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1 Mathematics
1.1 a) A step has Laplace transform A

s .

b) A ramp has Laplace transform A
s2 .

c) 1
s+2

d) s
s2+25

e) sU(s)− u(0)

f) sU(s). (u(0) = 0 is a common assumption in the course.)

g) s2U(s)− su(0)− u̇(0)

h) s2U(s). (u(0) = u̇(0) = 0 is a common assumption in the course.)

i) A time delayed signal has Laplace transform, e−sTU(s).

1.2 a) Insert ẏ(t) = 0 och u(t) = 5 directly into the differential equation ⇒
y(t) = 5/2. It is also possible to solve the differential equation and let
t→∞, or to use b) and the final value theorem.

b) Use Laplace transform on the differential equation Y (s) = 1
s+2U(s). The

denominator coincides with the characteristic polynomial of the differen-
tial equation. Note that we also have assumed y(0) = 0.

1.3 The general solution is given by

y(t) = C1e
−2t + (C2 + C3t)e−t −

3
100(cos(2t) + 7 sin(2t))

1.4 a)
y(t) = 1

2 − e
−t + 1

2e
−2t, t ≥ 0

b) The Laplace transform of the input

u(t) = 1 + sin t

yields
U(s) = 1

s
+ 1
s2 + 1

The differential equation

ẏ(t) + y(t) = u(t)

may be represented by the transfer function

G(s) = Y (s)
U(s) = 1

s+ 1

Hence, the Laplace transform of the system output is given by

Y (s) = 1
s
· 1
s+ 1︸ ︷︷ ︸
Y1(s)

+ 1
s+ 1 ·

1
s2 + 1︸ ︷︷ ︸

Y2(s)

Rewriting the first term using partial fractions leads to

Y1(s) = 1
s
· 1
s+ 1 = 1

s
− 1
s+ 1

with inverse transform
y1(t) = 1− e−t

Rewriting the second term using partial fractions leads to

Y2(s) = 1
s+ 1 ·

1
s2 + 1 = 0.5

s+ 1 −
0.5s
s2 + 1 + 0.5

s2 + 1
with inverse transform

y2(t) = 0.5e−t − 0.5 cos t+ 0.5 sin t

Hence, the system output is

y(t) = 1− 0.5e−t + 0.5 sin t− 0.5 cos t

1.5 a) The abolute value is |1 + i| =
√

2, and the argument is arctan 1
1 = π

4 =
45◦. Hence, the polar form is

√
2eiπ4
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b) The absolute value is

|1 + i|
5
∣∣∣1 +

√
(3)i
∣∣∣ =

√
2

5 · 2 ≈ 0.14

The argument is

arg
(

1 + i
5i(1 +

√
3i)

)
= arg (1 + i)− arg 5i− arg (1 +

√
3i)

= arctan 1− 90◦ − arctan
√

3 = 45◦ − 90◦ − 60◦

= −105◦

Hence, the polar form is √
2

10 e
−i 105

180π

c) 2eiπ3 = 2 cos π3 + 2i sin π
3 = 1 +

√
3i

d) 5e−iπ = 5 cos(−π) + 5i sin(−π) = −5

1.6 The amplification in deciBel is computed as 10 log |F |2 = 20 log |F |, where F
is the absolute value of the amplification. The amplification F = 100 hence
corresponds to 20 log 100 = 40 dB20.

deciBel (dB20) Definition Amplification F
20 20 logF = 20 ⇒ F = 101 = 10
−3 20 logF = −3 ⇒ F = 10−3/20 ≈ 0.708 ≈ 1√

2
0 20 logF = 0 ⇒ F = 100 = 1
10 20 logF = 10 ⇒ F = 100.5 =

√
10 ≈ 3.16

−10 20 logF = −10 ⇒ F = 10−0.5 = 1√
10 ≈ 0.316

1.7 Multiplication of the two matrices gives the unit matrix.

1.8 The eigenvalues (λ) of the matrix A are given by the equation det(λI−A) = 0,

and the corresponding eigenvectors (v) are given by the equation (λI−A)v = 0.

λ1 = 3 v1 =

 1
1
−2


λ2 = −1 v2 =

1
0
3


λ3 = 4 v3 =

−1
0
2



1.9

T =

1 1 −1
1 −1 0
1 0 1



1.10 A basis for the null space is for example
0
1
−1
1


A basis for the range space is

2
0
3
1




1
1
1
0




2
1
3
1


The rank of the matrix is hence 3.

1.11 a) Writing the function with partial fractions yields

F (s) = 1
s
− 1
s+ 1
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The inverse transform is then computed by use of a Laplace transform
table:

f(t) = 1− e−t

This means that f(t)→ 1 as t→∞. The same result can also be obtained
by use of the final value theorem, that is, by computing lims→0 sF (s).

b) Writing the function with partial fractions yields

F (s) = − 0.5
s+ 1 + 0.5

s− 1
The inverse transform is then computed by use of a Laplace transform
table:

f(t) = −0.5e−t + 0.5et

This means that f(t) will grow without bound as t→∞. Here, the final
value theorem cannot be used since f(t) lacks a final value.

c) The inverse transform can be computed by use of the relation

L−1{G(s+ a)} = e−at · g(t)

Here, G(s) = 1
s2 and a = 1. The inverse transform of G is g(t) = t, so

f(t) = L−1{ 1
(s+ 1)2 } = e−t · t

which tends to 0 as t → ∞. This result can also be obtained by use of
the final value theorem.

1.12 The relation between inflow and water level is given by the transfer function

Y (s) = 1
s+ 1Z(s)

and the relation between control signal and inflow may be written as

Z(s) = 1
s2 + s+ 1U(s)

This means that the Laplace transforms of the control signal and water level
are related by

Y (s) = 1
(s+ 1)

1
(s2 + s+ 1)U(s) = 1

s3 + 2s2 + 2s+ 1U(s)

which corresponds to the differential equation

y(3) + 2ÿ + 2ẏ + y = u
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2 Dynamic Systems
2.1 a) We start from the equations

Jθ̈ = −fθ̇ +M (2.1)
M = kai (2.2)
v = kvθ̇ (2.3)

Voltage equilibrium gives

u−Rai− La
di
dt − v = 0 (2.4)

where La = 0. Equation (2.2) in (2.1) gives

Jθ̈ + fθ̇ = kai (2.5)

From (2.4) and (2.3) we get

i = (u− kvθ̇)/Ra

which in (2.5) gives

Jθ̈ + fθ̇ = ka(u− kvθ̇)/Ra

that is
θ̈ + Raf + kakv

JRa
θ̇ = ka

JRa
u

Let
1
τ

= Raf + kakv

JRa
k0 = ka

JRa

which gives
θ̈ + 1

τ
· θ̇ = k0u (2.6)

b) Laplace transformation of (2.6) gives

(s2 + 1
τ
· s)θ(s) = k0U(s)

and this gives the transfer function

G(s) = θ(s)
U(s) = k0

s(s+ 1/τ)

c) Suppose that u is a unit step, that is,

u =
{

0, t < 0
1 t ≥ 0

that is
U(s) = 1

s

This gives

θ(s) = G(s)U(s) = k0

s(s+ 1/τ) ·
1
s

=
(
k0τ

s
− k0τ

s+ 1/τ

)
· 1
s

Inverse Laplace transformation gives

θ(t) = k0τt− k0τ
2(1− e−t/τ )

that is, θ will grow unlimited when t increases.

2.2 (1) Asymptotically stable system. Monotonic step response, that is, real
poles: K = 0.1.

(2) Very oscillative system. Poles close to the imaginary axis: K = 2.5.

(3) Unstable system. Poles in the right half plane: K = 3.

(4) Asymptotically stable system. Oscillative step response, that is, complex
poles in the left half plane: K = 0.5.

2.3 The inverse Laplace transform gives the step response

d1(t) = L−1
{

β

1 + sT
· 1
s

}
= β(1− e−t/T )

For the final value, we have

d1(t)→ β, t→∞
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The figure gives β = 10. At the time t = T , the system time constant, the
step response has reached 63% of the final value, that is,

d1(T ) = 0.63 · 10

The figure gives T = 3, which gives the total transfer function

G(s) = 10
1 + 3s

If we measure the signal d2(t) we introduce an additional time delay of LV time
units. The total transfer function then becomes

G(s) = 10e− L
V s

1 + 3s

Answer:

G(s) = 10e− L
V s

1 + 3s

2.4 Use the system description

G(s) = ω2
0

s2 + 2ζω0s+ ω2
0

In the first figure ω0 = 1 and ζ = 0.5.

a) For the system
G(s) = 1

s2 + as+ 1
we have ω0 = 1 and ζ = 0.5a. The step response is more oscillative than
in the case ζ = 0.5, that is, ζ < 0.5. This gives a < 1.

b) For the system

G(s) = b2

s2 + bs+ b2

we have ω0 = b and ζ = 0.5. The step response is in this case pure time
scaling compared to the case ω0 = 1. The figure shows that the step
response is twice as fast as in the case ω0 = 1. This gives b = ω0 = 2.

2.5 The pairs of plots that belong to the same system will be written in the form
pole-zero-letter–step-response-letter.
Pole-zero diagram B has a single pole in the origin which gives a ramp as
step response, that is, B–F. Pole-zero diagram D also has a pole in the origin
which gives an infinitely growing step response, D–C. Pole-zero diagram F
has complex poles which gives an oscillative step response, F–D. Pole-zero
diagram A has a zero in the origin which gives final value zero, A–B. Pole-
zero diagram C cannot be step response E, since two real poles and no zeros
give no overshoot. Hence C–A, and step response E is the only alternative left
for pole-zero diagram E.
Answer: A–B, B–F, C–A, D–C, E–E, F–D.

2.6 a) Enter the systems. >> s = tf( ’s’ );
>> GA = 1 / ( s^2 + 2*s + 1 );
>> GB = 1 / ( s^2 + 0.4*s + 1 );
>> GC = 1 / ( s^2 + 5*s + 1 );
>> GD = 1 / ( s^2 + s + 1 );
>> GE = 4 / ( s^2 + 2*s + 4 );

Compute and plot the step
response.

>> step( GA ); grid

Time (sec.)

A
m

pl
itu

de

Step Response
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0.2
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0.4
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0.6

0.7

0.8

0.9

1
 

The systems GB(s), GC(s), GD(s), and GE(s) can be simulated in a sim-
ilar way. The values of Tr, Ts, and M for the different step responses can
be found by a right click in the figure and selecting “Characteristics” and
then selecting the desired property. Use the “Properties. . . ” menu item
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(of the right click menu) to change the interval for the settling time. (The
default interval is 2%, while we use 5% in the course.)

b) Compute the poles. >> pole( GA )
ans =

-1
-1

The other systems are handled in the same way.

c) The results from a) and b) can be summarized in the following table.

System Tr Ts M poles
GA 3.37 4.74 0% −1,−1
GB 1.21 13.7 52.7% −0.2± i0.98
GC 10.5 14.6 0% −4.8,−0.2
GD 1.65 5.29 16.3% −0.5± i0.87
GE 0.824 2.64 16.3% −1± i1.73

Using this table we can draw the following conclusions. (i): The speed of
the step response (mainly) depends on the distance between the poles and
the origin. Poles further away from the origin give a faster step response
and shorter rise time. (ii): The damping of the system depends on the
relationship between the imaginary part and the real part of the poles.
Poles with large imaginary part relative to the real part give a poorly
damped (oscillatory) step response.
Remark: We see that even though the distance to the origin is nearly the
same in system GA and GB the rise time is almost 3 times faster in system
B. Note that speed is not only rise time, also the settling time should be
considered! Look at the following system

G(s) = ω2
0

s2 + 2ζω0s+ ω2
0

The poles of this system are given by s = ω0(−ζ ± i
√

1− ζ2) =
ω0(− cosφ ± i sinφ) where cosφ = ζ. The parameter ζ is called rela-
tive damping and 0 ≤ ζ ≤ 1. We see that ω0 is the distance from the
origin to the poles and in Figure 2.6a the step responses for different ζ
are shown when ω0 is constant. We see clearly that the rise time is faster
when ζ is small but when ζ is small the settling time is big!

0 2 4 6 8 10 12 14 16 18 20
0
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ω
0
 t

y
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0.7

0.5

0.3

0.1

Figure 2.6a

2.7 Enter the system. Here we
consider the case α = 2, that
is the system has a zero in
−0.5.

>> s = tf( ’s’ );
>> G1 = ( 2*s + 1 ) / ( s^2 + 2*s + 1 );
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Plot the step response. >> step( G1, 10 ); grid

Time (sec.)

A
m

pl
itu

de

Step Response

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4
 

A zero located close to the origin on the negative real axis causes an overshoot
in the step response. A zero on the positive real axis causes the step response
to initially move in the negative direction. This means that in some cases the
zeros of the system can have significant influence in the system properties.
Systems with zeros in the right half plane normally imply extra difficulties for
the design of control systems.

2.8 The Laplace transform of a step is U(s) = 1
s . The step response is hence given

by
y(t) = L−1(G(s)1

s
).

If G(s) is a rational function the inverse Laplace transform can be computed
by first doing a partial fraction expansion and then using a transform table.
When the system is available one can let the input u(t) be a step and measure
y(t).

2.9 a) The steady state value is 1.5.

b) The output signal almost reaches 1.9, which is slightly less than 0.4 over
the final value. The overshoot is hence 0.4

1.5 ≈ 26%.

c) Find the time points where the output is 10% (0.15) and 90% (1.35) of the
steady state value. The rise time is the difference between these values,
here approximately Tr ≈ 1.5 s.

d) Find the earliest time such that the output then lies within ±5% of the
steady state value. Here, the interval is [ 1.425, 1.575 ], and the settling
time is Ts ≈ 7.8.

2.10 G1–C: G1 is poorly damped, which gives an oscillatory behavior.
G2: Can be excluded since it is the only system having static gain 1

2 , and
among the step responses there is always more than one match for each of the
present final values.
G3–B: This case has the shortest rise time, and some overshoot due to the pair
of complex poles. The static gain is 2.
G4–A: The pole in −2 dominates, which gives slower step response than sys-
tems G3 and G5. The static gain is 1.
G5–D: The dominating pole is in −3, which is slower than for G3 but faster
than for G4. The static gain is 2.
G6: Can be excluded due to instability.

2.11 a) The signals can be classified as

� Disturbances signal: Acid process flow (unknown pH and flow)

� Control signal: NaOH solution

� Measured and controlled signal: The pH of the outflow

b) A block diagram where the control strategy is based on feedback could
look like Figure 2.11a

2.12 a) At steady state the inflow is equal to the outflow (constant volume). From
mass balance

ρ∗q∗ = ρ∗1q
∗
1 + ρ∗2q

∗
2
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TankFΣ+
NaOH

−

outflow pHref

Acid flow

Figure 2.11a

Assuming the densities are equal (ρ = ρ1 = ρ2) gives q∗ = q∗1 + q∗2 =
1 + 0.5 = 1.5 m3/min. From component balance for component A

q∗c∗A = q∗1c
∗
A,1 + q∗2c

∗
A,2

which gives c∗A = 2.0 kmol/m3.

b) The amount of mass in the tank is given by ρV (assuming ρ is constant).
The change in mass is given by the mass coming in subtracted by the
mass going out of the tank

d(ρV )
dt = ρ(qin − qout) (2.1)

where qin = q1 + q2 and qout = q. Assuming that the volume is constant
gives d(ρV )

dt which means
q1 + q2 = q (2.2)

The amount of component A contained in the tank is given by V cA. The
change is then given by

d(V cA)
dt = q1cA,1 + q2cA,2 − qcA (2.3)

Constant V and (2.2) gives

V
dcA
dt = q1 (cA,1 − cA) + q2 (cA,2 − cA) (2.4)

The model (2.1), (2.3) is nonlinear since it contains products between
variables. Assuming volumes and flows to be constant gives a linear model.

c) Assume that all the other independent variables (q1, q2, cA,2) are constant.
Take their values from a). Equation (2.4) then gives

V
dcA
dt = q∗1 (cA,1(t)− cA(t)) + q∗2

(
c∗A,2 − cA(t)

)
= −1.5cA(t) + cA,1(t) + 2

The equation can be written
dcA
dt = −1.5cA(t) + 3.2

for t ≥ 0. The corresponding Laplace transform equation is

s(LcA)(s)− (LcA)(0) = −1.5(LcA)(s) + 3.21
s

or
(LcA)(s) = 1

s+ 1.5

(
2 + 3.2

s

)
= 2 1

s+ 1.5 + 3.2 1
s+ 1.5

1
s

which transforms back to

cA(t) = 2e−1.5t + 3.2
1.5
(
1− e−1.5t)

Rearranging yields

3.2
1.5 +

(
2− 3.2

1.5

)
e−1.5t = 2−

(
2− 3.2

1.5

)(
1− e

− t
1

1.5

)
where the sought constants can be identified: k0 = 2.0 kmol/m3, k1 =
0.13 kmol/m3, and τ = 1

1.5 = 0.67 min.

