
Invariant theory for maximum likelihood estimation
Statistics Invariant theory

Given: statistical model Given: orbit G ·v = {g ·v | g ∈G}
sample data SY

Task: find maximum likelihood Task: compute capacity
estimate (MLE) = closest distance of orbit to origin

= point in model that best fits SY
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Invariant theory
Stability notions

The orbit of a vector v in a vector space V under an
action by a group G is

G .v = {g ·v | g ∈ G} ⊂ V .

v is unstable iff 0 ∈ G .v (i.e. v can be scaled to 0 in the limit)

v semistable iff 0 /∈ G .v

v polystable iff v 6= 0 and its orbit G .v is closed

v is stable iff v is polystable and its stabilizer is finite

The null cone of the action by G is the set of unstable vectors v .
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Invariant theory
Null cone membership testing

Classical and often hard question: Describe null cone
(essentially equivalent to finding generators for the ring of polynomial invariants)

Modern approach: Provide a test to determine if a vector v lies in null cone

The capacity of v is

capG (v) := inf
g∈G
‖g ·v‖22.

Observation: capG (v) = 0 iff v lies in null cone

Hence: Testing null cone membership is a minimization problem.
 algorithms: [series of 3 papers in 2017 – 2019 by

Bürgisser, Franks, Garg, Oliveira, Walter, Wigderson]
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Moment map
Let K ∈ {R,C} and let G ⊂ GLm(K) be a subgroup.

Assume that

G is Zariski closed and

self-adjoint (i.e., g ∈ G ⇒ g∗ ∈ G ).

For v ∈Km, consider γv : G −→ R, g 7−→ ‖gv‖2.
Note: capG (v) = inf

g∈G
γv (g)

Its differential at the identity matrix Im is DImγv : TImG −→ R, ġ 7−→ 2Re[tr(ġ vv∗)].

The moment map assigns this differential to each vector v :

µ : Km −→ HomR(TImG ,R), v 7−→ DImγv .

Note:
µ(v) = 0 ⇔ Im is a critical point of γv

⇔ v is a critical point of the norm minimization problem along its orbit.
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Kempf-Ness theorem

Theorem (Kempf, Ness ’79 over C / Richardson, Slodowy ’90 over R)
Let G ⊂ GLm(K) be a Zariski closed, self-adjoint subgroup with moment map µ.
For v ∈Km, we have:

(a) v is of minimal norm in its orbit ⇔ µ(v) = 0.

(b) If the orbit G ·v is closed, there exists some w ∈ G ·v with µ(w) = 0.

(c) If µ(v) = 0, the orbit G ·v is closed.

(d) v is polystable ⇔ ∃0 6= w ∈ G ·v : µ(w) = 0.

(e) v is semistable ⇔ ∃0 6= w ∈ G ·v : µ(w) = 0.
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Maximum likelihood estimation
Given:

M : a statistical model = a set of probability distributions

Y = (Y1, . . . ,Yn): n samples of observed data

Goal: find a distribution in the model M that best fits the empirical data Y

Approach: maximize the likelihood function

LY (ρ) := ρ(Y1) · · ·ρ(Yn), where ρ ∈M .

A maximum likelihood estimate (MLE) is a distribution in the model M that
maximizes the likelihood LY .
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Discrete statistical models

A probability distribution on m states is determined by is probability mass
function ρ, where ρj is the probability that the j-th state occurs.

ρ is a point in the probability simplex

∆m−1 =
{
q ∈ Rm | qj ≥ 0 and ∑qj = 1

}
.

A discrete statistical model M is a subset of the simplex ∆m−1.
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Discrete statistical models
maximum likelihood estimation

Given data is a vector of counts Y ∈ Zm
≥0,

where Yj is the number of times the j-th state occurs.

The empirical distribution is SY = 1
nY ∈∆m−1, where n = Y1 + . . .+Ym.

The likelihood function takes the form LY (ρ) = ρ
Y1
1 · · ·ρYm

m , where ρ ∈M .

An MLE is a point in model M that maximizes the likelihood LY of observing Y .
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Log-linear models
= set of distributions whose logarithms lie in a fixed linear space.

