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Abstract: In order to avoid the paradoxes of standard deontic logic, 

we have to give up the semantic construction that identifies 

obligatory status with presence in all elements of a subset of the set 

of possible worlds. It is proposed that deontic logic should instead be 

based on a preference relation, according to the principle that 

whatever is better than something permitted is itself permitted. Close 

connections hold between the logical properties of a preference 

relation and those of the deontic logics that are derived from it in this 

way.  The paradoxes of SDL can be avoided with this construction, 

but it is still an open question what type of preference relation is best 

suited to be used as a basis for deontic logic. 

 

1.  Introduction 
Modern deontic logic began with a seminal paper by Georg Henrik von 

Wright in 1951.1 With a minor modification,2 his list of postulates has 

turned out to be characterizable by a simple semantical construction that has 

since then dominated the subject: It is assumed that there is a subset of the 

set of possible worlds (the “ideal worlds”) such that for any sentence p, Op 

(meaning that p is obligatory) holds if and only if p holds in all of these 

worlds. This is standard deontic logic (SDL); its basic principle is 

illustrated in Diagram 1. 

 The term “possible world” is ambiguous. In a logical sense, a 

possible world is a maximal consistent subset of the sentences of a given 

language. In a metaphysical sense, a possible world is a complete 

description of how the world could be. The holistic alternatives used in the 

SDL semantics have to be possible worlds in a logical sense, but not 

                                                 
1 von Wright 1951. On the origins of deontic logic, see Føllesdal and 

Hilpinen 1970 and von Wright 1998. 
2 Acceptance of the postulate O(p∨¬p). 
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necessarily in a metaphysical sense. They can, for instance, represent the 

combinations of actions that are open to an individual (rather than the 

worlds that she might inhabit). In order to avoid confusion with 

metaphysical possible worlds, I will use the terms “holistic alternative” and 

“alternative” instead of “possible world”. 

The valid sentences of SDL coincide with the theorems derivable 

from the following three axioms: 

 

 Op → ¬O¬p, 

 Op & Oq ↔ O(p&q), and 

 O(p∨¬p).3 

 

It is common to assume that the selection of alternatives shown in Diagram 

1 is based on an ordering of the alternatives, as in Diagram 2. The ideal 

alternatives are then identified with the maximal (best) alternatives 

according to that ordering. This construction makes it possible to extend 

SDL to conditional norms. In order to determine what obligations hold if s 

is true, we just restrict our attention to alternatives in which s is true, and 

identify the ideal alternatives with the alternatives that are best (maximal) in 

this restricted set. (Diagram 3) 

SDL semantics is admirably simple and elegant. Unfortunately, it 

forces us to rather implausible conclusions. If we identify obligatory status 

with presence in all elements of a certain subset of the alternative set, then 

the following property will invariably hold: 

 

 If k p → q, then k Op → Oq. 

 

                                                 
3 Føllesdal and Hilpinen 1970, p. 13. 
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This property has many names. I prefer to call it necessitation since it says 

that whatever is necessitated by a moral requirement is itself a moral 

requirement. As an example, suppose that I am morally required to take a 

boat without the consent of its owner and use it to rescue a drowning 

person. Let p denote this composite action that I am required to perform, 

and let q denote the part of it that consists in taking the boat without leave. 

Since q follows logically from p, I am logically necessitated to perform q in 

order to perform p. According to the postulate of necessitation, I then have 

an obligation to q. This is contestable, since I have no obligation to q in 

isolation. 

 Necessitation gives rise to most of the major deontic paradoxes. We 

may call these the necessitation paradoxes. Four of the most prominent are 

Ross's paradox, the paradox of commitment, the Good Samaritan, and the 

Knower. Ross's paradox is based on the instance Op → O(p∨q) of 

necessitation. (“If you ought to mail the letter, then you ought to either mail 

or burn it.”)4 The paradox of commitment is based on the instance O¬p → 

O(p→q), which is interpreted as saying that if you do what is forbidden, 

then you are required to do anything whatsoever. (“If it is forbidden for you 

to steal this car, then if you steal it you ought to run over a pedestrian.”)5 

The Good Samaritan operates on two sentences p and q, such that q denotes 

some atrocity and p some good act that can only take place if q takes place. 

We then have k p→q, and it follows by necessitation that if Op then Oq. 