2.13 a) The equilibrium equation is

yi = αxi
1 + (α− 1)xi

(2.1)

Mass balance gives
dMi

dt = Li−1 + Vi+1 − Li − Vi (2.2)

Component balance gives

d(Mixi)
dt = Mi

dxi
dt + xi

dMi

dt = Li−1xi−1 + Vi+1yi+1 − Lixi − Viyi (2.3)

Combining (2.2)–(2.3) gives

Mi
dxi

dt = −xi (Li−1 + Vi+1 − Li − Vi) + Li−1xi−1 + Vi+1yi+1 − Lixi − Viyi

= Li−1 (xi−1 − xi) + Vi+1 (yi+1 − xi) + Vi (xi − yi)
(2.4)
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The dynamic model for Mi(t) and xi(t) is described by (2.1), (2.2), and
(2.4).

b) The stationary point for (2.2) gives L∗i−1 +V ∗i+1−L∗i −V ∗i = 0. Introduce
the difference variables

xi∆ = xi − x∗i xi+1,∆ = xi+1 − x∗i+1 yi∆ = yi − y∗i
yi−1,∆ = yi−1 − y∗i−1 Li+1,∆ = Li+1 − L∗i+1 Vi−1,∆ = Vi−1 − V ∗i−1

Li∆ = Li − L∗i Vi∆ = Vi − V ∗i

The assumption that the change of mass on the plate is zero gives

dMi∆

dt = 0

which means that
Li−1 + Vi+1 − Li − Vi = 0

this will simplify (2.4) to

Mi
dxi
dt = Li−1xi−1 + Vi+1yi+1 − Lixi − Viyi (2.5)

Linearization of (2.5) gives

M∗i
dxi∆

dt = L∗i−1xi−1,∆ + V ∗i+1yi+1,∆ − L∗i xi∆ − V ∗i yi∆

+ x∗i−1Li−1,∆ + y∗i+1Vi+1,∆ − x∗1Li∆ − y∗i Vi∆
(2.6)

Linearization of (2.1) gives

yi∆ = α

(1 + (α− 1)x∗i )
2xi∆ (2.7)

The linearized model is described by (2.6)–(2.7).

2.14 B and C are faster than A and D ⇒ Higher ω0 ⇒ B and C ↔ i,ii, A and D
↔ iii,iv. A and C are more oscillatory than B and D ⇒ Lower ζ ⇒ A and C
↔ ii,iv, B and D ↔ i,iii.
Answer: A – iv, B – i, C – ii och D – iii.

2.15 Från blockdiagramet fås Y (s) = G2(s)[F2(s)Y (s) + G1(s)U(s) + F1(s)U(s)],

vilket ger överföringsfunktionen Y (s)
U(s) = G2(s)(G1(s) + F1(s))

1− F2(s)G2(s) .

2.16 D: En integrator vars stegsvar är en ramp. Ger 1. B: Nollställe i högra
halvplanet vilket ger ett stegsvar som initialt går åt fel håll. Ger 5. A:
Polerna till A och B är samma, vilket ger samma relativa dämpning. Ger 2.
C: Polerna har relativ dämpning ζ = 0.15 vilket är mindre än alla andra. Ger
4. F: Polerna har relativ dämpning ζ = 1 och snabbhet ω0 = 3. Inget annat
system är så snabbt. Ger 3. E: Enda systemet kvar. Ger 6.
Svar: A-2, B-5, C-4, D-1, E-6 and F-3
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3 Feedback Systems
3.1 a) To begin with, the transfer function for the tank system is derived. The

mass balance equation is, assuming that the bottom area of the tank is
1 m2

ḣ(t) = x(t)− v(t)

that is (note that all initial conditions are zero when deriving transfer
functions)

sH(s) = X(s)− V (s)

Hence
H(s) = Gt(s)(X(s)− V (s))

where
Gt(s) = 1

s

The block diagram becomes like in Figure 3.1a.

b) The transfer function for the valve is

Gv(s) = kv

1 + Ts

With the input taken as a unit step signal, that is,

U(s) = 1
s

it follows that
X(s) = kv

1 + Ts
· 1
s

The final value theorem gives

lim
t→∞

x(t) = lim
s→0

sX(s) = kv

The time constant T is the time it takes for the step response to reach
63% of its final value. From the plot it follows that T = 5 and kv = 2,
that is

Gv(s) = 2
1 + 5s

Gv(s)F (s)Σ Σ Gt(s)+
e u x

+
−

−
r y

v

Figure 3.1a

c) By using the controller F (s), the closed loop system shown in Figure 3.1a
is obtained. From the block diagram, the following equations are obtained:

E(s) = Href(s)−H(s)
H(s) = Gt(s)

(
F (s)Gv(s)E(s)− V (s)

)
This leads to

H(s) = Gt(s)
(
Gv(s)F (s) [Href(s)−H(s)]− V (s)

)
⇐⇒

H(s)
(

1 +Gt(s)Gv(s)F (s)
)

= Gt(s)
(
Gv(s)F (s)Href(s)− V (s)

)
⇐⇒

H(s) = Gt(s)Gv(s)F (s)
1 +Gt(s)Gv(s)F (s)︸ ︷︷ ︸

Gc(s)

Href(s)−
Gt(s)

1 +Gt(s)Gv(s)F (s)︸ ︷︷ ︸
−Gv,h(s)

V (s)

That the expression for the output is a sum over all inputs, with each
term given by a rational transfer function multiplied by the input, is no
coincidence; this will always be true of any transfer function between
points in a block diagram with rational transfer functions and summation
points. In particular, the output is a linear (dynamic) function of the
inputs. This leads to a conclusion that will be used frequently hereafter:
When computing the transfer function from one input to the output, all
other inputs may be set to zero. The reader is encouraged to try this by
taking Href(s) = 0 in the first equation above.
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Inserting the expressions for Gt(s) and Gv(s) in the equation above, it
follows that Gv,h is given by

H(s)
V (s) = − 1 + 5s

s(1 + 5s) + 2F (s)
and Gc by

H(s)
Href(s)

= 2F (s)
s(1 + 5s) + 2F (s)

Assume F (s) = Fb(s)
Fa(s) with Fb(s) and Fa(s) polynomials, then the char-

acteristic polynomial becomes p(s) = s(1 + 5s)Fa(s) + 2Fb(s) in both
cases.

d) Proportional feedback
F (s) = K

gives
H(s)
Href(s)

= 0.4K
s2 + 0.2s+ 0.4K

The closed loop poles are given by

s2 + 0.2s+ 0.4K = 0

That is
s = −0.1± i

√
0.4K − 0.01 if K > 0.025

The closed loop poles belong to the pre specified region provided that
|Re | > |Im | or

0.01 > 0.4K − 0.01
Hence K < 0.05.

e) When v is a unit step signal we have

V (s) = 1
s

The control error e = href − h = −h (href = 0) is given by

E(s) = −H(s) = s+ 0.2
s2 + 0.2s+ 0.4K ·

1
s

The final value theorem gives (the system is stable for K > 0)

lim
t→∞

e(t) = lim
s→0

sE(s) = 1
2K

f) A PI controller, that is,

F (s) = KPs+KI

s

gives
E(s) = s(s+ 0.2)

s2(s+ 0.2) + 0.4(KPs+KI)
· 1
s

when v is a unit step signal. The final value theorem gives (provided that
the closed loop system is asymptotically stable)

lim
t→∞

e(t) = lim
s→0

s(−H(s)) = 0

3.2 a) The closed loop poles (from Solution 3.1) are given by

s = −0.1± i
√

0.4K − 0.01

K = 1 gives
s = −0.1± i

√
0.39

b) PD control
F (s) = KP +KDs

and using the expressions derived in Solution 3.1, this results in

H(s) = 2F (s)
s(1 + 5s) + 2F (s)Href(s) = 0.4(sKD +KP)

s2 + (0.2 + 0.4KD)s+ 0.4KP
Href(s)

The characteristic polynomial is

s2 + (0.2 + 0.4KD)s+ 0.4KP = 0

Compare with the standard form

s2 + 2ζω0s+ ω2
0 = 0

where ω0 denotes the fundamental frequency and ζ denotes the relative
damping. Assume KP = 1 and determine KD so that ζ > 1/

√
2. A

comparison with the standard form then gives

ω0 =
√

0.4

ζ = 0.2 + 0.4KD

2
√

0.4
>

1√
2

which gives KD > 1.7.
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3.3 We shall determine how the control error e(t) = yref(t)− y(t) depends on the
disturbance signal fc. We can assume that yref(t) = 0, since the size of the
error as a function of fc is sought for.

E(s) = Yref(s)−G(s) · (Fc(s) + F (s)E(s))

where
G(s) = 1

ms2 + ds

gives

E(s) = − G(s)
1 +G(s)F (s) ·Fc(s)

fc(t) is a step disturbance, that is

Fc(s) = a

s

a) Proportional control, F (s) = K, gives

E(s) = − 1
ms2 + ds+K

· a
s

Using the final value theorem it follows that (provided that K is chosen
such that the closed loop is asymptotically stable)

lim
t→∞

e(t) = lim
s→0

sE(s) = −a/K

b) Proportional-Integral control

F (s) = K1s+K2

s

gives
E(s) = − s

ms3 + ds2 +K1s+K2
· a
s

The final value theorem in this case gives (provided that K1 and K2 are
chosen such that the closed loop is asymptotically stable)

lim
t→∞

e(t) = lim
s→0

sE(s) = 0

3.4 a) Enter the system. >> s = tf( ’s’ );
>> G = 0.2 / ( ( s^2 + s + 1 ) * ( s + 0.2 ) );

Generate a proportional
regulator.

>> F = 1;

Generate the closed loop
system.

>> Gc = feedback( F * G, 1 );

Compute and plot the step
response.

>> step( Gc, 30 ); grid

Time (sec.)

A
m

pl
itu

de

Step Response

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
 

By trying some different values of KP the following behavior can be seen:
For small values of KP the step response is slow, well damped and the
steady state error is large. For increasing KP the step response becomes
faster but more oscillatory, while the error is reduced. For large KP the
amplitude of the oscillations increases over time, that is, the closed loop
system becomes unstable.

b) Generate a PI controller
with KP = 1 and KI = 1.

>> KP = 1; KI = 1;
>> F = KP + KI / s;

12



Plot the result. >> Gc = feedback( F * G, 1 );
>> step( Gc, 50 ); grid

Time (sec.)

A
m

pl
itu

de

Step Response

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
 

The following effects of the integrator can be found by trying some dif-
ferent values of KI. (i): The integrator in the regulator eliminates the
steady state error. (ii): A too small value of KI gives a large settling time
while a too large value gives an oscillatory (finally unstable) closed loop
system.

c) Generate a PID controller
with KP = 1,KI = 1,KD =
2 and T = 0.1.

>> KP = 1; KI = 1; T = 0.1; KD = 1;
>> FP = KP;
>> FI = KI / s;
>> FD = KD * s / ( s*T + 1 );
>> F = FP + FI + FD;

Plot the result. >> Gc = feedback( F * G, 1 );
>> step( Gc, 50 ); grid

Time (sec.)

A
m

pl
itu

de

Step Response

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5
 

Using the (approximate) derivative of the error in the regulator increases
the damping of the closed loop system. Increasing KD too much, how-
ever, gives that an oscillation with higher frequency appears in the step
response and finally (approximately when KD > 65) the closed loop sys-
tem becomes unstable.

3.5 a) The transfer function for the closed loop system is

Gc(s) = Go(s)
1 +Go(s) = K(s+ 2)

s(s+ 1)(s+ 3) +K(s+ 2)
The characteristic equation is

s(s+ 1)(s+ 3) +K(s+ 2) = P (s) +KQ(s) = 0

that is
P (s) = s(s+ 1)(s+ 3) Q(s) = s+ 2

� Starting points: ⇔ zeros of P (s) : 0,−1,−3
End points: ⇔ zeros of Q(s) : −2

� Number of asymptotes: 2
Directions: 1

2 [π + 2kπ] = ±π/2
Intersection with the real axis: 1

2 [0 + (−1) + (−3)− (−2)] = −1

13



−4 −3 −2 −1 1

Re

Im

Asymptote

−3

−2

−1

1

2

3

Asymptote

K ≈ 0.4186

Figure 3.5a

� Real axis: [−3, −2) and [−1, 0] belongs to the root locus

� Intersection with the imaginary axis: Set s = iω and solve the char-
acteristic equation

iω(iω + 1)(iω + 3) +K(iω + 2) = −iω3 − 4ω2 + (3 +K)iω + 2K = 0

⇒ (−ω2 + 3 +K)ω = 0
−4ω2 + 2K = 0

}
⇒ ω = K = 0

(starting point)

This gives the root locus in Figure 3.5a.
Answer: All poles are in the left half plane, that is, the closed loop
system is asymptotically stable for all K > 0. For small values of K
there are no oscillations and the speed is increasing with increasing K.
For a certain value of K the system becomes oscillating. The damping is
decreasing with increasing K.

b) The transfer function for the closed loop system is

Gc(s) = Go(s)
1 +Go(s) = K

s(s2 + 2s+ 2) +K

The characteristic equation reads

s(s2 + 2s+ 2) +K = 0

that is
P (s) = s(s2 + 2s+ 2) Q(s) = 1

Re

−3 −2 −1 1

−3

−2

−1

1

2

3Im

Asymptotes

ω = −   2
K = 4{

ω =   2
K = 4{

−2/3

Figure 3.5b

� Starting points: ⇔ zeros of P (s) : 0,−1± i
End points: ⇔ There are no zeros of Q(s)

� Number of asymptotes: 3
Directions: 1

3 [π + 2kπ] = π,±π/3
Intersection of asymptotes: 1

3 [0 + (−1 + i) + (−1− i)] = −2/3

� Part of the real axis that belongs to the root locus: (−∞, 0]

� Intersection with the imaginary axis: Set s = iω and solve the char-
acteristic equation

iω((iω)2 + 2iω + 2) +K = −iω3 − 2ω2 + 2iω +K = 0

⇒ (−ω2 + 2)ω = 0
−2ω2 +K = 0

}
⇒ ω = K = 0 or ω = ±

√
2

(start point) K = 4

}
This gives the root locus in Figure 3.5b.

Answer: All poles are in the left half plane. That is, the system is
asymptotically stable for 0 < K < 4. The step response is oscillating
for all K. To begin with the system will be faster with increasing K.
However, for K sufficiently large the oscillating part is dominating. The
damping will decrease with increasing K and for (K ≥ 4) the closed loop
system is unstable.
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c) The transfer function for the closed loop system is

Gc(s) = Go(s)
1 +Go(s) = K(s+ 1)

s(s− 1)(s+ 6) +K(s+ 1)

The characteristic equation is

s(s− 1)(s+ 6) +K(s+ 1) = P (s) +KQ(s) = 0

P (s) = s(s− 1)(s+ 6) Q(s) = s+ 1

� Starting points: ⇔ zeros of P (s) : 0, 1,−6
End points: ⇔ zeros of Q(s) : −1

� Number of asymptotes: 3− 1 = 2
Directions: 1

2 [π + 2kπ] = ±π/2
Intersection of the asymptotes: 1

2 [0 + 1 + (−6)− (−1)] = −2

� Part of the real axis that belongs to the root locus: [−6, −1) and
[0, 1]

� Intersection with the imaginary axis: Set s = iω and solve the char-
acteristic equation:

iω(iω − 1)(iω + 6) +K(iω + 1) = −iω3 − 5ω2 + (K − 6)iω +K = 0

⇒ (−ω2 +K − 6)ω = 0
−5ω2 +K = 0

}
⇒ ω = K = 0

(start point)

}
or ω =

√
3
2

K = 7.5

This gives the root locus in Figure 3.5c.
Answer: All poles are in the left half plane, that is, the closed loop
system is asymptotically stable for K > 7.5. For small values on K the
closed loop system is (as the open loop system) unstable. For K > 7.5
the closed loop system is stable and oscillating. As K is increasing from
the critical value both the damping and the response speed are increasing
(the time constant is always ≥ 1/2s), until they both are beginning to
decrease. The damping is decreasing with increasing K.