Let A ∈ Zd×m, and define

MA = {ρ ∈∆m−1 | log ρ ∈ rowspan(A)} .

We assume that 1 := (1, . . . ,1) ∈ rowspan(A) (i.e., uniform distribution in MA).

Matrix A = [a1 | a2 | . . . | am] also defines an action by the torus (C×)d on Cm:

g ∈ (C×)d acts on x ∈ Cm by left multiplication with

 ga1

. . .
gam

 , where gaj = g
a1j
1 . . .g

adj
d .

MA is the orbit of the uniform distribution in ∆m−1∩Rm
>0.
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Example
MA = {ρ ∈∆m−1 | log ρ ∈ rowspan(A)} . A =

[
2 1 0
0 1 2

]

g ∈ (C×)2 acts on x ∈ C3 by

 ga1

ga2

ga3

=

 g2
1

g1g2
g2
2

.

MA = ((C×)2 · 1
3
1)∩∆2∩R3

>0

=

{
1
3
(
g2
1 ,g1g2,g

2
2
)
| g1,g2 > 0, g2

1 +g1g2 +g2
2 = 3

}

=
{

ρ ∈ R3
>0 | ρ2

2 = ρ1ρ3, ρ1 + ρ2 + ρ3 = 1
}

other examples: independence model,
graphical models, hierarchical models, . . .
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Maximum likelihood estimation
for log-linear models

An MLE in MA given data Y is a point ρ̂ in the model
such that

Aρ̂ = ASY , where SY =
1
n
Y .

The MLE is unique if it exists!

Model MA is not closed: MLE may not exist if SY has zeroes.
True maximizer could be on boundary of model.

polyhedral condition for MLE existence:
For A = [a1 | a2 | . . . | am] ∈ Zd×m, we define

P(A) = conv{a1,a2, . . . ,am} ⊂ Rd .

Theorem (Eriksson, Fienberg, Rinaldo, Sullivant ’06)
MLE given Y exists in MA iff ASY is in relative interior of P(A).
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Stability for torus actions
The action of the torus GTd given by the matrix A ∈ Zd×m is in fact well-defined on
projective space Pm−1.

A linearization is a consistent action on Cm, given by a character b ∈ Zd :

g ∈ GTd acts on x ∈ Cm by

 ga1−b

. . .
gam−b

.
polyhedral conditions for stability:
Define sub-polytopes of P(A) = conv{a1,a2, . . . ,am} that depend on x ∈ Cm:

Px (A) = conv
{
aj | j ∈ supp(x)

}
.

Theorem (standard, proof via Hilbert-Mumford criterion)
Consider the action of GTd given by matrix A ∈ Zd×m with linearization b ∈ Zd .
(a) x unstable ⇔ b /∈ Px (A) can be scaled to 0 in the limit
(b) x semistable ⇔ b ∈ Px (A) cannot be scaled to 0 in the limit
(c) x polystable ⇔ b ∈ relintPx (A) closed orbit
(d) x stable ⇔ b ∈ intPx (A) finite stabilizer
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Combining both worlds
Theorem
Let A = [a1| . . . |am] ∈ Zd×m and Y ∈ Zm be a vector of counts with n = ∑Yj .

MLE given Y exists in MA ⇔ 1 ∈ Cm is polystable under the action of (C×)d

given by the matrix [na1−AY | . . . |nam−AY ]

attains its maximum ⇔ attains its minimum
How are the two optimal points related?

Theorem (cont’d)
If x ∈ Cm is a point of minimal norm in the orbit (C×)d ·1, then the MLE is

x(2)

‖x‖2
, where x (2) is the vector with j-th entry |xj |2.
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Algorithmic consequences

algorithms for finding MLE, e.g. ↔ scaling algorithms to
iterative proportional scaling (IPS) compute capacity

maximize likelihood ⇔ minimize KL divergence minimize `2-norm

model lives in ∆m−1∩Rm
>0 orbit lives in Cm

trivial linearization b = 0 linearization b = AY
(defines model and steps of IPS)
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Gaussian statistical models
The density function of an m-dimensional Gaussian with mean zero and covariance
matrix Σ ∈ Rm×m is

ρΣ(y) =
1√

det(2πΣ)
exp

(
−1
2
yTΣ−1y

)
, where y ∈ Rm.