(“You ought to help the assaulted person. Therefore, there ought to be an 

assaulted person.”)6 Åqvist's Knower paradox makes use of the epistemic 

principle that only that which is true can be known. Here, q denotes some 

wrongful action, and p denotes that q is known by someone who is required 

                                                 
4  Ross 1941, p. 62. 
5  Prior 1954. 
6  Prior 1958, p. 144. 
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to know it. Again, we have k p→q and Op, and it follows by necessitation 

that Oq. (“If the police officer ought to know that Smith robbed Jones, then 

Smith ought to rob Jones.”)7  

 It is the purpose of the present presentation to show how we can 

save deontic logic from the necessitation paradoxes. In order to achieve this 

we will have to give up the basic semantic idea of SDL, and hopefully find 

some other,  more plausible semantic principle for deontic logic.  

 The subject-matter of deontic logic is quite complex. It includes 

defeasible norms, counterfactual norms, normative rules, multiagent norms, 

etc. For the purposes of the present presentation I will leave as much as 

possible of this complexity aside, and focus on situationist deontic logic, i.e. 

the deontic logic of that fraction of normative discourse which refers only to 

one moral appraisal of one situation. No changes in the situation or shifts in 

the perspective are allowed (which excludes deontic counterfactuals), and 

no general deontic statements (such as rules) will be represented.8 

Furthermore, I will assume that obligations refer to actions (or omissions), 

so that p in Op is a sentence that represents an action. (For simple reference 

I will use “action” and as a short term for “action-representing sentence”.) 

 

2. Basing deontic logic more directly on preferences 
I propose that we base deontic logic on preferences, but not in the indirect 

way shown in Diagrams 2–3. Instead of using a preference relation on 

(holistic) alternatives, we can apply a preference relation directly to the 

actions that are the actual objects of obligations and permisssions, as in 

Diagram 4. Clearly, preferences over actions can in their turn be based on 

preferences over holistic alternatives. To begin with, however, I will make 

no such assumption but take the preference relation over actions to be 
                                                 
7   Åqvist 1967. 
8  Hansson 2001, chapter 9. 
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primitive. (In sections 4–5 I will return to the derivation of preference 

relations over single actions from preference relations over alternatives.) 

 Can we insert normative predicates into a preference structure in the 

same way that we can insert a monadic predicate such as “best” or “bad”? 

To pursue this possibility, consider the following two classes of value 

predicates that can be inserted into a preference structure: 

 

A monadic predicate H is ≥-positive if and only if for all p and q:  

 Hp & q≥p → Hq. 

It is ≥-negative if and only if for all p and q:  

 Hp & p≥q → Hq. 

 

Among the positive predicates we find such value predicates as “good”, 

“best”, “not worst”, “very good”, “excellent”, “not very bad”, “acceptable”, 

etc. If one of these predicates holds for p, then it also holds for everything 

that is better than p or equal in value to p. Among the negative predicates 

we find “bad”, “very bad”, “worst”, and “not best”. If one of these 

predicates holds for p, then it also holds for everything that is worse than p 

or equal in value to p. 

 An obvious option for a semantics of “ought” is to construct it as a 

positive predicate:  

 

The positivity thesis: 

Prescriptive predicates satisfy positivity. 

 

One advantage of this approach is that it  allows us to insert several  

prescriptive predicates of different strengths. This is useful since both our 

prescriptions and our prescriptive expressions differ in strength;  “must” is 

more stringent than “ought”, and “ought” is more stringent than “should”. 
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 Unfortunately, however, this simple construction is not at all plausible. 

There are at least two classes of counterexamples that can be used against it. 

 The first class of counterexamples follows the recipe: Let p represent 

something morally required, and q a supererogatory variant of p. 

Concretely, let p denote that you return a borrowed motorcar in time to its 

owner and q that you return it in time to its owner after first having washed 

it and filled the petrol tank. It is quite plausible to value q higher than p but 

nevertheless maintain that p  but not q is morally required.   

 In the other class of counterexamples, the recipe is as follows: Let p 

represent something morally required, and q a variant of p that is specified 

in some morally irrelevant way. Concretely, let p denote that I visit my sick 

aunt, and q that I do this, entering her flat with my left foot first. Then p  

and q have equal value, but nevertheless p but not q has obligatory status, 

contrary to the positivity thesis. 

 Fortunately, there is an alternative to the positivity thesis. To 

introduce it we need the following definition: 

 

A (monadic) predicate H is ≥-contranegative  if and only if for all p 

and q:  

 Hp & (¬p)≥(¬q) → Hq. 