3.6 The transfer function for the closed loop system is obtained from

θ(s) = 1
s
θ̇(s) = 1

s
· k

1 + sτ
·K · (θref(s)− αsθ(s)− θ(s))

−7 −6 −5 −4 −3 −2 −1 1 2

−5

−4

−3

−2

−1

1

2

3

4

5

Re

ImAsymptote

Asymptote

ω = −   1.5
K = 7.5{

ω =   1.5
K = 7.5{K ≈ 1.1021

Figure 3.5c

⇒

G(s) = θ(s)
θref(s)

= k ·K
s(1 + sτ) + k ·K(1 + αs) = 4K

s(s+ 2) + 4K(1 + αs)

The characteristic equation is:

s(s+ 2) + 4K(1 + αs) = 0

a) α = 0. The characteristic equation is then

s(s+ 2) + 4K = s2 + 2s+ 4K = 0

with the solution
s = −1±

√
1− 4K

This gives the root locus in Figure 3.6a.
Answer: All poles are in the left half plane, that is, the closed loop
system is asymptotically stable for all K > 0.

b) α = 1. The characteristic equation is then

s(s+ 2) + 4K(1 + s) = 0

that is
P (s) = s(s+ 2) Q(s) = 4(1 + s)
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−3 −2 −1 1

−2

−1

1

2

Re

Im

Asymptote

Asymptote

K = 0.25

Figure 3.6a

� Starting points: ⇔ zeros of P (s): 0, −2
End points: ⇔ zeros of Q(s): −1

� Number of asymptotes: 2− 1 = 1.
Direction of asymptotes: 1

1 ·π, that is, the negative real axis.

� Part of the real axis that belongs to the root locus: (−∞, −2] and
(−1, 0]

� Intersection with the imaginary axis: Set s = iω and solve the char-
acteristic equation:

iω(iω + 2) + 4K(1 + iω) = −ω2 + (2 + 4K)iω + 4K = 0

⇒ (2 + 4K)ω = 0
−ω2 + 4K = 0

}
⇒ ω = K = 0

(start point)

This gives the root locus in Figure 3.6b.
Answer: All poles are in the left half plane, that is, the closed loop
system is asymptotically stable for all K > 0.

c) α = 1/3. The characteristic equation is then

s(s+ 2) + 4K(1 + s/3) = P (s) +KQ(s) = 0

which gives
P (s) = s(s+ 2) Q(s) = 4(1 + s/3)

−3 −2 −1 1

−2

−1

1

2

Re

Im

Asymptote

Figure 3.6b

� Starting points ⇔ zeros of P (s): 0, −2
End points ⇔ zeros of Q(s): −3

� Number of asymptotes: 2 − 1 = 1 Direction: 1
1 ·π , that is, the

negative real axis

� Part of the real axis that belongs to the real axis (−∞, 3) and [−2, 0]

� Intersection with the imaginary axis. Set s = iω and solve the char-
acteristic equation:

iω(iω + 2) + 4K(1 + iω/3) = −ω2 + (2 + 4
3K)iω + 4K = 0

⇒ (2 + 4
3K)ω = 0

−ω2 + 4K = 0

}
⇒ ω = K = 0

(start point)

This gives the root locus in Figure 3.6c.
Answer: All poles are in the left half plane, that is, the closed loop
system is asymptotically stable for all K > 0.

d) K = 1. The characteristic equation becomes

s(s+ 2) + 4(1 + αs) = s2 + 2s+ 4 + 4αs = 0

that is
P (s) = s2 + 2s+ 4 Q(s) = 4s
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−6 −5 −4 −3 −2 −1 1

−2

−1

1

2

Asymptote

K = 3 + 0.5   27 K = 3 − 0.5   27

Re

Im

Figure 3.6c

� Starting points ⇔ zeros of P (s): −1± i
√

3
End points ⇔ zeros of Q(s): 0

� Number of asymptotes: 2− 1 = 1
Direction: 1

1 ·π, that is, the negative real axis

� Part of the real axis that belongs to the root locus: (−∞, 0)

� Intersection with the imaginary axis: s = iω solves the characteristic
equation

−ω2 + 2iω + 4 + 4iωα = 0

⇒ ω(2 + 4α) = 0
−ω2 + 4 = 0

}
has no solution

(α < 0 is of no interest)

To get further insights into the behavior of the closed loop system the
intersection with the real axis is determined. That is, a real valued double
root to the characteristic equation has to be determined

s2 + 2s+ 4 + 4αs = (s+ a)2 = s2 + 2as+ a2

⇒ 2a = 2 + 4α
a2 = 4 ⇒ a = 2

α = 1/2

}
This gives the root locus in Figure 3.6d.
Answer: All poles are in the left half plane, that is, the closed loop
system is stable for all α ≥ 0. From d) it follows that the system will be

−3 −2 −1 1

−2

−1

1

2

Re

Im

Asymptote

α = 0.5

Figure 3.6d

more damped for larger values on α (compare b, c: in b) the system is not
oscillating for any value on K). For α sufficiently large, the time constant
can be arbitrary large. This is natural since the term −αθ̇ ·K (D-term)
that appears in the input voltage of the motor reduces the velocity of the
axis. The effect is as if the motor has been drained with thick oil. With a
suitable viscosity α the system can be made fast and stable as in c). With
α = 0 as in a) and K large enough, the system is not becoming faster∗
just less damped.

3.7 a)
ω(s)
δref(s)

= G1(s) ·G2(s) = 10(s+ 1)
(s+ 10)(s+ 4)(s− 3)

The open loop system is unstable (a pole in s = 3). Hence ω(t) is increas-
ing when δref(t) is a step signal. Observe that the model is valid for small
changes with respect to a large reference input θ0 for the pitch, and for
predetermined values on the static and the dynamic pressure.

b)
ω(s) = G1(s) ·G2(s) ·K · (ωref(s)− ω(s))

∗Note that altough the system does get faster with respect to risetime, this is not a very useful
notion of speed in highly oscillative systems. Rather, the settling time should be used, and this
property of a system is related to the real part of the poles, not their distance to the origin.
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gives

ω(s) = K ·G1(s) ·G2(s)
1 +K ·G1(s) ·G2(s)ωref(s)

= 10K(s+ 1)
(s+ 10)(s+ 4)(s− 3) + 10K(s+ 1)ωref(s)

The characteristic equation is

(s+ 10)(s+ 4)(s− 3) + 10K(s+ 1) = 0

which gives

P (s) = (s+ 10)(s+ 4)(s− 3) Q(s) = 10(s+ 1)

� Starting points: ⇔ zeros of P (s): −10, −4, 3
End points: ⇔ zeros of Q(s): −1

� Number of asymptotes: 3− 1 = 2
Directions: 1

2 (π + 2kπ) = ±π/2
Intersection with the real axis: 1

3−1 [(−10) + (−4) + 3− (−1)] = −5

� Part of the real axis that belong to the root locus: [−10, −4] and
(−1, 3]

� Intersection with the imaginary axis: s = iω solves the characteristic
equation

(iω + 10)(iω + 4)(iω − 3) + 10K(iω + 1) =

= −iω3 − 11ω2 + (10K − 2)iω + 10K − 120 = 0

⇒ (−ω2 + 10K − 2)ω = 0
−11ω2 + 10K − 120 = 0

}
⇒ ω = 0

K = 12

}
This gives the root locus in Figure 3.7a.
Answer: All poles are in the left half plane, that is, the closed loop
system is asymptotically stable for all K > 12.

c) The question is: Is there any K > 12 for which all poles are real valued?
For K = 12 it is known that s = 0 is a solution to the characteristic
equation. The other roots are given by

(s+ 10)(s+ 4)(s− 3) + 10 · 12(s+ 1) = s(s2 + 11s+ 118)

−10 −8 −6 −4 −2 2 4

−10

−8

−6

−4

−2

2

4

6

8

10

Re

Im

−5

Asymptote

Asymptote

K ≈ 1.5163 K = 12

Figure 3.7a

That is, the two remaining poles are

−11
2 ±

√
(11

2 )2 − 118 = −5.5± 9.4i

which shows that they are complex for K > 12. The answer is hence no.

3.8 This text serves as a workaround for an obscure bug in LATEX.

1
(s+1)(s+10)

K1

Σ+
− ⇔ 1

(s+1)(s+10)+K1

⇒
1

(s+1)(s+10)+K1
1
s

K2

Σ+
−

Figure 3.8a

a) The block diagram is given in Figure 3.8a. Hence, the characteristic
equation is s ((s+ 1)(s+ 10) +K1)︸ ︷︷ ︸

P (s)

+K2 = 0
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Start points: 0 and the roots to s2 + 11s + 10 + K1 = 0, that is, s =
−5.5±

√
5.52 − 10−K1

The roots are real when K1 ≤ 20.25. (I)
The roots are complex when K1 > 20.25. (II)

(I) � start points: 0, −5.5± α

� end points: missing

� asymptotes: 3: π
3 , π,

5π
3

intersection of the asymptotes: 1
3 (−11) = − 11

3

� parts of real axis: (−∞, −5.5− α], [−5.5 + α, 0]
The root locus is given in Figure 3.8b.

(II) � start points: 0, −5.5± iβ

� end points: missing

� asymptotes: as in (I)

� parts of real axis: (−∞, 0]
The root locus is given in Figure 3.8c

Imaginary axis crossings: put s = iω in the characteristic equation ⇒

iω(−ω2 + 11iω + 10 +K1) +K2 = 0 ⇔
−iω3 − 11ω2 + 10iω +K1iω +K2 = 0 ⇒{

−ω3 + 10ω +K1ω = 0 (1)
−11ω2 +K2 = 0 (2)

ω = 0 solution to (1) ⇒ in (2) K2 = 0.
ω2 = 10+K1 solution to (1)⇒ −110−11K1+K2 = 0⇒ K2 = 11K1+110
Answer: The closed loop system is asymptotically stable when 0 < K2 <
11K1 + 110

b) By using the inner feedback (K1 > 0) a larger value of K2 is allowed.

−15 −10 −5 0 5 10 15
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Figure 3.8b

3.9 Set
G(s) = 1

(s+ 1)(s− 1)(s+ 5)

With U(s) = F (s)E(s), the transfer function of the closed loop system be-
comes

Gc(s) = G(s)F (s)
1 +G(s)F (s)

a) Here, F (s) = K, so

Gc(s) = K

(s+ 1)(s− 1)(s+ 5) +K
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Figure 3.8c

The characteristic equation is

(s+ 1)(s− 1)(s+ 5) +K = 0

which gives

P (s) = (s+ 1)(s− 1)(s+ 5) Q(s) = 1

� Starting points: ⇔ Zeros of P (s): −1, 1, −5
End points: ⇔ Zeros of Q(s): none

� Number of asymptotes: 3− 0 = 3
Directions: 1

3 [π + 2kπ] = π, ±π/3
Intersection point: 1

3 [−1 + 1 + (−5)] = −5/3

� Real axis: (−∞, −5] and [−1, 1] belongs to the root locus

� Intersection with the imaginary axis, set s = iω:

(iω + 1)(iω − 1)(iω + 5) +K = −iω3 − 5ω2 − iω +K − 5 = 0

⇐⇒
{

(ω2 + 1)ω = 0
−5ω2 +K − 5 = 0 ⇐⇒

{
ω = 0
K = 5

(A simple root!)

This gives the root locus in Figure 3.9a.
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−5/3

Asymptotes

K ≈ 5.049
      ⇒
two poles in
≈ 0.097

K = 5.0

Figure 3.9a

Answer: There exists at least one pole in the RHP. Hence, the system
is not asymptotically stable for any value of K.

b) Here, F (s) = K(1 + 0.5s). Hence

Gc(s) = K(1 + 0.5s)
(s+ 1)(s− 1)(s+ 5) +K(1 + 0.5s)

The characteristic equation is

(s+ 1)(s− 1)(s+ 5) +K(1 + 0.5s) = 0

which gives

P (s) = (s+ 1)(s− 1)(s+ 5) Q(s) = 1 + 0.5s
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Figure 3.9b

� Starting points ⇔ Zeros of P (s): −1, 1, −5
End points ⇔ Zeros of Q(s): −2

� Number of asymptotes: 3− 1 = 2
Directions: 1

2 [π + 2kπ] = ±π/2
Intersection point: 1

2 [−1 + 1− 5− (−2)] = − 3
2

� Real axis: [−5, −2) and [−1, 1] belongs to the root locus

� Intersection with the imaginary axis, set s = iω:

(iω + 1)(iω − 1)(iω + 5) +K(1 + 0.5iω) = 0

⇐⇒
{
−ω3 + ω(0.5K − 1) = 0
−5ω2 − 5 +K = 0

⇐⇒
{
ω = 0
K = 5 or

{
ω2 = −1 , not real!
K = 0

This gives the root locus in Figure 3.9b.
Answer: The system is asymptotically stable (all poles in the LHP) if
K > 5.

3.10 a) The closed loop system

Gc(s) =
k

s(s+2)

1 + ka
s(s+2)(s+a)

= k(s+ a)
s(s+ 2)(s+ a) + ka

has the characteristic equation

s(s+ 2)(s+ a) + ka = 0

Choose k = 6, and draw a root locus with respect to a. The characteristic
equation can be written

s3 + 2s2 + a(s2 + 2s+ 6) = 0

that is,
P (s) = s2(s+ 2) Q(s) = s2 + 2s+ 6

� Starting points: 0, 0, −2
End points: −1± i

√
5

� Number of asymptotes: 3− 2 = 1, direction: π.

� Parts of the real axis: (−∞, −2]

� Intersection with the imaginary axis: s = iω

6a− ω2(2 + a) + iω(2a− ω2) = 0

Im: ω(2a− ω2) = 0 ⇐= ω = 0 or ω2 = 2a
Re: 6a− ω2(2 + a) = 0

ω = 0 ⇐= a = 0

ω2 = 2a ⇐= 2a− 2a2 = 0 ⇐= a = 0 or a = 1

Intersection points: s = 0, s = ±
√

2

This gives the root locus in Figure 3.10a.
Answer: The system is asymptotically stable for a > 1

b) For y to have a stationary value of 1 the system must first of all be stable.
When the system is stable, the stationary value will be 1 when r is a unit
step since the system contains an integrator.
Next, consider

ym(t) = sin(10t)⇒ yf(t) =
∣∣∣∣ a

a+ 10i

∣∣∣∣ sin(10t+ ϕ)
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Figure 3.10a

(the expression for yf(t) is valid after a long time, that is, when the tran-
sient has vanished). The amplitude is given by

A =
∣∣∣∣ a

a+ 10i

∣∣∣∣ = 1√
1 + 100

a2

Now, choose a as small as possible but a > 1 to maintain stability. The
lowest amplitude is A ≈ 0.1.

Answer: A = 0.1

3.11 When K is small the system has a real unstable pole, that is, the magni-
tude of the step response grows without bound and the step response has no
oscillations ⇒ K = 4 corresponds to step response C.

When K is larger we have an unstable complex-conjugated pole pair, that is,
the magnitude of the step response grows without bound and the step response
is oscillative. ⇒ K = 10 corresponds to step response D.

For even larger values of K all poles end up in the LHP. As K grows the step
response becomes faster since the dominating poles move away from the origin.
K = 18 corresponds to step response B and K = 50 to step response A.

Answer: K Step
4 C
10 D
18 B
50 A

3.12
G(s) = sn−1 + b1s

n−2 + · · ·+ bn
sn + a1sn−1 + · · ·+ an

= Tn−1(s)
Nn(s)

With a proportional feedback the closed loop system becomes

Gc(s) = G(s)
1 +KG(s) = Tn−1(s)

Nn(s) +KTn−1(s)

with the characteristic equation

Nn(s) +KTn−1(s) = 0

that is,
P (s) = Nn(s) Q(s) = Tn−1(s)

• Starting points: The zeros of Nn(s)
End points: The zeros of Tn−1(s)

• Number of asymptotes: 1 since degNn(s)− deg Tn−1(s) = 1
Direction: π

When K tends to infinity, one root approaches −∞, the remaining roots ap-
proaches the zeros of Tn−1(s). The zeros of Tn−1(s) are in the LHP according
to the problem formulation. Hence, if K is large enough, the system is asymp-
totically stable.

