatrix whose
rows are a childless node and its parents.

Example G%
Let ¢4 be the TDAG :

¢ The null cone is not Zariski closed for n > 2.
Its Zariski closure is the variety of matrices of rank at most two.

& For n=2, Y is not in the null cone but in its Zariski closure (= R3X2):
1 0
> — ()
(0] 1k

Hence, an MLE given Y exists. What is it? Is it unique? Homework!
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Undirected Graphical Models

Which TDAGs have Zariski closed null cones?

Corollary Let &4 be a TDAG with m nodes. The null cone under the action of
G(¢)NSL,, on R™* " is Zariski closed for every n iff 4 has no unshielded colliders.

An unshielded collider of ¢ is a subgraph j — i < k with no edge between j and k.

This is a very interesting condition in statistics! ¢ has no unshielded colliders if
and only if it has the same graphical model as its underlying undirected graph.



Summary

Invariant theory Statistics
describe null cone algorithms to find MLE
historical
progression
algorithmic null cone convergence analysis

membership testing