 

My proposal is to base the semantics of deontic logic on the semantic 

principle that prescriptive predicates are contranegative. Hence, if you 

ought to work hard, and it is worse to be drunk than not to work hard, then 

you ought not to be drunk: 

 

The contranegativity thesis:9 

Prescriptive predicates satisfy contranegativity. 

                                                 
9 Hansson 1991. 

7 (29) 



 

 

This principle shares with the positivity thesis the advantage of allowing for 

several prescriptive predicates with different strengths. Neither of the two 

types of counterexamples that were so easily constructed for the positivity 

thesis can be transferred to contranegative predicates. Furthermore, the 

contranegativity thesis yields plausible results for the corresponding 

permissive and prohibitive predicates, defined in the standard way: 

 

OBSERVATION 1: Let O, P, and F be predicates with a common 

domain that is closed under negation, and such that for all p, Op if 

and only if ¬P¬p, and Op if and only if F¬p. Let ≥ be a relation over 

this domain. Then the following three conditions are equivalent: 

(1) O satisfies ≥-contranegativity, 

(2) P satisfies ≥-positivity, and 

(3) F satisfies ≥-negativity. 

 

PROOF: Left to the reader. 

 

Hence, the contranegativity thesis supports the idea that what is better than 

something permitted is itself permitted, and that what is worse than 

something forbidden is itself forbidden. The contranegativity thesis cannot 

be proved, but it can be corroborated by examples and by the lack of 

counterexamples. I propose that we accept it on a preliminary basis, or at 

least as a hypothesis to be tested. The ultimate criterion for its acceptability 

should of course be whether or not a plausible deontic logic can be based on 

it. In particular, can the well-known counter-intuitive results in SDL be 

avoided in a deontic logic that satisfies contranegativity? In order to answer 

this question, we need to investigate the logical properties of contranegative 

predicates.  
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3. General results for contranegative predicates 
It turns out that important properties of contranegative predicates 

correspond closely to properties of the preference relation on which they are 

based. The following theorem summarizes some major results. 

 

THEOREM 1: A transitive and complete relation ≥ satisfies  

(a) (p≥(p∨q)) ∨ (q≥(p∨q)) 

(b) ((p∨q)≥p) ∨ ((p∨q)≥q) 

(c) (p≥(p&q)) ∨ (p≥(p&¬q)) 

(d) If k q→p, then p≥q. 

(e) (p≥(p&q)) ∨ (q≥(p&q)) 

(f) (p≥q) ∨ ((¬p&q)≥q) 

(g) p≥(p&¬p) 

if and only if every ≥-contranegative predicate O satisfies 

(a) Op & Oq → O(p&q) (agglomeration) 

(b) O(p&q) → Op ∨ Oq (disjunctive division) 

(c) P(p&q) & P(p&¬q) → Pp (permissive cancellation10) 

(d) If k p→q, then Op→Oq. (necessitation) 

(e) Op & Oq → O(p∨q) (disjunctive closure) 

(f) Op & O(p→q) → Oq (deontic detachment) 

(g) Op→O(p∨¬p) 

 

PROOF: See Appendix 1. 

 

The deontic properties listed in (a), (b), and (c) are more plausible than most 

other deontic postulates, and they are also closely related. To see their 
                                                 
10  Obviously, for the corresponding permissive predicate P. 
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relatedness, first note that permissive cancellation follows from disjunctive 

division.11 

 

OBSERVATION 2: If a prescriptive predicate O satisfies disjunctive 

division, (O(p&q) → Op ∨ Oq), then the corresponding permissive 

predicate P satisfies permissive cancellation (P(p&q) & P(p&¬q) → 

Pp). 

 

PROOF: Substitute ¬(p&q) for p and ¬(p&¬q) for q: 

O(¬(p&q)&¬ (p&¬q)) → O¬(p&q) ∨ O¬(p&¬q) 

¬O¬(p&q) & ¬O¬(p&¬q) → ¬O(¬(p&q)&¬(p&¬q)) 

P(p&q) & P(p&¬q) → P((p&q)∨ (p&¬q)) 

P(p&q) & P(p&¬q) → Pp 

 

The following property of a preference relation: 

 

 p≥q → p≥(p∨q) & (p∨q)≥q (disjunctive interpolation) 

 

is quite plausible. It says that p∨q is intermediate in value between p and q. 

The following observation provides us with two alternative formulations of 

this property: 

 

OBSERVATION 3: Let ≥ be a transitive and complete relation. 