3.13 Since qout,∆(t) = 0 we get

d
dth∆(t) = 1

A
(qin,∆(t)− qout,∆(t)) = 1

A
qdam,∆(t− T )

= K

A
(href,∆(t− T )− h∆(t− T ))
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which gives
sH∆(s) = K

A
e−sT (Href,∆(s)−H∆(s))

The transfer function of the open loop system is hence

Go(s) = K

A
· e
−sT

s

Now draw the Nyquist curve:

• Big semi-circle in the RHP:

s = Reiθ − π/2 < θ < π/2

Since Re s > 0 we have
∣∣e−sT ∣∣ < 1, that is,

|Go(s)| < K

A
· 1
R

The large half circle is hence mapped onto the origin.

• Imaginary axis:

|Go(iω)| = K

A
· 1
ω

argGo(iω) = −π2 − ωT

As ω goes from r to R, the gain monotonically decreases towards zero
and the argument goes from −π/2 to −∞. The resulting Nyquist curve
makes a spiral motion towards the origin. The first time the curve crosses
the real axis is for ωT = π/2, that is, ω = π. The absolute value is then
K/A
π .

• Small semi-circle to the right of the origin:

Go(reiω) ≈ K

A
· 1
r
· e−iω

The small half circle is hence mapped into a large half circle in the RHP.

This gives the Nyquist path in Figure 3.13a. The system Go(s) has no poles
in the RHP. According to the Nyquist criterion, the closed loop system is
asymptotically stable if the Nyquist curve does not enclose the point −1. In
this case the condition reads

K/A

π
< 1

Answer: K/A < π

 Origin (i)

 Large circle (iii)

 Nyquist curve (ii)

Mirror image of
Nyquist curve (ii)

Re

Im

Re

Im

ω decreases

K
Aπ

 Origin (i)

Mirror image of
Nyquist curve (ii)

 Nyquist curve (ii)

Figure 3.13a

3.14 The system G(s) has no poles in the RHP. The closed loop system is asymp-
totically stable if the Nyquist curve of KGo(s) does not enclose the point −1.
In the problem, Nyquist diagrams for G(s) are given. The axes must hence be
rescaled with a factor K.

a) (i) Yes. (ii) Yes. (iii) No. (iv) Yes.

b) (i) Stable if 0.4K < 1, that is, K < 2.5.

(ii) Stable for K > 0.

(iii) Stable if 2K < 1, that is, K < 1/2.

(iv) Stable if 4K < 1 or 2K > 1, that is, K < 1/4 or K > 1/2.

3.15 a) G(iω) = 1
iω gives

|G(iω)| = 1
ω

argG(iω) = −90◦

b) G(iω) = 1
−ω2 gives

argG(iω) = 1
ω2 argG(iω) = −180◦

This gives the Nyquist curves in Figure 3.15a.
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Figure 3.15a

3.16 a) Since G(iω)→ 0, ω →∞, we assume that the large half circle is mapped
onto the origin. The small half circle is mapped onto the point 2. The
point −1 must not be encircled by the curve. This means that the closed
loop system is stable if 1.5 ·K < 1. Hence K < 2/3.

b)
lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

s · 1
1 +KG(s) ·

1
s

= 1
1 + 2K

for K < 2/3 according to a.

c) The Nyquist criterion can also be applied to

K

s
·G(s)

as the open loop system. On the large half circle 1
s ≈ 0 which means that

it is mapped onto the origin even for 1
s ·G(s). On the small half circle

s = r · eiθ − π

2 < θ <
π

2

we have G(s) ≈ 2 and
1
s

= 1
r
e−iθ

Hence, it is transformed by 1
s ·G(s) to a large half circle in the RHP.

Setting s = iω in 1
s gives the absolute value 1

ω and the argument −π/2.

The Nyquist curve is turned 90◦ and “increased” by a factor 1
ω . This gives

the Nyquist path in Figure 3.16a.
Answer: The closed loop system is asymptotically stable if 3

2K < 1.
This means that also in this case we have K < 2/3.

Re

Im

−3/ω=−3/2
1.5/ω=0.15

Figure 3.16a

3.17 The system
G(s) = 1

s(1 + τs)
is controlled by

u(t) = −Ky(t− T )
which gives the open loop system

Go(s) = Ke−sTG(s)

During self oscillations the open-loop gain is equal to −1:

Ke−iωTG(iω) = −1

that is,
Ke−iωT · 1

ω
e−iπ2

1√
ω2τ2 + 1

e−i arctanωτ = e−iπ
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ω = 1 gives {
−T − π

2 − arctan τ = −π (1)
K√
τ2+1 = 1 (2)

K1 = 1
3K gives a self oscillations with ω = 0.5. This gives{

−T1
2 −

π
2 − arctan τ

2 = −π (3)
K1

0.5 ·
√

τ2
4 +1

= 1 (4)

The equations (1) - (4) give τ = 1.69 and hence

T = π

2 · arctan τ = 0.53

T1 = π − 2 arctan τ2 = 1.74

3.18 From the Nyquist curve it is seen that for ω = 1

argG(1i) = −135◦ |G(1i)| = 1/
√

2

and
argF (1i) = −45◦ |F (1i)| = K/

√
2

This gives argF (1i)G(1i)) = −180◦. According to the Nyquist criterion,
asymptotic stability is achieved if

|F (1i)G(1i)| = K/2 < 1 ⇒ K < 2

3.19 Since |G(iω)| does not tend to∞ as ω → 0 the system does not have integrating
factor for K = 0. Thus reject root locus no 2. Furthermore, since the gain
can be increased arbitrarily without causing the Nyquist curve to encircle −1,
that is, without making the closed loop system unstable, we reject root loci 3
and 4.
Answer: Root locus no 1.

3.20 P ⇒ b0 = b2 = 0
I ⇒ b0 = b1 = 0
D ⇒ b1 = b2 = 0

3.21 a) The characteristic equation of the closed loop system is given by

(s2 + s+ 1)(s+ 0.2) +KP · 0.2 = 0

that is,
P (s) = (s2 + s+ 1)(s+ 0.2) Q(s) = 0.2

Enter P (s) and Q(s). >> s = tf( ’s’ );
>> P = ( s^2 + s + 1) * ( s + 0.2 );
>> Q = 0.2;

Draw the root locus. Click
in the figure to determine
the imaginary axis cross-
ings.

>> rlocus( Q / P )
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When KP increases the two complex poles move towards the imaginary
axis, that is, the closed loop system becomes more oscillatory. Finally, for
KP ≈ 6.2, the poles cross the imaginary axis and the closed loop system
becomes unstable. This result is in accordance with Problem 3.4. For
small values of KP the properties of the step response are mainly deter-
mined by the real pole close to the origin. For larger values the complex
poles start to dominate and when the complex poles cross the imaginary
axis the amplitude of the oscillations in the step response increases and
the system becomes unstable.
Note, however, that the root locus alone does not give sufficient informa-
tion to tell how the stationary error changes with the parameter.

b) The characteristic equation of the closed loop system using the PI con-
troller with KP = 1 is given by

s((s2 + s+ 1)(s+ 0.2) + 0.2) +KI · 0.2 = 0
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that is,
P (s) = s(s3 + 1.2s2 + 1.2s+ 0.4) Q(s) = 0.2

Enter P (s) and Q(s). >> P = s * ( s^3 + 1.2*s^2 + 1.2*s + 0.4 );
>> Q = 0.2;

Draw the root locus. Click
in the figure to determine
the imaginary axis cross-
ings.

>> rlocus( Q / P )
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For small KI the response of the closed loop system is dominated by the
poles on the real axis close to the origin. When KI increases the poles
become complex and move towards the imaginary axis, that is, the closed
loop system becomes more oscillatory. Finally, for KI ≈ 1.5, the poles
cross the imaginary axis, that is, the closed loop system becomes unstable.
As can be seen in Problem 3.4 a small value of KI, that is, a pole close to
the origin, gives a slow step response. When KI increases the dominating
poles become complex and the step response becomes oscillatory.
A large settling time will typically follow if the system is slow or have
poor damping. Here, the large settling time for small KI is due to the
system being slow. That the steady state error is eliminated cannot easily
be seen in the root locus.

c) Using PID control with KP = 1,KI = 1 and T = 0.1 the characteristic
equation of the closed loop system is given by

(0.1s+ 1)(s(s2 + s+ 1)(s+ 0.2) + 0.2(s+ 1)) +KD · 0.2s2 = 0

that is,

P (s) = (0.1s+ 1)(s4 + 1.2s3 + 1.2s2 + 0.4s+ 0.2) Q(s) = 0.2s2

Enter P (s) and Q(s). >> P = ( 0.1*s + 1 ) * ...
( s^4 + 1.2*s^3 + 1.2*s^2 + 0.4*s + 0.2 );

>> Q = 0.2*s^2;

Draw the root locus. By
changing the axes or using
the function zoom the region
of interest can be seen more
clearly (there is also a fifth
pole which is of less inter-
est since it is located on the
negative real axis, far away
from the origin).

>> rlocus( Q / P )
>> axis([ -2 2 -4 4 ])
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When KD increases the complex poles closest to the origin move to-
wards the origin and and at the same time the damping of the system
is increased. When KD increases even more the second pair of complex
poles moves towards the imaginary axis giving a high frequency oscillation
which finally gives instability.
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3.22 a) Enter the system and the
regulator. Plot the Nyquist
curve of the open loop sys-
tem.

>> s = tf( ’s’ );
>> G = 0.2 / ( ( s^2 + s + 1 ) * ( s + 0.2) );
>> F = 1;
>> nyquist( F * G )
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Nyquist Diagrams
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The Nyquist curve is “far away” from the point −1 for all frequencies
and the step response of the closed loop system is well damped. As KP
increases the Nyquist curve grows in size and for KP = 6.2 the Nyquist
curve reaches −1 and thus is the limit of stability.

b) Generate a PI controller.
Plot the Nyquist curve of
the open loop system.

>> F = 1 + 1/s;
>> nyquist( F * G )
>> axis([ -2 2 -2 2 ])
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For low frequencies the Nyquist curve is now far away from the origin
since the integrating part makes |G(iω)| large for low frequencies. The
Nyquist curve now passes closer to −1 which results in a more oscillatory
closed loop system. The system becomes unstable around KI = 1.44.
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c) Generate a PID controller.
Plot the Nyquist curve of
the open loop system. Here
with the parameters KP =
1, KI = 1, KD = 2, and
T = 0.1

>> F = 1 + 1/s + 2*s / ( 0.1*s + 1 );
>> nyquist( F * G )
>> axis([ -2 2 -2 2 ])
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The Nyquist curve is now further away from −1 which corresponds to an
improved damping of the closed loop system. The system becomes unstable
around KD = 66.

3.23 a) Enter the systems and the
regulator. Make a Bode
plot of the open loop sys-
tem when the regulator and
the system are put in se-
ries. This gives ωc = 0.38,
ωp = 1.1, ϕm = 94◦ and
Am = 3.1.

>> s = tf( ’s’ );
>> G = 0.4 / ( ( s^2 + s + 1 ) * ( s + 0.2 ) );
>> F = 1;
>> margin( F * G )
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Plot the step response. >> Gc = feedback( F * G, 1 );
>> step( Gc, 50 )
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b) Increase the gain in the reg-
ulator. Make a Bode plot.
The crossover frequency ωc
has increased while ωp is the
same, since only the ampli-
tude curve is changed when
the gain is changed. Both
the gain and phase margins
have decreased.

>> F = 2.5;
>> margin( F * G )
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Gm = 1.24  (at 1.1 rad/sec) ,  Pm = 12.6 deg (at 0.99 rad/sec)

Frequency  (rad/sec)

Plot the step response. The
closed loop system is now
much more oscillatory due
to the reduced phase and
gain margins.

>> Gc = feedback( F * G, 1 );
>> step( Gc, 50 )
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c) Increase the gain to 3.1,
that is, the value of Am
in a). Both the gain and
phase margin are at the
limit between what would
give an stable or unstable
closed loop system. Any
further increase of the gain
will give an unstable closed
loop system.

>> F = 3.1;
>> margin( F * G )
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Bode Diagram
Gm = 1  (at 1.1 rad/sec) ,  Pm = 0.000321 deg (at 1.1 rad/sec)

Frequency  (rad/sec)

Plot the step response. The
output now oscillates with
constant amplitude.

>> Gc = feedback( F * G, 1 );
>> step( Gc, 50 )
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3.24 The top row gives a steady state error ⇒ KI = 0. Left column less oscillative
than the right one ⇒ KD 6= 0.
Answer: A–iii, B–i, C–iv, D–ii.

3.25 a) The motor transfer function is (from Solution 2.1))

θ(s)
U(s) = G(s) = k0

s(s+ 1/τ)

Feedback control
U(s) = F (s)(θref(s)− θ(s))

where F (s) is the control law transfer function and θref is the reference
signal. The closed loop transfer function is given by

Gc(s) = θ(s)
θref(s)

= F (s)G(s)
1 + F (s)G(s)

Proportional feedback F (s) = KP and G(s) according to above give

Gc(s) = KPk0

s2 + s/τ +KPk0

The poles of the closed loop system are given by

s2 + s/τ +KPk0 = 0

that is,

s = −1±
√

1− 4τ2KPk0

2τ

(1) KP small ⇒ Both poles on the real axis, but one pole very close to
the origin ⇒ Slow but not oscillatory system.

(2) KP = 1/(4τ2k0) ⇒ Both poles in −1/(2τ), that is, faster than in
(1) but still no oscillations.

(3) KP large ⇒ Complex poles with large imaginary part relative to the
real part, that is oscillative system.

b) The transfer function from the reference signal to the tracking error e =
θref − θ is given by

E(s) = 1
1 + F (s)G(s)θref(s) = s(s+ 1/τ)

s(s+ 1/τ) +KPk0
θref(s)

The reference signal is a step

θref(t) =
{

0, t < 0
A, t ≥ 0

which gives
θref(s) = A

s

The final value theorem gives

lim
t→∞

e(t) = lim
s→0

s · s(s+ 1/τ)
s(s+ 1/τ) +KPk0

· A
s

= 0

The reference signal is a ramp

θref(t) =
{

0, t < 0
At, t ≥ 0

which gives
θref(s) = A

s2

The final value theorem gives (the closed loop is asymptotically stable for
all KP according to a))

lim
t→∞

e(t) = lim
s→0

s · s(s+ 1/τ)
s(s+ 1/τ) +KPk0

· A
s2 = A

KPk0τ

The error can be decreased by selecting KP large, but according to a) the
system becomes very oscillative for large KP.

c) PI controller

u(t) = KPe(t) +KI

∫ t

0
e(τ) dτ

that is
F (s) = KP +KI

1
s
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gives

E(s) = 1
1 + F (s)G(s)θref(s) = s2(s+ 1/τ)

s2(s+ 1/τ) + k0(KPs+KI)
θref(s)

When θref is a ramp according to b) we get

lim
t→∞

e(t) = lim
s→0

sE(s) = 0

Comment: The final value theorem can only be used when the denominator
of G(s)U(s) has all zeros in the left half plane or at the origin. G(s) is the
system transfer function and U(s) is the input signal.

3.26 The transfer function for the loop gain is Go.

The transfer function from the reference signal R to the output Y is obtained
by using the block diagram and observing that

Y = Go(R− Y )

Solving this equation for Y gives

Y = Go

1 +Go
R

that is, the transfer function for the closed loop system is Gc = Go
1+Go

.

3.27 a) The loop gain, Go, is FG.

b) The influence of the disturbance (N = 0) can be neglected. Use the
solution to problem Solution 3.26. The transfer function from R to Y is
Gc = FG

1+FG , that is, Y = GcR.

c) The influence of the reference signal can be neglected. (R = 0). The block
diagram gives

Y = FGE = −FG(Y +N)

which implies that the transfer function from N to Y is Gny = − FG
1+FG .

d) The influence of the disturbance can be neglected (N = 0). The block
diagram gives

E = R− Y = R− FGE
Solving for E gives

E = 1
1 + FG

R

that is, the transfer function from R to E is Gre = 1
1+FG .