The concentration matrix Ψ = Σ−1 is symmetric and positive definite.
A Gaussian model M is a set of concentration matrices, i.e. a subset of the cone
of m×m symmetric positive definite matrices.

Given data Y = (Y1, . . . ,Yn), the likelihood is

LY (Ψ) = ρΨ−1(Y1) · · ·ρΨ−1(Yn), where Ψ ∈M .

likelihood LY can be unbounded from above
MLE might not exist
MLE might not be unique
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Gaussian group model
The Gaussian group model of a group G with a representation G

ϕ−→ GLm on Rm is

MG :=
{

Ψg = ϕ(g)Tϕ(g) | g ∈ G
}
.

(depends only on image of G in GLm, hence may assume G ⊆ GLm)

We want to find an MLE, i.e. a maximizer of

logLY (Ψg ) =
1
2
(
n log detΨg −‖g ·Y ‖22

)︸ ︷︷ ︸
`Y (Ψg )

−nm

2
log(2π) for g ∈ G .
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Combining both worlds

Invariant theory classically over C – can also define Gaussian (group) models over C
For a group G ⊂ GLm(C), define MG := {g∗g | g ∈ G} .

Proposition
For Y = (Y1, . . . ,Yn) with Yi ∈ Cm and a group G ⊂ GLm(C) closed under non-zero
scalar multiples (i.e., g ∈G ,λ ∈ C,λ 6= 0⇒ λg ∈G ),

sup
g∈G

`Y (Ψg ) =− inf
τ∈R>0

(
τ

(
inf

h∈G∩SLm
‖h ·Y ‖22

)
−nm log τ

)
.

If h ·Y is a point of minimal norm in the G ∩SLm-orbit of Y , then an MLE for the
Gaussian group model MG is

τh∗h, where τ is the unique value minimizing τ ‖h ·Y ‖22−nm log τ.

All MLEs, if they exist, are of this form.
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Combining both worlds

Theorem
Let Y and G as above.

If G is Zariski closed and self-adjoint (i.e., g ∈ G ⇒ g∗ ∈ G ),
ML estimation for MG relates to the action by G ∩SLm(C) as follows:

(a) Y unstable ⇔ LY not bounded from above
(b) Y semistable ⇔ LY bounded from above
(c) Y polystable ⇔ MLE exists
(d) Y stable ⇔ finitely many MLEs exist ⇔ unique MLE
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Combining both worlds
Real examples

Theorem
Let Y = (Y1, . . . ,Yn) with Yi ∈ Rm, and let G ⊂ GLm(R) be a Zariski closed, self-adjoint
group that is closed under non-zero scalar multiples.
ML estimation for MG relates to the action by G ∩SLm(R) as follows:
(a) Y unstable ⇔ `Y not bounded from above
(b) Y semistable ⇔ `Y bounded from above
(c) Y polystable ⇔ MLE exists
(d) Y stable ⇒ finitely many MLEs exist ⇔ unique MLE

Examples: full Gaussian model, independence model, matrix normal model

Theorem
Let Y = (Y1, . . . ,Yn) with Yi ∈ Rm, and let G ⊂ GLm(R) be a group that is closed under
non-zero scalar multiples, but not necessarily Zariski closed and self-adjoint.
ML estimation for MG relates to the action by G ∩SL±m(R) as follows:
(a) Y unstable ⇔ `Y not bounded from above
(b) Y semistable ⇔ `Y bounded from above
(c) Y polystable ⇒ MLE exists

Example: Gaussian graphical models defined by transitive DAGs
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Combining both worlds
Real examples

Proposition
For Y = (Y1, . . . ,Yn) with Yi ∈ Rm and a group G ⊂ GLm(R) closed under non-zero
scalar multiples,

sup
g∈G

`Y (Ψg ) =− inf
τ∈R>0

(
τ

(
inf

h∈G∩SL±m
‖h ·Y ‖22

)
−nm log τ

)
.