Then it satisfies disjunctive interpolation: 

(1) iff it satisfies (p≥(p∨q)≥q) ∨  (q≥(p∨q)≥p), and  

                                                 
11  It is also worth noting that if ≥ satisifies (p∨q≥p) ∨ (p∨q≥q), then it 

satisfies (p≥(p&q)) ∨ (p≥(p&¬q)). This can be shown by substituting 
p&q for p and p&¬q for q. 
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(2) iff it satisfies both (p≥(p∨q)) ∨ (q≥(p∨q)) and ((p∨q)≥p) ∨ 

((p∨q)≥q) 

 

PROOF: Left to the reader. 

 

The two properties of ≥ referred to in part (2) of Observation 3 coincide 

with the two properties used in parts (a)  and (b) of Theorem 1. We 

therefore obtain the following corollary: 

 

COROLLARY TO THEOREM 1, PARTS (a) AND (b): A transitive 

and complete relation ≥ satisfies 

(h) p≥q → p≥(p∨q) & (p∨q)≥q (disjunctive interpolation) 

if and only if every ≥-contranegative predicate O satisfies 

(h) both Op & Oq → O(p&q) (agglomeration) and O(p&q) → Op ∨ 

Oq (disjunctive division) 

 

PROOF: From Theorem 1 and Observation 3. 

 

I have already argued that necessitation, the deontic postulate referred to in 

part (d) of Theorem 1,  is an implausible property. Disjunctive closure, the 

property referred to in part (e), is also quite implausible. To see this, let p 

denote that I give the oldest of my two children enough to eat, and q that I 

give my youngest child enough to eat. Then I am subject to the obligations 

representable as Op and Oq, but it would be strange to claim that O(p∨q) 

represents one of the obligations that I have. (Since p∨q has to be satisfied 

in order for my obligations to have been fulfilled, it has the same status as 

the disjunctive statement in Ross’s paradox.) 
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 Counterexamples are also available against deontic detachment, the 

property referred to in part (e).12 Consider the following equivalent 

formulation of deontic detachment: 

 

 O(p∨q) & O¬p → Oq. 

 

Suppose that you are for some reason morally required to come to a 

conference. You are also required not to come unannounced. Let p denote 

that you stay away from the conference and q that you give notice that you 

will come. Then O(p∨q) and O¬p both hold, but since you should not notify 

unless you come, Oq does not hold. 

 The property  Op→O(p∨¬p), that is referred to in part (g) of 

Theorem 1, is a weakened form of one of the postulates of SDL, namely  

O(p∨¬p). The weakened form is used here for technical reasons.13 The 

postulate is implausible both in its original form and in this weakened form. 

In particular, consider the equivalent version Oq→O(p∨¬p) of the 

weakened form, and counterexamples such as “If you are morally required 

to pay your debts then you are morally required to either commit or not 

commit mass murder”.14  

The consistency axiom of SDL, Op→¬O¬p, is not suitable for being 

treated in the same way as the deontic postulates listed in Theorem 1. The 

reason for this is that there is no plausible way to construct a preference 

relation ≥ such that all ≥-contranegative predicates satisfy the consistency 

postulate. This is shown in the following observation: 
                                                 
12  McLaughlin 1955. Hansson 1988. 
13  There is no non-trivial preference relation ≥ such that O(p∨¬p) holds 

for all ≥-contranegative predicates. The reason for this is that the empty 
predicate H, such that ¬Hr holds for all arguments r in its domain, 
vacuously satisfies contranegativity with respect to any preference 
relation with an appropriate domain. 

14  Cf. Jackson 1985 p. 191 and Lenk 1978 p. 31.  
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OBSERVATION 4: Let ≥ be a complete and transitive relation, and 

let there be an element p of its domain such that either p≥(¬p) or 

(¬p)≥p. Then there is some ≥-contranegative predicate O that does 

not satisfy the consistency postulate (Op→¬O¬p). 

 

PROOF: If p≥¬p, then let O be such that for all q, Oq if and only if p≥¬q. If 

(¬p)≥p, then let O be such that for all q, Oq if and only if ¬p≥¬q. 

 

4. Reintroducing holistic semantics 
In order to obtain a more credible semantic basis for our deontic logic, it 

will be useful to try to reintroduce holistic alternatives, and use a preference 

relation (denoted ≥) on them to derive the preference relation on actions 

that we use as the direct base of the deontic logic. See Diagram 5, and note 

that no intermediate selection among the holistic alternatives (as in 

Diagrams 2–3) is used. The idea behind this construction is of course that 

the normative appraisal of actions should cohere with some reasonable 

appraisal of the holistic alternatives in which these actions may appear. 