3.28 a) The transfer function from reference signal to error signal is (see Solu-
tion 3.27d)

E = 1
1 + FG

R(s) = 1
1 + K

(s+1)(s+3)
R(s) = (s+ 1)(s+ 3)

(s+ 1)(s+ 3) +K
R(s)

r(t) step ⇒ R(s) = A
s . The steady state value of the error is given by

the final value theorem

lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

(s+ 1)(s+ 3)
(s+ 1)(s+ 3) +K

A = 3A
3 +K

b) In order to make the steady state error equal to zero the regulator has to
contain an integrator. Using, for example, F (s) = 1

s one gets

lim
t→∞

e(t) = lim
s→0

A

1 + F (s)G(s) = lim
s→0

A

1 + 1
s

1
(s+1)(s+3)

= 0

Notice though, that the integrating feedback normally has to be combined
with proportional feedback.

c) The transfer function from R to Y using F (s) = 1 is

Gc(s) = FG

1 + FG
= 1

(s+ 1)(s+ 3) + 1 = 1
s2 + 4s+ 4 = 1

(s+ 2)2

The system has two poles in −2 and no zeros.

3.29 • The four step responses are characterized by, for example, that A and D
have a steady state error, while C and B do not. Further, A shows better
damping than D, and C shows better damping than B. It can also be
noticed (although it is not as apparent as the other characteristics) that
the error decays more slowly in C than in B.
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• The four regulators are characterized by, for example, that regulators 1
and 4 don’t have any integral action. Regulator 2 has more integral action
than 3, and regulator 4 gives better damping than 1.

• The derivative part in the regulator improves the damping, while integral
action eliminates the steady state error and reduces the damping. Besides,
for small values of KI, the error will decay slowly to zero.

Answer: A–4, B–2, C–3, D–1.

GFΣ+
Fc,in, Tc,in

−

TtTref

Ft,in, Tt,in

Figure 3.30a

3.30 a) See the block diagram in Figure 3.30a. There, the signals are classified
as:

� Input Fc,in and Tc,in

� Output Tt

� Disturbance Ft,in and Tt,in

b) Assume prefect mixing in the tank. Mass balance for the tank
d(ρtVt)

dt = ρt,inFt,in − ρtFt

Assume ρt,in = ρt and that ρt is constant which gives

d(ρtVt)
dt = 0 = Ft,in − Ft ⇒ Ft = Ft,in

Assume that there are no heat losses to the surroundings. The energy
balance for the tank is

d (ρtVtc
p
t (Tt − Tref))

dt
= ρtFt,inc

p
t,in(Tt,in − Tref)− ρtFtc

p
t (Tt − Tref) + U(Tc − Tt) (3.1)

where U is a heat transfer constant. Assume that cpt,in = cpt is constant
and that Tref is constant. This means that (3.1) can be simplified to

Vt
dTt

dt = Ft(Tt,in − Tt) + U

cpt ρt
(Tc − Tt) (3.2)

Mass balance for the heating system
d(ρcVc)

dt = ρc,inFc,in − ρcFc

Assume ρc,in = ρc and that ρc is constant which gives Fc = Fc,in. Assume
that there are no heat losses to the surroundings. The energy balance for
the heating system is

d (ρcVcc
p
c (Tc − Tref))
dt

= ρcFc,inc
p
t,in(Tc,in − Tref)− ρcFcc

p
c (Tc − Tref)− U(Tc − Tt) (3.3)

Assume that cpc = cpt,in is constant. This means that (3.3) can be simplified
to

Vc
dTc

dt = Fc(Tc,in − Tc)− U

cpcρc
(Tc − Tt) (3.4)

The dynamical model is described by (3.2) and (3.4).

c) Linearization of (3.2) and (3.4) (assuming ρc = ρt and cpc = cpt ) gives

V ∗t
dTt∆

dt = −
(
F ∗t + U

cpt ρt

)
Tt∆ + F ∗t Tt,in∆

+ U

cpt ρt
Tc∆ +

(
T ∗t,in − T ∗t

)
Ft∆

V ∗c
dTc∆

dt = −
(
F ∗t + U

cpt ρt

)
Tc∆ + F ∗c Tc,in∆

+ U

cpt ρt
Tc∆ +

(
T ∗c,in − T ∗c

)
Fc∆

d) With numerical values for the stationary points and assuming that Ft,
Tt,in, and Tc,in is constant, the linearized model is

dTt∆
dt = −0.26Tt∆ + 0.16Tc∆ (3.5)

dTc∆
dt = −3.6Tc∆ + 1.6Tt∆ + 200Fc∆ (3.6)
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Taking the Laplace transform of (3.5) and (3.6) gives

sTt∆(s) = −0.26Tt∆(s) + 0.16Tc∆(s) (3.7)
sTc∆(s) = −3.6Tc∆(s) + 1.6Tt∆(s) + 200Fc∆(s)

⇒ Tc∆(s) = 1.6
s+ 3.6Tt∆(s) + 200

s+ 3.6Fc∆(s) (3.8)

Combining (3.7) and (3.8) gives

sTt∆(s) = −0.26Tt∆(s) + 0.256
s+ 3.6Tt∆(s) + 32

s+ 3.6Fc∆(s)

⇒ Tt∆(s) = 32
(s+ 3.675)(s+ 0.185)Fc∆(s)

-3 -1-2

-1

1

Re

Im

K = 0.0952

Figure 3.30b

e) The transfer function for the closed loop is

Gc(s) = 32K
s2 + 3.86s+ 0.68 + 32K

The characteristic equation is

s2 + 3.86s+ 0.68 + 32K = 0

with the solution

s = −1.93±
√

1.932 − 0.68− 32K

This gives the root locus in Figure 3.30b.

3.31 a) The system Go(s) = −1
s2+2s−3 has one pole in −3 and one pole in 1, hence

the system is unstable.

b) The closed loop is given by

Gc(s) = −K
s2 + 2s− 3−K

The poles of the closed loop are given by

s = −1±
√

1 + 3 +K

For K ≤ −3 the closed loop will have all its pole in the LHP.

3.32 Given ẏ = µy+ u and u = K(r− y) we have ẏ = (µ−K)y+Kr. This system
converges when the pole (µ−K) is in the LHP, that is, when K > µ.

3.33 The dynamics of the astronaut is given by

F = ma

where m = 100, F is the control signal u and a = ÿ. This gives the model

100ÿ = u

and
Y (s) = 1

100s2U(s)

The control law is given by

u = K1(r − y)−K1K2ẏ = K1((r − y)−K2ẏ)

or
U(s) = K1(R(s)− Y (s)−K2sY (s))
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The transfer function from r to e is given by

E(s) = s2 + 0.01K1K2s

s2 + 0.01K1K2s+ 0.01K1
R(s)

When r(t) = t we have

R(s) = 1
s2

The final value theorem then gives (provided that K1 and K2 are chosen
such that the closed loop is asymptotically stable) (also note that the transfer
function from r to e must have at least one zero at the origin for the final value
to exist, but this is satisfied regardless of the choice of K1 and K2)

lim
t→∞

e(t) = lim
s→0

sE(s) = K2 < 1

The transfer function from r to y is given by

Gc(s) = Y (s)
R(s) = 0.01K1

s2 + 0.01K1K2s+ 0.01K1

The standard form for the characteristic equation

s2 + 2ζω0s+ ω2
0 = 0

gives with ζ = 1/
√

2 ≈ 0.7

s2 +
√

2ω0 + ω2
0 = 0

A comparison with
s2 + 0.01K1K2s+ 0.01K1 = 0

gives ω0 = 0.1
√
K1. We hence obtain

K1 = 200
K2

2

Answer: Choose K2 < 1 and K1 = 200/K2
2 .
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Figure 3.34a

a) The closed loop system

Gc(s) = G(s)K
1 +G(s)K = K(s+ 2)

(s+ 1)2 +K(s+ 2)

has the characteristic equation

(s+ 1)2 +K(s+ 2) = 0

which gives

P (s) = (s+ 1)2 Q(s) = s+ 2

• Starting points ⇐⇒ Zeros of P (s): -1,-1
End points ⇐⇒ Zeros of Q(s): -2
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• Number of asymptotes: 2− 1 = 1
Direction: π
Intersection point: −1− 1 + 2 = 0

• Real axis: (−∞,−2] belongs to the root locus

• Intersection with the imaginary axis, set s = jω:

(jω + 1)2 +K(jω + 2) = 0
Im : ω(2 +K) = 0
Re : −ω2 + 1 + 2K = 0

=⇒ ω = 0,K = −1
2

which does not meet K > 0.
Intersection with the real axis, set s = jω:

(jω + a)2 = (jω + 1)2 +K(jω + 2)
=⇒ (K = 0, a = 1), (K = 4, a = 3)

This gives the root locus in Figure 3.34a. The system is asymptotically stable.
K = 4 (pole position −3) gives the fastest step response without fluctuations
since it does not have any imaginary parts.

b) With a similar approach as in a), the closed loop system is

Gc(s) = G(s)F (s)
1 +G(s)F (s)

where F (s) = 4 + KI
s , G(s) = s+2

(s+1)2 . The characteristic equation is

1 + F (s)G(s) = s(s+ 1)2 + (4s+KI)(s+ 2) = 0

which gives

P (s) = s(s+ 1)2 + 4s(s+ 2) = s(s+ 3)2 Q(s) = KI(s+ 2)

• Starting points ⇐⇒ Zeros of P (s): 0,-3,-3
End points ⇐⇒ Zeros of Q(s): -2
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Figure 3.34b

• Number of asymptotes: 3− 1 = 2
Direction: π

2 ,
3π
2

Intersection point: 0−3−3+2
2 = −2

• Intersection with the imaginary axis, set s = jω:

jω(jω + 3)2 +KI(jω + 2) = 0
Im : ω(−ω2 +KI + 9) = 0
Re : −6ω2 + 2KI = 0

=⇒ (ω = 0,K = 0), (ω2 = KI + 9,KI = −54
4 < −9) : not real

which does not meet KI > 0.

This gives the root locus in Figure 3.34b. The system is asymptotically stable.
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Figure 3.34c

c) The P-controller of a) gives a faster step response than the PI-controller of
b) since the dominant pole [−2, 0] is slower than −3. However, there is the
stationary error of P-controller, see Figure 3.34c
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4 Frequency Description
4.1 If we let ū(t) and ȳ(t) denote the actual temperature and the measured tem-

perature, respectively, we can divide the temperatures into their mean values
and variations as follows:

ū(t) = u0 + u(t)

and
ȳ(t) = y0 + y(t)

where u0 = y0 = 30 ◦C.
The thermometer is modeled as the following first order linear time invariant
dynamic system with

Y (s)
U(s) = G(s) = a

s+ b

Based on the assumption that the thermometer has been calibrated so that
y0/u0 reflects the static gain of the system, it would be possible to conclude
that |G(0)| = 1, that is, a = b. However, we will be able to find enough
equations to determine both a and b without using a = b, allowing us to
avoid this additional assumption. (Using this assumption leads to slightly
different estimates for a and b, depending on which additional equation we use
to determine the common value. That the estimates are not the same no matter
which equations we use is explained by the uncertainty in the equations.)
Since

u(t) = A sin(ωt)

it follows that after the transients have vanished (that is, in steady state)

y(t) = |G(iω)|A sin(ωt+ φ)

where
φ = arg(G(iω)) = − arctan(ω/b)

From the relationship ω = 2π/T and from the figure the following is obtained:

1. ω = 2π
0.314 · 60 rad/s = 0.33 rad/s

2. φ = −0.056
0.314 · 2π rad = −1.12 rad

3. |G(iω)| = 0.9
2.0 = 0.45

Hence
tan(φ) = −ω

b
⇒ b = 0.33

2.066 = 0.16

and
|G(iω)| = a√

ω2 + b2
⇒ a = 0.16

Answer:
G(s) = 0.16

s+ 0.16

4.2 The equation
ω = ψ̇

and
T1 · ω̇ = −ω +K1 · δ

give the transfer function

Gs(s) = K1

s(1 + T1s)
= 0.1
s(1 + s/0.01)

The transfer function of the rudder machine is

Gr(s) = 1
1 + sT2

= 1
1 + s/0.1

and the controller has the transfer function

F (s) = K
1 + s/a

1 + s/b
= K

1 + s/0.02
1 + s/0.05

a) K = 0.5 gives

Go(s) = F (s)Gr(s)Gs(s) = 0.05(1 + s/0.02)
s(1 + s/0.01)(1 + s/0.05)(1 + s/0.1)

It thus follows that

|Go(iω)| =
0.05

√
1 + ( ω

0.02 )2

ω
√

1 + ( ω
0.01 )2

√
1 + ( ω

0.05 )2
√

1 + ( ω
0.1 )2
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with low frequency asymptote

|Go(iω)| → 0.05
ω

, ω → 0

and

argGo(iω) = arctan ω

0.02 − 90◦ − arctan ω

0.01 − arctan ω

0.05 − arctan ω

0.1

The gain is drawn approximatively based on a known gain at some point
of the low frequency asymptote,

∣∣ 0.05
0.005

∣∣ = 10, and the breakpoints and
slopes of the asymptotes:
Frequency [rad/s] 0.01 0.02 0.05 0.1
Slope −1 −2 −1 −2 −3

The phase shift is drawn based on a couple of samples:
Frequency [rad/s] 0.005 0.01 0.02 0.04 0.08
Phase −111◦ −125◦ −142◦ −163◦ −194◦

The Bode plot in Figure 4.2a gives: ωc = 0.026 rad/s, ϕm = 32◦, Am =
4.2.

b) The system starts to oscillate ifK is chosen so that arg(Go(iωc)) = −180◦.
This gives the crossover frequency ωc = ωp = 0.06 rad/s. This implies
that the gain should be amplified 4.2 times. Therefore, choose K =
0.5 · 4.2 = 2.1.

ω = 2π/T ⇒ T = 2π
ωc

= 2π
0.06 = 105 s

Answer: The period time will be 105 seconds, and K = 2.1.

c)
Ψref(t) = A sin(αt)

gives
Ψ(t) = B sin(βt+ ϕ)

where A = 5◦, α = 0.02, β = α, B = A |Gc(iα)| and ϕ = argGc(iα). The
transfer function for the closed loop system when K = 0.5 is

Gc(s) = Go(s)
1 +Go(s)

0.1

1
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-270◦
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ω
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a
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G
o
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ω
)
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A
m

=
4
.1

8
ϕ

m
=

3
1
.9

3
◦

Figure 4.2a

where
|Go(i0.02)| = 1.44 argGo(i0.02) = −142◦

That is
Go(i0.02) = −1.135− i0.886

which gives

|Gc(i0.02)| = 1.44√
0.1352 + 0.8862

= 1.61 ⇒ B = 8◦

and

argGc(i0.02) = −142◦ + 180◦ − arctan(0.886
0.135) = −0.76 rad

Answer: B = 8◦, β = 0.02 rad/s and ϕ = −0.76 rad.

4.3 a) As ω → 0, |G(iω)| → ∞ and argG(iω) → −90◦. The gain is first de-
creasing (low frequencies). It then increases, and finally decreases again
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(approaching zero for high frequencies). The phase shift is increasing at
low frequencies. As the frequency becomes higher the phase shift is posi-
tive in an interval until it decreases towards −90◦. This gives the plot in
Figure 4.3a.

b) A system with a Bode plot as the one shown above must have one pole
in the origin since argG(iω) → −90◦ as ω → 0. Then two break points
appear (up), since there is a positive phase shift. After that, there must
be two break points (down), since the phase shift should approach −90◦.
Hence, the plot in Figure 4.3b is possible.

10−2

10−1

100

101

−90◦
−60◦
−30◦

0◦
30◦
60◦

10−1 100 101 102 103 104 105

|G
(i

ω
)|

a
rg

G
(i

ω
)

ω [rad/s]

Figure 4.3a

4.4 From the final value of step response B (the only one greater than 1) and static
gain in Bode gain C (the only one greater than 1), the step response–Bode
gain pair B–C follows. Step responses C and A have approximately the same
overshoots but different fundamental frequencies. Bode gains B and D have
equal resonance peaks but D has a lower resonance frequency. This gives the
combinations C–D and A–B. The remaining combination is D–A, which is a
good match with small overshoot (resonance peak) and final value (static gain)
1.

Re

Im

Figure 4.3b. Pole-zero diagram. Not accurate in scale; the diagram shall only be inter-
preted as a right to left ordering of poles and zeros, with the first pole at the origin.

4.5 a) Enter the system and make
a Bode plot.