If h ·Y is a point of minimal norm in the G ∩SL±m-orbit of Y , then an MLE for the
Gaussian group model MG is

τhTh, where τ is the unique value minimizing τ ‖h ·Y ‖22−nm log τ.

All MLEs, if they exist, are of this form.

Remark
If G contains an orthogonal matrix of determinant −1, then we can work with SLm

instead of SL±m.
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Gaussian graphical models
Directed acyclic graphs

Important family of statistical models that represent interaction structures between
several random variables.

Consider a directed acyclic graph (DAG) G with m nodes.

Each node j represents a random variable Xj (e.g., Gaussian).

Each edge j → i encodes (conditional) dependence: Xj ‘causes’ Xi .

The parents of i are pa(i) = {j | j → i}.

The model is defined by the recursive linear equation:

Xi = ∑
j∈pa(i)

λijXj + εi

where λij is the edge coefficient and εi is Gaussian error.

X1

X2

λ21

X3

λ31

X4

λ42 λ43

It can be written as X = ΛX + ε where Λ ∈ Rm×m satisfies λij = 0 for j 6→ i in G
and ε ∼ N(0,Ω) with Ω diagonal, positive definite. XXI - XXVII



Gaussian graphical models
coming from groups

From X = ΛX + ε, we rewrite
X = (I −Λ)−1

ε

so that X ∼ N(0,Σ) with

Σ = (I −Λ)−1Ω(I −Λ)−T & Ψ = (I −Λ)TΩ−1(I −Λ).

TheGaussian graphicalmodelM→
G consists of concentrationmatricesΨ of this form.

Consider the set

G (G ) = {g ∈ GLm | gij = 0 for i 6= j with j 6→ i in G }.

Proposition
The set of matrices G (G ) is a group if and only if G is a transitive directed acyclic
graph (TDAG), i.e., k → j and j → i in G imply k → i . In this case,

M→
G = MG(G ).
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TDAG group models

Example
Let G be the TDAG .
The corresponding group G (G )⊆ GL3 consists of invertible matrices g of the form

g =

∗ 0 ∗
0 ∗ ∗
0 0 ∗

 .

The Gaussian graphical model M→
G is a 5-dimensional linear subspace of the cone of

symmetric positive definite 3×3 matrices:

M→
G = {gTg | g ∈ G (G )}= {Ψ ∈ PD3 | ψ12 = ψ21 = 0}.

Note that G (G ) is not self-adjoint!
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MLE existence
Theorem
Let Y ∈ Rm×n be a tuple of n samples. If some row of Y corresponding to vertex i
is in the linear span of the rows corresponding to the parents of i ,

then Y is unstable under the action by G (G )∩SLm,
i.e. the likelihood is unbounded;

otherwise, Y is polystable, i.e. an MLE exists.

Example Let n = 2 in and consider three different pairs of samples:

Y 1 =

1 2
0 1
0 0

 , Y 2 =

1 2
0 1
2 4

 , Y 3 =

1 0
0 1
3 2

 .

Using the theorem, we see that Y 1 and Y 2 are unstable and Y 3 is polystable.
The null cone has two components: V (y11y32−y12y31) ∪ V (y21y32−y22y31).
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Null cones of TDAGs
Corollary Let G be a TDAG with m nodes and n samples.
Each irreducible component of the Zariski closure of the null cone under the action
of G (G )∩SLm on Rm×n is defined by the maximal minors of the submatrix whose
rows are a childless node and its parents.

Example
Let G be the TDAG .

The null cone is not Zariski closed for n ≥ 2.
Its Zariski closure is the variety of matrices of rank at most two.

For n = 2, Y is not in the null cone but in its Zariski closure (= R3×2):

Y =

1 0
1 0
0 1

 .

Hence, an MLE given Y exists. What is it? Is it unique? Homework!
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Undirected Graphical Models

Which TDAGs have Zariski closed null cones?

Corollary Let G be a TDAG with m nodes. The null cone under the action of
G (G )∩SLm on Rm×n is Zariski closed for every n iff G has no unshielded colliders.

An unshielded collider of G is a subgraph j → i ← k with no edge between j and k .

This is a very interesting condition in statistics! G has no unshielded colliders if
and only if it has the same graphical model as its underlying undirected graph.
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