 I will focus on extremal preference relations. In the present context, 

this means that the value of an action is completely determined by the 

values of the best and the worst holistic alternatives that include this action. 

More precisely, for each action p, let  max(p) be the ≥-best alternative in 

which p is included (or one of them, if there are several of them). Similarly, 

let  min(p) be the ≥-worst alternative in which p is included. We can then 

define the following extremal preferences: 

 

 

Maximin preferences: 
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p≥iq iff min(p)≥min(q) 

 

Maximax preferences: 

p≥xq iff max(p)≥max(q) 

 

Interval maximin preferences:   

p≥ixq iff either min(p)>min(q) or both min(p)≡min(q) and 

max(p)≥max(q) 

 

Interval maximax preferences:   

p≥xiq iff either max(p)>max(q) or both max(p)≡max(q) and 

min(p)≥min(q) 

 

Doubly maximizing preferences 

p≥‡q  iff max(p)≥max(q) and min(p)≥min(q)  

 

 

Two of these preference relations, namely maximin and maximax 

preferences, are well-known. They can be said to represent extremely 

cautious respectively extremely risk-taking decision-making. It has not 

always been appreciated how extreme the maximin rule is. It requires, for 

instance, that one be indifferent between owning a valueless piece of paper 

and owning a ticket in a two-ticket lottery in which the winner will receive 

¤1000000 and the loser will receive nothing. The interval maximin rule is a 

modification of the maximin rule that avoids such extreme results. This rule 

maximizes both worst and best alternatives, but gives maximization of the 

former absolute priority over maximization of the latter. Similarly, interval 

maximax preference relations maximize both worst and best alternatives, 
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but give maximization of the latter absolute priority over maximization of 

the former. The doubly maximizing preference relation requires 

maximization of both maximum and minimum, at the price of not being a 

complete relation. 

 Although the interval maximin and interval maximax preference 

relations mitigate the rather strict principles of maximin and maximax 

preference relations, respectively, they do so only to a limited degree. It is 

therefore also of interest to study a wider category of extremal preferences 

that allows for all assignments of relative priorities to maximization of the 

best and of the worst alternatives. This can be done as follows: 

 

(1) v is a function that assigns a real number to each (holistic) 

alternative. 

(2) vMAX(p) is the highest value of of any alternative that includes p, 

and vMIN(p) the lowest value of any alternative that includes p.  

(3) δ is a number such that 0<δ<1. For all p:  

vδ(p) = δ⋅vMAX(p) + (1–δ)⋅vMIN(p)  

(4) For all p, q : 

p≥Eq iff vδ(p)≥vδ(q). (max-min weighted preferences)   

 

5. Representation theorems 
Elsewhere I have reported a series of representation theorems for 

contranegative deontic logics that are based on the types of preference 

relations introduced in the previous section.15 These theorems make use of a 

series of background assumptions, primarily that the action-representing 

sentences can be divided into a finite number of equivalence classes with 

respect to logical equivalence, and also some conditions relating to the 

                                                 
15  Hansson 2001, pp. 161–164. 
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limiting cases of tautologous and contradictory action-representing 

sentences. Leaving aside these details, the representation theorems are as 

follows:  

 

1. Maximin preferences:  

O is ≥i -contranegative iff it satisfies 

(i) O(p&q) → Op ∨ Oq 

(ii) If Oq and k p→q, then Op. (reverse necessitation), and  

(iii) O⊥ 

 

2. Maximax preferences:  

O is ≥x-contranegative iff it satisfies  

(i) Op & Oq → O(p&q) (agglomeration) 

(ii) If Op and k p→q, then Oq. (necessitation)  

(iii) ¬O⊥ (consistency) 

(iv) There is some p such that Op. (non-emptiness) 

 

3. Interval maximin preferences: 

O is ≥ix -contranegative iff it satisfies  

(i) Op & Oq → O(p&q) (agglomeration) 

(ii) O(p&q) → Op ∨ Oq 

(iii) If k r→s, k s→p, and k p→q, and ¬Or, Os and ¬Op, then 

¬Oq. 