>> s = tf( ’s’ );
>> GA = 1 / ( s^2 + 2*s + 1 );
>> bode( GA )
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Use, for example, curve handles and “Characteristics” in the right click
menu to find static gain, bandwidth, resonance frequency, and resonance
peak. The other systems are treated in the same way. The results can
be summarized in the following table. (Note that gain values may be
presented in dB20 in Matlab.)
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System G(0) ωB ωr Mp

GA 1 0.64
GB 1 1.5 1 2.5
GC 1 0.21
GD 1 1.27 0.7 1.15
GE 1 2.54 1.4 1.15

b) Using the results in a) and in Problem 2.6, the following observations can
be made. (i): The bandwidth of a system is (approximately) inversely
proportional to the rise time. High bandwidth implies a short rise time
and hence a fast system. (ii): The damping is inversely proportional to
the height of the resonance peak. A large peak implies low damping and
large overshoot.

4.6 From the frequency responce interpretation of the transfer function (“a sinu-
soid in gives a sinusoid out”) and the input being

u(t) = 2 sin(2t− 1/2)

it follows that the output is

y(t) = 2 |G(i2)| sin(2t− 1/2 + argG(i2))

Here G(s) = e−2s

s(s+1) , and hence

|G(i2)| = 1
2
√

22 + 1
= 1

2
√

5
argG(i2) = −4− π

2 − arctan 2

4.7 The input is a sinusoid with amplitude 1 and angular frequency ω = 2 rad/s.

a) 0.45 sin(2t− 1.1).
(Gain:

∣∣∣ 1
i2+1

∣∣∣ = 1√
5 ≈ 0.45, phase: − arg(i2 + 1) ≈ −1.1 rad = −63◦.)

b) The system is unstable. Hence, the system output will tend to infinity,
and the system will not reach a steady state. To be more precise, the

general form of the solution to the differential equation describing the
system output is y(t) = C0e

t + 1√
5 sin(2t− π + arctan 2), and any initial

state y(0) 6= 1√
5 sin(−π + arctan 2) will lead to a solution that tends to

infinity. This will almost always be the case in practice.

c) 0.11 sin(2t− 2.4)
(Gain:

∣∣∣ 1
(i2+1)(i4+1)

∣∣∣ = 1√
5
√

17 ≈ 0.11, phase: − arg(i2 + 1)− arg(4i + 1) ≈
−2.4 rad = −139◦.)

d) 0.45 sin(2(t− 0.5)− 1.1) = 0.45 sin(2t− 2.1).
Similar to problem a), with an extra time delay of 0.5 s.

4.8 a) To determine the phase difference, φ, given a diagram with two sinusoids,
sin(ωt) and K sin(ωt + φ), one possibility is to consider the time points
when the two curves pass 0. Determine t1 and t2 such that

sin(ωt1) = 0
K sin(ωt2 + φ) = 0

This gives that ωt1 = ωt2 + φ, that is,

φ = −ωt∆ = −2π rad
T

t∆ = − t∆
T

2π rad

where t∆ = t2 − t1 and T is the common period time. Here, the last
expression may be interpreted as the delay expressed in parts ( t∆T ) of
a whole revolution (2π). For example, consider the second graph where
t∆ ≈ 0.18 s and T ≈ 1.25 s (which can either be read from the figure, or, in
this problem, computed using ω = 5 rad/s). Hence, φ = − 0.18 s

1.25 s2π rad =
−0.9 rad. This results in the table below, where the answer to part b is
also included.

ω |G(iω)| argG(iω)
1 1 = 0 dB20 −0.2 rad = −11◦
5 0.8 = −1.9 dB20 −0.9 rad = −52◦
10 0.5 = −6 dB20 −1.6 rad = −92◦
20 0.2 = −14 dB20 −2.2 rad = −126◦

b) Just evaluate the decibel formula to obtain the values in the table above.
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c) A Bode plot of the system is given in Figure 4.8a

4.9 Answer: G1–B, G2–D, G3–A, G4–C, G5–E.

• The Bode plot B has static gain 1 and no resonance peak, and hence
G1–B. It can also be seen that the Bode plot B decays by one decade
(20 dB20) when the frequency increases by a factor of ten (“the slope is
−1”) and that G1 has one pole.

• The Bode plots A and C have both infinite gain for when the frequency
tends to zero, that is, they correspond to systems containing an integrator
⇒ systems G3 and G4. The Bode plot C decays more rapidly for high
frequencies ⇒ the relative degree (number of poles − number of zeros) is
higher. Hence G3–A, G4–C.

• The Bode plots D and E have peaks ⇒ systems G2 and G5. (For G2
the peak is caused by the zero where the curve “turns up” at ω = 1.)
The Bode plot E has larger slope than D for high frequencies, that is,
E corresponds to a system with higher relative degree. G2 has one pole
more than zeros, G5 has 2 poles, and hence G2–D, G5–E.

4.10 • In step response A and D the step responses tend to one, that is, they
correspond to Bode gain A and C. Step response D has larger overshoot,
that is, it corresponds to Bode gain A, and consequently step response A
corresponds to Bode gain C. This gives the Bode gain–step response pairs
A–D and C–A.

• Step response B has no overshoot, which implies that it corresponds to
Bode gain D, which has no peak. This gives the combination D–B.

• The remaining combination is B–C. Step response C has an overshoot
which can be related to the peak in the Bode gain plot. It can also be
seen that this pair belongs to the fastest system.

4.11 a) The system can be rewritten as

G(s) = 1.7
(s+ 1)( s

1.43 + 1)( s2 + 1)

It thus follows that

|G(iω)| = 1.7
√

1 + ω2
√

1 +
(
ω

1.43
)2√1 +

(
ω
2
)2

and
argG(iω) = − arctanω − arctan ω

1.43 − arctan ω2

The gain is drawn approximatively based on a known gain at some point
of the low frequency asymptote, |G(i0)| = 1.7, and the breakpoints and
slopes of the asymptotes:

Frequency [rad/s] 1 1.43 2
Slope 0 −1 −2 −3

The phase shift is drawn based on a couple of samples:
Frequency [rad/s] 0.1 0.5 1
Phase −12.7◦ −59.9◦ −106.6◦

Frequency [rad/s] 2 3 10
Phase −162.9◦ −192.4◦ −244◦

The bode plot in Figure 4.11a gives: ωc = 0.874 rad/s, ϕm = 83.8◦,
Am = 5.14, and ωp = 2.51 rad/s.
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b) The phase is −180◦ at ωp = 2.51 where the amplitude is 0.1946. To make
the pH oscillate with constant amplitude one has to choose K = 1

0.1946 =
5.14.

4.12 a) The phase is −180◦ at ωp = 0.334 where the amplitude is 0.1984. To keep
the reactor stabile one has to choose K ≤ 1

0.1984 = 5.04.

b) This is a lead-lag design task. The amplitude and phase of G at ωc,d =
0.1 is 0.6325 and −100◦. Thus we have a phase margin of 80◦ which is
sufficient, and hence no lead controller is needed. To remove the steady-
state error we need a lag controller with γ = 0. This results in the
controller structure

F (s) = K
τIs+ 1
τIs︸ ︷︷ ︸
Flag

Chose τI = 10/ωc,d = 100 (a smaler value of τI makes the error go to
zero faster) and K = 1

|G(iωc,d)Flag(iωc,d)| = 1
0.6325 = 1.58. This gives the

controller F (s) = 1.58 100s+1
100s .

4.13 a) The closed loop system a has a peak resonance, corresponding to an os-
cillatory system as in step response 1. An oscillatory system also means
a system with small phase margin and complex poles.
Answer: B – a – 1 – II and A – b – 2 – I.

b) Step response 1 is faster than step response 2, that is, has a higher band-
width and higher crossover frequency. Thus, it matches the closed loop
system b and the open system B. A faster step response has the dominant
pole further into the left half plane.
Answer: B – b – 1 – I and A – a – 2 – II.

4.14 Ansätt G(s) = b
s+a (med a > 0 och b > 0).

Utsignalen ges av (ekvation 4.2 i boken)

y(t) = |G(iω)| sin (ωt+ argG(iω)), ω = 2

|G(iω)| = b√
ω2 + a2

= 2

argG(iω) = arg b− arg (iω + a) = − arctan ω
a

= −π4 .

Och alltså för ω = 2 fås a = 2 och b = 4
√

2, samt initialvärdet
y0 = 2 sin(0− π/4) = −

√
2.
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5 Compensation
5.1 The compensator is constructed using lead-lag design. “Twice as fast” is in-

terpreted as a doubling of the bandwidth, which, in turn, is approximated by
a doubling of the gain crossover frequency. “Same damping” is interpreted as
maintaining the old phase margin, which is accomplished using a lead compen-
sator in the controller. The error in static reference following is controlled by
adjusting the static gain of the open loop system, which is accomplished using
a lag compensator in the controller. Sensitivity to measurement disturbances
is given by the complementary sensitivity function, 1− (1 +Go)−1. It is small
where the open loop gain is small. Thus, to make it small at high frequencies,
the high frequency gain of the controller should be kept as low as possible.
First, the open loop system when F (s) = 1 ⇒ Go = G is examined in
order to quantify the requirements.

G(s) = 0.4
(s+ 0.1)(s+ 0.5)(s2 + 0.4s+ 4)

= 2
(1 + s/0.1)(1 + s/0.5)(1 + 2 · 0.1 · s/2 + (s/2)2)

which implies that

|G(iω)| = 2√
1 + ( ω

0.1 )2
√

1 + ( ω
0.5 )2

√
(1− (ω2 )2)2 + 4 · 0.01(ω2 )2

with low frequency asymptote

|G(iω)| → 2, ω → 0

and
argG(iω) = − arctan ω

0.1 − arctan ω

0.5 − arctan
2 · 0.1ω2

1− (ω2 )2

The gain is drawn approximatively based on a known gain at some point of
the low frequency asymptote, 2 (at any point), and the breakpoints and slopes
of the asymptotes:

Frequency [rad/s] 0.1 0.5 2
Slope 0 −1 −2 −4

The system has two complex conjugated poles which implies that the ampli-
tude curve has a resonance peak. The approximate amplitude curve must be
modified at the resonance peak. An exact calculation of the gain gives

Frequency [rad/s] 1 1.5 2 2.5
Gain 0.12 0.09 0.12 0.025

The phase curve is drawn based on a couple of samples:
Frequency [rad/s] 0.01 0.1 1 1.5
Phase −7◦ −57◦ −155◦ −177◦

Frequency [rad/s] 2 2.5 10
Phase −253◦ −322◦ −354◦
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Figure 5.1a

The Bode plot in Figure 5.1a gives

ωc = 0.16 rad/s Am = 10.6 argG(iωc) = −78◦ → ϕm = 102◦

and hence
ωc,d = 0.32 rad/s ϕm,d = 102◦

The phase of G at the ωc,d is −108◦. Hence, in order to obtain the desired
phase margin of 102◦ = −78◦ − (−180◦), a phase advance of approximately
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(−78◦) − (−108◦) = 30◦ is required. We suspect a lag compensator will be
introduced later, as we have low frequency requirements. A lag compensator,
if designed according to the prescribed recipe, will decrease the phase by at
most 6◦ in the designed gain crossover frequency. Therefor, we require an
additional 6◦ phase advancement and end up in 36◦ . To accomplish the phase
advancement, we introduce a lead compensator.

Flead = K
τDs+ 1
βτDs+ 1

See the discussion of lead compensators in Glad&Ljung! To keep the high
frequency gain of the controller as small as possible, β should be chosen as
large as possible (but less than 1). The desired phase advance is obtained
with β = .25. This phase lead is obtained at the desired crossover frequency if

τD = 1√
βωc,d

= 6.25

The desired crossover frequency is obtained by adjusting the gain of the open
loop system by introducing a factor, K, in the controller. Due to the choice
of τD, the gain of Flead(ωc,d) evaluates to K/

√
β.

1 = |Flead(i0.32)G(i0.32)| = K√
β
· 0.52 ⇒ K = 0.96

With
F (s) = Flead(s)Flag(s) = 0.966.25s+ 1

1.56s+ 1Flag(s)

and ωref(s) = A/s, where A is constant, it follows that (using the notation
e(t) = ωref(t)− ω(t))

lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

s
1

1 + F (s)G(s)
A

s

= A

1 + 0.96 · 2 ·Flag(0) ≤ 0.05A.

This is equivalent to
Flag(0) ≥ 9.90

Hence, if the low frequency gain is increased approximately 10 times the sta-
tionary error will be smaller than 5%. Our lag (phase-retarding) compensator
is given by

Flag = τIs+ 1
τIs+ γ
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and we must have 1
γ ≥ 9.90. With γ = 1/9.90 we accomplish the goal with

minimal low frequency gain. The parameter τI is selected according to the rule
10/ωc,d (this yields a phase loss of at most 6◦ in the designed gain crossover
frequency).
This gives the controller

F (s) = ·Flead(s) ·Flag(s) = 0.966.25s+ 1
1.56s+ 1

(31.25s+ 1)
(31.25s+ 0.1)

5.2 Let G denote the heat exchanger’s transfer function.

a) Draw the Bode plot using the given table. From the diagram in Figure 5.2a
it follows that

ωc = 0.079 rad/s ϕm = 88◦ Am = 5.0

b) A proportional controller does not change the phase curve. According to
Figure 5.2a, the phase curve crosses −130◦ at the frequency 0.15 rad/s.
A gain crossover at this frequency will yield exactly the required phase
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margin, and any higher crossover frequency will yield one that is too
small.∗

c) Twice as large crossover frequency is desired:

ωc,d = 0.30 rad/s ϕm,d = 50◦

At the frequency 0.30 rad/s the phase margin is −5◦. Hence, a phase
lead of 55◦ is needed. To this end, use the lead-compensator Flead, where
Flead(s) = K(τDs+ 1)/(βτDs+ 1). Set β = 0.1 (according to the diagram
in Glad&Ljung) in order to achieve the required phase lead. To obtain
the maximum phase lead at the desired crossover frequency, let

τD = 1
ωc,d
√
β

= 10.54

Finally, K is chosen so that ωc,d is obtained. From the data, we have
|G(i0.3)| = 0.18

1 = |Flead(iωc,d)G(iωc,d)| = K√
β
|G(iωc,d)| ⇔ K =

√
β

0.18 = 1.76

Answer:
F (s) = 1.76 (10.54s+ 1)

(0.1 · 10.54s+ 1)

5.3 a)
G(s) = 20

s(1 + 2 · 0.1 · s
150 + ( s

150 )2)
which implies that

|G(iω)| = 20
ω
√

(1− ( ω
150 )2)2 + 4 · 0.01 · ( ω

150 )2

with low frequency asymptote

|G(iω)| → 20
ω
, ω → 0

∗The controller gain that yields the desired gain crossover frequency can be computed as

K =
1

|G(0.15i)|
=

1
0.525

= 1.9

and
argG(iω) = −90◦ − arctan 2 · 0.1 ·ω

(1− ( ω
150 )2)

The gain is drawn approximatively based on a known gain at some point
of the low frequency asymptote,

∣∣ 20
20
∣∣ = 1, and the breakpoints and slopes

of the asymptotes:
Frequency [rad/s] 150
Slope −1 −3

The system has two complex conjugated poles which implies that the
amplitude curve has a resonance peak. The approximative amplitude
curve must be modified at the resonance peak. An exact calculation of
the gain gives

Frequency [rad/s] 100 150 200
Gain 0.35 0.67 0.12

The phase curve is drawn based on a couple of samples:
Frequency [rad/s] 10 50 100 150 200
Phase −91◦ −94◦ −103◦ −180◦ −251◦

In addition, one can also use

argG(iω)→ −90◦, ω → 0
argG(iω)→ −270◦, ω →∞

The Bode plot with the gain curve labeled “A” in Figure 5.3a gives

ωc = 20 rad/s ϕm = 88◦ Am = 1.5

b) If K would be chosen to the gain margin, Am = 1.5, the new gain margin
would be 1. Thus, if

K = Am

2 = 0.75

the resulting gain margin becomes 2. With this amplification the final
value theorem gives the ramp error

lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

1
sKG(s) = 1

0.75 · 20 = 0.067

Note that the system is stable by construction (the new gain margin is
greater than 1).
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Figure 5.3a

c) The new gain crossover frequency obtained in part b is 15 rad/s, see the
gain curve labeled “B” in Figure 5.3a. The low frequency gain of F (s)
must be increased at least 15 times. A lag-compensator with γ = 1/15 =
0.067 can be used. Choose, according to the rule of thumb, τI = 10/ωc,d,
where ωc,d = 15, and hence τI = 0.66. The choice γ = 0 would satisfy the
performance requirement but violates the condition that the controller
should have finite gain in all frequencies.
Answer:

F (s) = 0.75 · (0.66s+ 1)
(0.66s+ 0.067)