(iv)  O⊥ 

 

4. Interval maximax preferences:  

O is ≥xi-contranegative iff it satisfies  

(i) Op & Oq → O(p&q) (agglomeration) 
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(ii) O(p&q) → Op ∨ Oq  

(iii) If k r→s, k s→p, and k p→q, and Or, ¬Os and Op, then Oq. 

(iv)  ¬O⊥ (consistency) 

(v)  There is some p such that Op. (non-emptiness) 

 

5. Doubly maximizing preferences:  

O is ≥‡-contranegative iff it satisfies: 

(i) Op & Oq → O(p&q) 

(ii) If O(p&q) → Op ∨ Oq 

(iii)  If k p→q, k q→r, Op and Or, then Oq. 

(iv) ¬O⊥ 

(v)  There is some p such that Op. 

 

6. Max-min weighted preferences  

O is ≥E-contranegative (with 0<δ<1) iff it satisifes: 

(i) Op & Oq → O(p&q) (agglomeration) 

(ii) O(p&q) → Op ∨ Oq 

(iii) If F+p, F+q, F(p∨r), ¬F(p∨s), and ¬F(q∨r), then ¬F(q∨s). 

(iv) If P+p, P+q, P(p∨r), ¬P(p∨s), and ¬P(q∨r), then ¬P(q∨s). 

where:  

F+p iff F(p&t) for all t such that p&t is consistent. 

P+p iff P(p&t) for all t such that p&t is consistent 

 

The proofs can be found in Hansson (2001) except the proof of part 5, that 

is given in Appendix 2. 

 The ≥x-, ≥i-, and ≥ix-based operators all satisfy clearly implausible 

postulates (necessitation, reverse necessitation, and O⊥). The other three 
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types of deontic operators come out better, but unfortunately each of these 

characterizations makes use of postulates that are unsatisfactorily complex 

and difficult to grasp. Therefore, although some progress has been made in 

the construction of a plausible semantics for a deontic logic based on 

contranegativity, it still remains to develop a plausible semantic structure 

that has the simplicity of SDL but not its implausible consequences. 

 

Appendix 1 
 

PROOF OF THEOREM 1: Part a, from LHS to RHS: Let Op & Oq. We can 

apply the substitution-instance ((¬p)≥(¬p∨¬q)) ∨ ((¬q)≥¬p∨¬q)) of LHS. If 

((¬p)≥(¬p∨¬q)), then due to contranegativity Op yields O¬(¬p∨¬q), or 

equivalently O(p&q). If ((¬q)≥(¬p∨¬q)), then we can use Oq to obtain the 

same result. 

 Part a, from RHS to LHS: Let LHS be violated. We have to show 

that RHS does not hold either. Since LHS is violated there are p and q such 

that p∨q > p  and p∨q > q. Since ≥ is complete, either p≥q or q≥p. Without 

loss of generality we may assume that p≥q. Let O be the predicate such that 

for all r, Or holds if and only if p≥¬r. Clearly, O is contranegative. We have 

p≥p, p≥q , and p∨q > p. Hence, O(¬p), O(¬q) and ¬O(¬p&¬q), so that RHS 

does not hold. 

 Part b, from LHS to RHS: Let O(p&q), i.e. O¬(¬p∨¬q). According 

to LHS, either ¬p∨¬q≥¬p or ¬p∨¬q≥¬q. In the first case, Op follows 

from contranegativity, and in the second case Oq follows in the same way. 

 Part b, from RHS to LHS: Let LHS be violated. Then there are p and 

q such that p>(p∨q) and q>(p∨q). Let O be such that for all r, Or holds if 

and only if p∨q≥¬r. Then O is contranegative, and O(¬p&¬q), ¬O¬p, and 

¬O¬q. 
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Part c, from LHS to RHS: If p≥(p&q), then we can use P(p&q) and 

the positivity of P to obtain Pp. If p≥(p&¬q), then we can use P(p&¬q) and 

the positivity of P to obtain Pp.  

 Part c, from RHS to LHS: Let LHS be violated. Then there are p and 

q such that p&q>p and p&¬q>p. Due to completeness, either 

(p&q)≥(p&¬q) or (p&¬q)≥(p&q). If (p&q)≥(p&¬q), let P be such that for 

all r, Pr iff r≥(p&¬q). Then P is ≥-positive, and it follows directly that 

P(p&q) and P(p&¬q). It follows from p&¬q>p  that ¬Pp. The case when  

(p&¬q)≥(p&q) is treated analogously. 