5.4 We begin by drawing a Bode plot of the system.

G(s) = 10
s(1 + s

10 )(1 + s
100 )

which implies that

|G(iω)| = 10
ω
√

1 + ( ω10 )2
√

1 + ( ω
100 )2

with low frequency asymptote

|G(iω)| → 10
ω
, ω → 0

and
argG(iω) = −90◦ − arctan ω

10 − arctan ω

100

The gain is drawn approximatively based on a known gain at some point of
the low frequency asymptote,

∣∣ 10
1
∣∣ = 10, and the breakpoints and slopes of the

asymptotes:
Frequency [rad/s] 10 100
Slope −1 −2 −3

The phase curve is drawn based on a couple of samples:
Frequency [rad/s] 2 10 20 50 100
Phase −102◦ −141◦ −165◦ −195◦ −219◦

In addition, one can also use

argG(iω)→ −90◦, ω → 0
argG(iω)→ −270◦, ω →∞

From the Bode digram in Figure 5.4a it follows that ωc = 7.8 rad/s, ϕm = 47◦
and Am = 11. However, these values are not used by the solution to this
problem.
Figure 5.4b (the figure can also be found in Glad&Ljung) gives that the over-
shoot is acceptable if ζ ≥ 0.58. Choose for instance ζ = 0.6. This results
in a desired phase margin ϕm,d = 60◦. According to Figure 5.4c (the figure
can also be found in Glad&Ljung), this also implies a desired gain crossover
frequency:

ωc,dTr = 1.33 ⇒ ωc,d = 1.33
Tr

= 1.33
0.1 = 13.3

At 13.3 rad/s the phase is 29◦ and a phase advance of 31◦ is needed in order to
get the desired phase margin. We suspect a lag compensator will be introduced
later, as we have low frequency requirements. A lag compensator, if designed
according to the prescribed recipe, will decrease the phase by at most 6◦ in
the designed gain crossover frequency. Therefor, we require an additional 6◦
phase advancement and end up in 37◦. To this end, we use a lead compensator
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with β = 0.25 and τD = 1
ωc,d
√
β

= 0.15. K is adjusted to get the desired gain
crossover frequency:

1 = |Flead(iωc,d)G(iωc,d)| = K√
β
· 0.448 ⇒ K = 1.12

The transfer function from the reference input to the control error is given by

E(s) = 1
1 + F (s)G(s)θref(s)

When θref(t) is a step signal, the final value theorem gives

lim
t→∞

e(t) = lim
s→0

sE(s) = 0

even without a lag compensator thanks to the integration in G. The final value
theorem may be used since the system by construction is stable.
In order to handle errors for ramp references, introduce a lag compensator in
the controller. Then |Flag(0)| = 1/γ, and if θref(t) = 10 · t, that is, if

θref(s) = 10
s2

one obtains

lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

s
1

1 + F (s)G(s)
10
s2 = 10

km ·K/γ
< 0.1

which gives γ < 0.1K = 0.112. Take γ = 0.112 to avoid excessively high low
frequency loop gain. According to the rule of thumb, let τI = 10/ωc,d = 0.75.
Answer:

F (s) = 1.12 0.15s+ 1
0.0376s+ 1 ·

0.75s+ 1
0.75s+ 0.112
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Figure 5.4b. Relations between overshoot, M , phase margin, ϕm, resonance gain, Mp,
and relative damping, ζ, for a second order system with no zeros and static gain 1.

5.5 Notation. The notation “A – B – C” is used to say that the system with open
loop Bode plot in row A has its closed loop Bode plot in row B, and its step
response in row C.
A good start is often to look at the static gain and the final value of the step
responses. The static gain of the open loop system and the closed loop system
are related as |Gc(0)| = |Go(0)|

|1+Go(0)| . Systems with the same static gain can
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Figure 5.4c. Relations between gain crossover frequency, ωc, bandwidth, ωB, raise time,
Tr, and relative damping, ζ, for a second order system with no zeros and static gain 1.

then be separated by looking at stability margins, resonance peek, overshoot,
bandwidth, and speed. Three of the combinations are easy to identify:

A – E – C: Finite but non-zero open loop static gain matches non-zero closed
loop static gain less than 1. Infinite stability margins matches step response
without overshoot.
B – C – E: Infinite open loop static gain matches closed loop static gain equal
1, which in turn matches a step response that settles at amplitude 1.
C – A – B: Zero static open loop gain matches zero closed loop gain, which in
turn matches a step response that settles at amplitude 0. It is also possible to
relate the Bode plots by their high frequency gains.

The remaining open loop Bode plots are D and E. These should be matched
with the closed loop gain curves B and D, and step responses A and D. Both
open loop Bode plots show a static gain near 1, which will make it hard (albeit
possible) to use that feature for identification. Easier is to approximately locate
the (closed loop) resonance frequency, which will be near the frequency where
the Nyquist curve minimizes its distance to −1. That is, the magnitude shall
be near 1, and the phase near −180◦ in the open loop Bode plot. This happens

at a lower frequency in open loop Bode plot D than in E. The resonance peak
in the closed loop gain curve B is located at a higher frequency than that in
D. Finally, a higher resonance frequency gives faster oscillations in the step
response, and the oscillations in step response A are much quicker than those
in D. Alternatively the bandwidth’s relation to response speed may be used;
the bandwidth is higher in closed loop B than in D, and step response A is
quicker than D. Anyway, the last two combinations are D–D–D, E–B–A.

5.6
G(s) = 10

s(1 + s
20 )(1 + s

40 )(1 + s
100 )

gives
|G(iω)| = 10

ω
√

1 + ( ω20 )2
√

1 + ( ω40 )2
√

1 + ( ω
100 )2

with low frequency asymptote

|G(iω)| → 10
ω
, ω → 0

and
argG(iω) = −90◦ − arctan ω

20 − arctan ω

40 − arctan ω

100

The gain is drawn approximatively based on a known gain at some point of
the low frequency asymptote,

∣∣ 10
10
∣∣ = 1, and the breakpoints and slopes of the

asymptotes:
Frequency [rad/s] 20 40 100
Slope −1 −2 −3 −4

The phase curve is drawn based on a couple of samples:
Frequency [rad/s] 10 20 50
Phase −136◦ −173◦ −236◦

In addition, one can also use

argG(iω)→ −90◦, ω → 0
argG(iω)→ −360◦, ω →∞

The Bode plot in Figure 5.6a gives that ωc = 8.9 rad/s, ϕm = 48◦ and
Am = 3.9. However, it is only the gain crossover frequency which directly
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interests us here; an increase of the speed with a factor of two and a preserved
damping imply ωc,d = 18 rad/s and ϕm,d = ϕm. From the figure, we have
ϕ∆ = argG(iωc) − argG(iωc,d) = 35◦. We suspect a lag compensator will be
introduced later, as we have low frequency requirements. A lag compensator,
if designed according to the prescribed recipe, will decrease the phase by at
most 6◦ in the designed gain crossover frequency. Therefor, we require an
additional 6◦ phase advancement and end up in 41◦ To this end, use a lead
compensator (with standard notation of the parameters) with β = 0.21 and
τD = 1

ωc,d
√
β

= 0.12. K is adjusted to get the desired crossover frequency:

|G(iωc,d)Flead(iωc,d)| = |G(iωc,d)| · K√
β

= 1 ⇒ K =
√
β

0.37 = 1.2

The transfer function from the reference input to the control error is given by

E(s) = 1
1 + F (s)G(s)θref(s)

When θref(t) is a step, the final value theorem gives

lim
t→∞

e(t) = lim
s→0

sE(s) = 0
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−160◦

−155◦

Figure 5.7a. Nyquist curve in two scales. Left: small scale. Right: big scale.

even without a lag compensator thanks to the integration in G(s). Here, the
final value theorem may be used since the system by construction is stable
(the phase margin is positive).
In order to handle errors for ramp references, introduce a lag compensator
(with the usual notation of parameters) in the controller. Then |Flag(0)| = 1/γ,
and if θref(t) = 10 · t, that is, if

θref(s) = 10
s2

one obtains

lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

s
1

1 + F (s)G(s)
10
s2 = 10γ

km ·K
< 0.01

which gives γ < 0.01K = 0.012. Take γ = 0.012 to avoid excessively high low
frequency loop gain. According to the rule of thumb, let τI = 10/ωc,d = 0.56.
Answer:

F (s) = 1.2 0.12s+ 1
0.21 · 0.12s+ 1 ·

0.56s+ 1
0.56s+ 0.012

5.7 Based on the Bode plot we plot the Nyquist curve, see Figure 5.7a. The system
is stable when the point −1 is not encircled by the Nyquist curve. This gives

K <
1
5 or 1

0.6 < K <
1

0.2
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5.8 A time delay of T seconds changes the phase curve with −ωT rad at frequency
ω. The amplitude curve is not affected.

a) The crossover frequency is ω = 1 rad/s and the phase margin is 0.698 rad.
This gives the stability condition

0.698 rad− 1 rad/s ·T > 0

that is, T < 0.698 s.

b) Plot the Nyquist curve as in Figure 5.8a. The point −1 is not encircled if
the phase is decreased at least 40◦ at ω = 7 rad/s but not more than 80◦
at ω = 5 rad/s. This gives the following conditions

7 rad/s ·T > 40◦ = 0.698 rad and 5 rad/s ·T < 80◦ = 1.396 rad

that is, 0.1 s < T < 0.28 s.
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−100◦

ω = 5.0

−140◦

ω = 7.0

−220◦
ω = 10.0

Figure 5.8a

5.9 a) The step response of GA is

y(t) = L−1{Y (s)} = kA

a
(1− e−at)→ kA

a
, t→∞

From the figure it is seen that kA/a = 0.5. At time t = 1/a we have

y(1/a) = kA

a
(1− e−1) = 0.5 · 0.63 = 0.315 = y(2)

Thus a = 0.5, which gives kA = 0.25:

GA(s) = 0.25
s+ 0.5

which is rewritten to make apparent the amplitude and phase

GA(iω) = 0.25√
ω2 + 0.25

e−i arctan 2ω

The corresponding Bode plot is shown in Figure 5.9a. To see howGA mod-
ifies the Bode plot of Gm, consider for instance the frequency 0.1 rad/s.
When computing the new gain, the logarithmic scale in the diagrams is
used to do directly obtain the logarithm of the product of the two systems’
gains:

|Gm(0.1i)| = 100.15

|GA(0.1i)| = 10−0.31

|GA(0.1i)Gm(0.1i)| = 100.15 · 10−0.31 = 100.15+(−0.31) = 10−0.16

The new phase is obtained by adding the arguments of the two transfer
functions:

argGm(0.1i) = −135◦

argGA(0.1i) = −11◦

argGA(0.1i)Gm(0.1i) = argGA(0.1i) + argGm(0.1i) = −146◦

Carrying out the procedure of “adding Bode plots” at a range of selected
frequencies results in the Bode plot in Figure 5.9b, where Go = GAGm.

b) In Figure 5.9b it can be seen that the crossover frequency is 0.078 rad/s.
Hence, let ωc,d = 0.4 to obtain a 5 times as fast system. At the desired
crossover frequency, the phase must be advanced by 68◦ to maintain the
phase margin. To this end, employ two equal lead compensators (using
standard notation of the parameters), each advancing the phase by 34◦;
take β = 0.28, and τD = 1

ωc,d
√
β

= 4.7.
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The controller gain is adjusted by the factorK to get the desired crossover
frequency:

|G(iωc,d)Flead(iωc,d)|2 = 1 ⇒

K2 =
√
β

2

0.047 = 6.0

Answer:

F (s) =
(√

64.7s+ 1
1.3s+ 1

)2

5.10
G(s) = 1

s
G1(s)

gives

|G(iω)| = |G1(iω)|
ω

argG(iω) = G1(iω)− 90◦

A P controller gives a phase margin of 40◦ when

argG(iω) = −140◦ ⇒ argG1(iω) = −50◦

From Figure 5.10a it is seen (although not easily) that this occurs at ωc,P =
0.52 rad/s, which is also the highest possible gain crossover frequency possible
to obtain with P control. The desired increase in speed by a factor of two is
thus achieved by a new gain crossover ωc,d = 1.05 rad/s. Figure 5.10a gives

argG1(iωc,d) = −107◦ ⇒ argG(iωc,d) = −197◦

A desired phase margin of 40◦ requires that the phase be advanced by 57◦ +
6◦ = 63◦. To this end, employ a two equal lead compensators (using standard
notation of parameters), each advancing the phase by 32◦; take β = 0.31 and
τD = 1

ωc,d
√
β

= 1.72. The controller gain is adjusted by the factor K to get
the desired crossover frequency:

|Flead(iωc,d)|2 · |G(iωc,d)| = 1 ⇒ K2 1
√

0.312
0.024
1.05 = 1 ⇒ K =

√
13.3
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In order to handle errors for ramp references, introduce a lag compensator
(with the usual notation of parameters) in the controller. Then |Flag(0)| = 1/γ,
and |F (0)| = K2/γ. To choose γ, consider the Laplace transform of the control
error,

E(s) = 1
1 + F (s)G(s)R(s)

If r(t) = A · t (a ramp), that is, if

R(s) = A

s2

one obtains

lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

s
1

1 + F (s)G1(s)/s
A

s2 = lim
s→0

A

s+ F (s)G1(s)

= A

|F (0)| · |G1(0)|

This shows that the ramp error is inversely proportional to the static gain of the
controller. According to Figure 5.10a, the highest possible controller gain when

using a P controller and a phase margin of 40◦ is required, is 8.6ωc,P = 4.5
(remember that 1

s contributes with 1
ωc,P

to the loop gain at ωc,P). Hence, to
reduce the ramp error to 1% of that of the P controller, the static gain of the
new controller has to be at least 450. Therefore, take γ = K2/450 = 0.0296,
and, according to the rule of thumb, let τI = 10/ωc,d = 9.52.
Answer:

F (s) = 13.3 ·
(

1.72s+ 1
0.31 · 1.72s+ 1

)2 9.52s+ 1
9.52s+ 0.0296

5.11 a) The Nyquist curve is drawn based on the following observations: First,
as ω → 0, |G(iω)| increases and argG(iω) → −90◦. Then, as ω → ∞,
|G(iω)| → 0 and argG(iω) decreases. We also have, ωc = 0.78 rad/s with
argG(iωc) = −133◦, and finally ωp = 3.2 rad/s with |G(iωp)| = 0.091.
The resulting Nyquist curve is shown in Figure 5.11a.

−0.091 1

Re

Im

ωc = 0.78

ωp = 3.2

133◦

Figure 5.11a

b) The gain margin is 1/ |G(iωp)| = 11, which is also the highest possible
proportional gain that preserves closed loop asymptotic stability.

c) The Laplace transform of the control error is related to the reference as
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follows:
E(s) = 1

1 +KG(s)R(s)

With
r(t) = 10t ⇒ R(s) = 10

s2

and using the final value theorem (from b we have that the system is
stable), this yields

lim
t→∞

e(t) = lim
s→0

sE(s) = 10
2 lims→0 sG(s)

For small ω we have

G(s) ≈ 1
s
⇒ sG(s)→ 1, s→ 0 ⇒ lim

t→∞
e(t) = 5

d) Raising the gain curve in the Bode plot by K = 2 results in

ωc = 1.24 rad/s ϕm = 32◦

The closed loop system becomes unstable when the phase margin is eaten
up by the phase lag of the delay,

arg e−iωT = −ωT

so in order to get an asymptotically stable closed loop system it is thus
required that

ωcT < 32◦ ⇒ T <
32◦

1.24 rad/s = 0.55 rad
1.24 rad/s = 0.44 s

5.12 a) For this amplitude curve we cannot say anything about the stability since
the system can contain an arbitrarily large time delay which could make
the gain margin less than 1.

b) It is stable, since the gain is less than 1 for all frequencies; there is no risk
that the Nyquist curve could encircle −1 under these circumstances.

5.13 a) Enter the system and the
regulator. Draw the Bode
plot. This gives ωc =
5 rad/s, ωp = 9.5 rad/s,
Am = 3.5 and ϕm = 27◦.

>> s = tf( ’s’ );
>> G = 725 / ...

( ( s + 1 ) * ( s + 2.5 ) * ( s + 25 ) );
>> F = 1;
>> margin( F * G )
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b) From a) we know that at ωc,d = 5 rad/s the phase margin is 27◦. In order
to have ϕm ≥ 60◦ we need to increase the phase by approximately 40◦,
including 6◦ extra to compensate for a future lag compensator. This is
obtained using a lead compensator (using standard notation of parame-
ters) with β = 0.21. The phase compensation is located at the correct
frequency by taking τD = 1

ωc,d
√
β

= 0.43.