Part d, from LHS to RHS: Let LHS hold. Let k p→q and Op. Then, 

equivalently: k ¬q→¬p . It follows from LHS that ¬p≥¬q and from the 

contranegativity of O that Oq. 

 Part d, from RHS to LHS: Let LHS be violated. Then there are there 

are p and q such that k q→p and q>p. 

 Let O be the predicate such that for all r , Or holds if and only if 

p≥¬r. Then O is ≥-contranegative. It follows from p≥p and q>p  that O(¬p) 

and ¬O(¬q). Since k ¬p→¬q, RHS is violated. 

Part e, from LHS to RHS: Let Op & Oq. From LHS we obtain 

¬p≥¬p&¬q or ¬q≥¬p&¬q, equivalently: ¬p≥¬(p∨q) or ¬q≥¬(p∨q). The rest 

follows by ≥-contranegativity.  

 Part e, from RHS to LHS: Let LHS be violated. Then there are p and 

q such that p&q>p  and p&q>q. Due to completeness, either p≥q or q≥p. If 

p≥q, let O be the predicate such that for all r, Or if and only if p≥¬r. Then O 

is contranegative, and O¬p, O¬q, and ¬O¬(p&q), contrary to RHS. The 

other case is proved analogously. 

Part f, from LHS to RHS: Let Op & O(p→q). It follows from LHS 

that ((¬p)≥(¬q)) ∨ ((p&¬q)≥(¬q)). If ((¬p)≥(¬q)), then Oq follows from Op 

due to contranegativity. If ((p&¬q)≥(¬q)) or equivalently, ¬(p→q)≥(¬q), 

then Oq follows in the same way from O(p→q). 
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 Part f, fromRHS to LHS: We are going to assume that LHS does not 

hold, and prove that then neither does RHS. Since LHS does not hold, there 

are p and q such that q>p and q>(¬p&q). Due to completeness, either 

p≥(¬p&q) or (¬p&q)≥p. 

 Case 1, p≥(¬p&q): Let O be the such that for all r, Or holds if and 

only if p≥¬r. Then O is ≥-contranegative. It therefore follows from p≥p that 

O¬p, from p≥(¬p&q) that O(q→p), and from q>p  that ¬O¬q.  

 Case 2, (¬p&q)≥p: Let O be such that for all r, Or holds if and only 

if (¬p&q)≥¬r. Then O is contranegative. It follows from (¬p&q)≥(¬p&q) 

that O(q→p), from (¬p&q)≥p that O¬p, and from q>(¬p&q) that  ¬O¬q.  

Hence, in both cases we have O¬p, O(¬p→¬q), and ¬O¬q, so that 

RHS does not hold. 

Part g, from LHS to RHS: Let Op. It follows from this and the 

substitution-instance ¬p≥¬(p∨¬p) of LHS that O(p∨¬p). 

 Part g, from RHS to LHS: We are going to assume that LHS is 

violated, and show that then RHS is also violated. Since LHS is violated, 

there is some p such that ¬(p∨¬p)> p. Let O be a predicate such that for all 

r, Or iff p≥¬r. Then O is contranegative. It follows that O¬p that ¬O(p∨¬p). 

 

Appendix 2 
The following is a proof of the result on doubly maximizing preferences 

referred to in section 5. 

 

DEFINITION: Let ≥ be a relation and O a monadic predicate that 

both take the elements of a language L as arguments. Then O is a 

sentence-limited ≥-contranegative predicate if and only if there is 

some sentence f ∈ L such that for all p ∈ L: Op ↔ f≥¬p. 
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LEMMA: Let ≥ be a transitive and complete relation over a set L of 

sentences that has a finite number of equivalence classes with 

respect to logical equivalence. Then O is a non-empty ≥-

contranegative predicate on L if and only if it is a sentence-limited 

≥-contranegative predicate on L. 

 

PROOF: For the non-trivial direction, let O be ≥-contranegative and non-

empty. Since ≥ is a finite ordering, there is some r such that Or and that 

¬Op for all p such that ¬p>¬r. We need to show that for all q, Oq iff 

¬r≥¬q. It follows from the construction of r that if ¬q>¬r, then ¬Oq. It 

follows from Or and the ≥-contranegativity of O that if ¬r≥¬q then Oq.  

 

THEOREM 2: The following are equivalent conditions on a 

predicate O: 

(1) O is a sentence-limited contranegative predicate with respect to a 

doubly maximizing preference relation, and it holds for the sentence 

limit f that max(f) is non-maximal. 

(2) O satisfies the postulates 

(i) Op & Oq → O(p&q) 

(ii) If O(p&q) → Op ∨ Oq 

(iii)  If k p→q, k q→r, Op and Or, then Oq 

(iv) ¬O⊥ 

(v)  There is some p such that Op. 

 

PROOF: From 1 to 2: For (i), let Op and Oq. Then max(f)≥ max(¬p) and 

max(f)≥ max(¬q), hence max(f)≥ max(¬p∨¬q). It follows from min(f)≥ 

min(¬p) that min(f)≥ min(¬p∨¬q). Thus O(p&q). 
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 For (ii), let O(p&q). Then max(f)≥ max(¬p∨¬q), hence both max(f)≥ 

max(¬p) and max(f)≥ max(¬q). Furthermore, since min(f)≥ min(¬p∨¬q), 

either min(f)≥ min(¬p) or min(f)≥ min(¬q). Hence, either Op or Oq.  

 For (iii), let k p→q, k q→r, Op and Or. It follows from k ¬q→¬p 

that max(¬p)≥ max(¬q) and from Op that max(f)≥ max(¬p), hence max(f)≥ 

max(¬q). Similarly, it follows from k ¬r→¬q that min(¬r)≥ min(¬q) and 

from Or that min(f)≥ min(¬r), hence min(f)≥ min(¬q). We may conclude that 

Oq. 

 For (iv), suppose to the contrary that O⊥, i.e. f≥‡¬⊥. Then max(f) is 

maximal, contrary to the condition. 

 For (v), it follows from f≥‡f that O¬f. 

From 2 to 1: Let Z = {p | Op}, A = Cn(Z) and B = A\Z. We need the 

following two properties of these sets: (A) A is consistent, and (B) B is 

logically closed. 

 For (A), suppose to the contrary that A is inconsistent. Then due to 

compactness there is a finite and inconsistent subset of Z, but due to (i) and 

(iv) this is impossible. 

 For (B), it is sufficient to show (Bα) that if k p→q and p ∈ B, then q 

∈ B, and (Bβ) if p, q ∈ B, then p&q ∈ B. 

 (Bα): Let p→q and p ∈ B. It follows from p ∈ B ⊆ A, due to (i) and 

compactness, that there is some s such that Os and k s→p. Suppose that Oq. 

Then it follows from (iii) that Op, contrary to p ∈ B. Hence ¬Oq. It follows 

that q ∈ B. 

 (Bβ): Let p, q ∈ B. Clearly p&q ∈ A. Suppose that p&q ∉ B. Then 

O(p&q), hence due to (ii) either Op or Oq, contrary to p, q ∈ B. 

  It follows from (v) that Z ≠ Ø, hence B ≠ A, so that B ⊂ A. Let a = 

&A and b = &B. Let B´ = Cn({b&¬a}). Then A ∩ B = A ∩ B´, hence A\B = 

A\B´. 
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 Let A be the set of maximal consistent subsets of the language. We 

are going to construct a preference relation ≥ on A with the strict part > 

(“better than”) and the symmetric part ≡ (“equal in value to”). Let A1 = {X 

∈ A | A ⊆ X} and A3 = {X ∈ A | B´ ⊆ X}. (Note that they have been 

constructed to be mutually exclusive.) Let A2 = A\(A1 ∪ A3). If A2 is empty, 

then let f be a sentence such that max(f) and min(f) are both in A3. Let A1 and 

A3 be equivalence classes with respect to ≡, and let A1>A3. If A2 is non-

empty, then let f be such that max(f) ∈ A2 and min(f) ∈ A3. Let A1, A2, and A3 

be equivalence classes with respect to ≡, and let A1 > A2 > A3. Then in both 

cases: 

Op ↔ p ∈ Z 

↔ p ∈ A\B 

↔ p ∈ A\B´ 

↔ p ∈ ∩A1 and p ∉ ∩A3 

↔ ¬p ∉ ∪A1 and ¬p ∈ ∪A3 

↔ max(f)≥ max(¬p) and min(f)≥ min(¬p) 

↔ f≥‡¬p. 
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Figure 1. Standard deontic logic. 
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Figure 2. Standard deontic logic, based on a preference relation over 
worlds. 
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Figure 3. Standard deontic logic, modified to account for conditional 
obligations. 
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Figure 4.  Deontic logic based directly on a preference relation over 
actions. 
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F
actions that is in its turn based on a preference relation over holistic 
alternatives. 
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