The controller gain is adjusted by the factorK to get the desired crossover
frequency:

K · 1√
β
· |G(i5)| = K · 1√

0.21
· 1 = 1 ⇒

K = 0.46

The requirement e0 = 0, that is, no steady state error for a unit step
reference signal, is achieved by incorporating a lag compensator (using
standard notation of parameters) with γ = 0, and, using the rule of
thumb for the choice of τI, we take τI = 10/5 = 2.

53



Generate a lead-lag regula-
tor and make a Bode plot of
the open loop system. Both
the crossover frequency and
the phase margin require-
ments are satisfied.

>> wc = 5;
>> b = 0.21;
>> tD = 1 / ( wc * sqrt( b ) );
>> K = sqrt( b ) / 1;
>> Flead = K*( tD * s + 1 ) / ( b * tD * s + 1 );
>> g = 0;
>> tI = 10 / wc;
>> Flag = ( tI * s + 1 ) / ( tI * s + g );
>> F = Flead * Flag;
>> margin( F * G )
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Plot the step response of the
closed loop system.

>> Gc = feedback( F * G, 1 );
>> step( Gc, 10 )
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c) Compute the transfer func-
tion of the closed loop sys-
tem for F (s) = 1. Draw
its Bode plot side by side
with the Bode plot for the
compensated system. (The
curves of the compensated
system are dash-dotted.)

>> Gc1 = feedback( G, 1 );
>> bode( Gc1, ’-’, Gc, ’-.’ )

−150

−100

−50

0

50

M
ag

ni
tu

de
 (d

B)

10−1 100 101 102 103
−270

−225

−180

−135

−90

−45

0

Ph
as

e 
(d

eg
)

Bode Diagram

Frequency  (rad/sec)

Comparing the two Bode plots we see that the main difference is that
the height of the resonance peak has been reduced, that is, the damping
of the closed loop system has been increased due to the increased phase
margin. We also see that the bandwidth is approximately the same, since
we have not changed the gain crossover frequency.

d) Calculate the transfer function from the reference signal to the error:

E(s) = R(s)− F (s)G(s)E(s) ⇒ E(s) = 1
1 + F (s)G(s)R(s)

Let

S(s) = 1
1 + F (s)G(s)

Enter the transfer function
S.

>> S = 1 / ( 1 + F * G );

Create a time vector be-
tween 0 and 30 with step
0.1, and a reference signal
vector r(t) = t.

>> t = ( 0 : 0.1 : 30 ).’;
>> r = t;
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Plot the result. Even
though the steady state er-
ror for a step reference sig-
nal is zero (due to γ = 0),
the steady state error for
a ramp reference signal is
non-zero.

>> y = lsim( S, r, t );
>> plot( t, y )
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5.14 The amplitude and phase at ω = 0.2 rad/s is 0.0162 and −140◦. We need a
phase advance of 20◦ to obtain a phase margin of 60◦. A lag part is needed to
remove the steady state error. Hence we need 6◦ more in phase advance, all in
all a 26◦ phase advance. This is obtained by employing a lead-lag compensator.
First, β = 0.4 and τD = 1

ωc,d
√
β

= 7.9 give the required phase lead at the

desired gain crossover frequency. Then K =
√
β

0.0162 = 39 achieves that gain
crossover frequency. Finally, τI = 10/ωc,d = 50 and γ = 0 removes the steady-
state error.
The resulting controller is:

F (s) = 397.9s+ 1
5s+ 1

50s+ 1
50s

5.15 a) Combining the system’s transfer function with the controller K, the loop
gain becomes

Go(s) = 0.25K
(τ1s+ 1)(τ2s+ 1)s

which leads to the error coefficients

e0 = 1
1 + lims→0Go(s) = 0, e1 = 1

lims→0 sGo(s) = 4
K

provided that Gc is stable. The Bode plot shows that stability of Gc under
proportional control may be evaluated via the gain margin Am, that is,
Gc is stable if K < Am. The Bode plot gives Am = 4000, so the condition
under which the error coefficients are defined is

K < 4000

b) The problem formulation suggests the use of a lead-lag compensator.
Let ωc,d denote the desired gain crossover frequency 100 rad/s. The Bode
plot gives |G(iωc,d)| = 5 · 10−4 and argG(iωc,d) = −175◦. To obtain the
desired phase margin, a phase lead of ((−180◦)+50◦+6◦)−(−175◦) = 51◦
is needed, where 6◦ has been added to ensure that the phase margin is
kept even if a lag compensator is used, which have reason to suspect that
it will, since we have requirements on tracking performance. To begin
with, we design a lead compensator with β = 0.13 to achieve the phase
advance, and τD = 1

ωc,d
√
β

= 0.0277. The desired crossover frequency is
obtained by adjusting the gain of the open loop system by introducing a
factor, K, in the controller:

1 = |Flead(iωc,d)G(iωc,d)| = K√
β
· 5 · 10−4 ⇒ K = 721

Since the system contains an integrator, the step error coefficient e0 is
zero. The ramp error coefficient requirement is

e1 = 1
lims→0 sF (s)G(s) < 0.001 ⇐⇒

4
lims→0 F (s) < 0.001 ⇐⇒

4000 < lim
s→0

F (s)

but the controller KFlead doesn’t fulfill this requirement since

lim
s→0

Flead(s) = 721

Hence, the static gain of the controller must be increased by the factor
4000
721 = 5.55. To this end, introduce a lag compensator in the controller,

Flag = τIs+ 1
τIs+ γ
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with γ = 1/5.55 and τI = 10/ωc,d = 0.1 (see the discussion of lag com-
pensators in Glad&Ljung!).
The resulting controller is

F (s) = 7210.0277s+ 1
0.0036s+ 1 ·

0.1s+ 1
0.1s+ 0.18

5.16 a) The phase curve crosses −120◦ at ω = 0.27 rad/s and there the gain is
| G0(iω) |≈ 0.35. The maximum cross-over frequency is hence ωc = 0.27
rad/s and it is acheived for K = 1/0.35 = 2.86.

b) The reference signal r(t) = 0.5t implies that R(s) = 0.5/s2. The steady
state error can be computed using the limit value theorem, which implies

lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

s
1

1 + K · 0.1
s(s+1)2

0.5
s2 = 5

K
≈ 1.75

c) In order to reduce the steady state error it will be necessary to introduce
a lag compensation, but in order to maintain phase margin 60◦ after the
lag compensation has been included it will be necessary to introduce a
lead compensation. Introduce therefore the lead compensation

Flead(s) = K
τDs+ 1
βτDs+ 1 .

In order to guarantee phase margin 60◦ the phase needs to be increased
by ≈ 6◦ ⇒ β = 0.7. With ωc,d = 0.27 rad/s from problem a) this implies
that τD = 1

ωc,d
√
β

= 4.44. The gain K is given by the relationship

|Flead(iωc,d)G(iωc,d)| = K
1√
β

0.35 = 1

which gives K = 2.39
In order to reduce the steady state error we introduce

Flag(s) = τIs+ 1
τIs+ γ

The requirement on the steady state error, using the same reference signal
as in b), gives

lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

s
1

1 + Flead(s)Flag(s)G(s)
0.5
s2 = γ

K
5 ≤ 0.175

which implies that γ ≤ 0.175 ·K/5 ≈ 0.1. Using the rule of thumb from
Glad&Ljung implies τI = 10/ωc = 37. The entire feedback controller
hence becomes

F (s) = Flead(s)Flag(s) = 2.39 (4.4s+ 1)
(0.7 · 4.4s+ 1)

(37s+ 1)
(37s+ 0.1)

5.17 In B and C the gain of GO(iω) tends to infinity when ω tends to zero, which
means that they can be combined with I and II since these curves have steady
state gain one, i.e. GC(0) = 1. The curve in B has higher cross-over frequency
and lower phase margin, which implies that it corresponds to I, which has
the highest resonance peak. This gives the combinations B - I and C - II
respectively. Using the same arguments it can be seen that A has higher
cross-over frequency and lower phase margin, which means that it correponds
to III. Hence D corresponds to IV.

5.18 a) The phase for low frequencies tends to −90◦ which implies that the system
contains an integrator, i.e. a factor s in the denominator, which means
that p = 1. For high frequencies the phase tends to −270◦ which means
that the difference between the order of the denominator and the order
of the numerator is three, i.e. p+ n−m = 3.

b) Use a lead-lag compensator, i.e.

F = K
τDs+ 1
τDβs+ 1

τIs+ 1
τIs+ γ

.

At the desired cross-over frequency ωc,d = 3 we have argG(i3) ≈ −178◦
and |G(i3)| = 0.1. In order to obtain phase margin 45◦, also including a
lag compensator, the phase has to be increased by 45− 2 + 6 = 49◦. This
is obtained by choosing

β = 0.13, τD = 1
ωc,d
√
β

= 0.92.

Take also K = 3.6 such that

|Flead(iωc,d| · |G(iωc,d)| = K√
β
· 0.1 = 1.
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For low frequencies the transfer function can be approximated by

G(s) ≈ A

s

where the Bode diagram, by looking at ω = 0.01, gives that A = 1.
The steady state error when r(t) is a unit step becomes

lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

s
1

1 + FG(s)
1
s

= lim
s→0

1
1 + K

γ
1
s

= 0.

and the steady state error when r(t) is a unit ramp becomes

lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

s
1

1 + FG

1
s2 = lim

s→0

1
K
γ

1
ss

= γ

K
,

By choosing
γ = 0.01K = 0.036,

and
τI = 10

ωc,d
= 3.3.

according to the rule of thumb we get

F (s) = 3.6 (0.92s+ 1)
(0.92 · 0.13s+ 1)

(3.3s+ 1)
(3.3s+ 0.036) .

5.19 B and C have a smaller stationary error than A and D ⇒ Higher K ⇒ B and
C↔ i,ii, A and D↔ iii,iv. Small β ⇒ Large increase in phase margin⇒ Less
oscillatory ⇒ A and C ↔ i,iii, B and D ↔ ii,iv.
Answer: A – iii, B – ii, C – i and D – iv.

5.20 a)
Y (s) = G(s)U(s)⇔
⇔G(s)F (s) (R(s)− Y (s))⇔
⇔ (1 + F (s)G(s))Y (s) = F (s)G(s)R(s)⇔

⇔Y (s) = F (s)G(s)
1 + F (s)G(s)R(s)

b) |F (iωc)G(iωc)| = 1⇔ |G(iωc)| = 1⇔ ωc = 1rad/s
ϕm = arg (F (iωc)G(iωc))− (−180◦) = −130◦ + 180◦ = 50◦

The closed-loop system is stable because ϕm > 0

c) To have the closed-loop twice as fast, the crossover frequency needs to
be doubled. Let the desired crossover frequency be ωc,d = 2ωc = 2rad/s.
Then,

|KG(iωc,d)| = 1⇔ K = 1
|G(iωc,d)|

⇒ K = 1
0.3 ⇔ K = 3.33

d) The phase margin has decreased to ϕm,p = 5◦, which in the time domain
means that the overshoot increased for the closed-loop system.

e) Desired increase in phase margin: ∆ϕm,d = ϕm,d − ϕm,p = 45◦. This
gives β = 0.18 (check Fig. 5.13 in Glad & Ljung).
τD = 1

ωc,d
√
β

= 1.18

|Flead(iωc,d)G(iωc,d)| = 1⇒ K
∣∣∣ τDiωc,d+1
τDβiωc,d+10.3

∣∣∣⇒ K = 1.4

f) lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

s 1
1+F (s)G(s)

1
s = 1

1+KG(0) = 0.17

g) lim
t→∞

e(t) = 1
1+F (0)G(0) = 0⇒ F (0)→∞; F (0) = K

γ ⇒ γ = 0

h) lim
t→∞

e(t) = 0.01⇔ 1
1+K

γ G(0) = 0.01⇒ 1 + K
γ G(0) = 100⇒ γ = 0.048

τI = 1
ωc,d

= 5s
If τI is too small, the phase margin decreases more; if τI is too large, the
steady state value is only reached in practice at very small frequencies.

5.21 Systemet G(s) = 2
s+1e

−0.25s regleras med en P-regulator med K = 1/
√

2.
Skärfrekvensen ωc ges av

1 = |KG(iωc)| =
2K√
ω2
c + 1

⇒ 4K2 = ω2
c + 1⇒ ωc =

√
4K2 − 1 = 1.

Fasmarginalen ϕm ges av

ϕm = π + arg(KG(iωc)) = π − 0.25ωc − arctanωc =

= π − 0.25− arctan 1 = 3π − 1
4 ≈ 121◦.
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Vi vill bestämma en lead-lag-regulator F (s) som ger dubbla skärfrekvensen
och samma fasmarginal. Vid ωc,ny = 2 är fasmarginalen

ϕm,ny = π + argG(2i) = π − 0.5− arctan 2 ≈ 88◦.

Det innebär att vi måste höja fasen med

∆ϕm = 121◦ − 88◦ + 6◦ = 39◦,

med 6◦ för lag-länk. Det ger

β = 1− sin(∆ϕm)
1 + sin(∆ϕm) = 0.2, τD = 1

ωc,ny
√
β

= 1.1.

Då har vi Flead = 1+τDs
1+βτDs .

För att få rätt skärfrekvens bestämmer vi ett K ′ så att

1 = |K ′Flead(iωc)G(iωc)| = 2K ′ 1√
β(ω2

c,ny + 1)
= 2K ′

√
1

5β = 2K ′ ⇒ K ′ = 1
2

Det stationära felet måste vara mindre än 0.05 när referensen är ett steg. Vi
lägger till en lag-länk Flag = 1+τIs

τIs+γ , där τI = 10
ωc,ny

= 5 och γ bestäms så att

1
1 +K ′Flead(0)Flag(0)G(0) = 1

1 + 2K ′/γ ≤ 0.05⇒ γ ≤ 2K ′

19 = 0.05

5.22 a) Vi söker F (s) = Flead(s)Flag(s).

Vi börjar med den fasavancerande länken

Flead(s) = K
τDs+ 1
βτDs+ 1 .

Den nya skärfrekvensen är wc,d = 30 rad/s.
Eftersom ϕm = 40◦ och ϕm = arg(F (iwc,d)G(iwc,d)) + 180◦ =
arg(Flead(iwc,d)) + arg(Flag(iwc,d)) + arg(G(iwc,d)) + 180◦, så får vi

arg(Flead(iwc,d)) = −140◦ − arg(Flag(iwc,d))− arg(G(iwc,d)). Från bode-
diagrammet har vi arg(G(iwc,d)) ≈ −180◦ och från tumregeln om fas-
retarderande länkar, vet vi att den minskar fasen med 6◦ för lämpliga
parameterval. Alltså arg(Flead(iwc,d)) = −140◦ + 6◦ + 180◦ = 46◦ och
β = 0.17. Med detta β får vi τD = (wc,d

√
β)−1 = 0.0812.

Vi väljer K så att wc,d = 30: |F (iwc,d)G(iwc,d)| = 1. Detta ger

|Flead(iwc,d)||Flag(iwc,d)||G(iwc,d)| = 1.

Från tumregeln följer |Flag(iwc,d)| ≈ 1, och

K√
β

|k1|
|iwc,d(iwc,d + a)(iwc,d + b)| = 1,

vilket ger K = 395.17.
Den fasretarderande länken ges av

Flag(s) = τIs+ 1
τIs+ γ

,

och enligt tumregeln ska τI = 10/wc,d = 0.33. Vi vill välja γ så att
statiska felet vid steginsignaler är noll. Enligt slutvärdesteoremet (slutna
systemet är asymptotiskt stabilt, se ovan)

lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

s
1

1 + Flead(s)Flag(s)G(s)
1
s
,

vilket ger

lim
s→0

(s+ a)(s+ b)(s+ c)(βτDs+ 1)(τIs+ γ)
(s+ a)(s+ b)(s+ c)(βτDs+ 1)(τIs+ γ) +Kk1(τDs+ 1)(τIs+ 1) =

= abcγ

abcγ +Kk1
.

Alltså ska vi välja γ = 0.
Den resulterande regulatorn ges av

F (s) = Flead(s)Flag(s) = 395.170.0812s+ 1
0.0137s+ 1

0.33s+ 1
0.33s .
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b) Den verkliga öppna loopen ges av F (s)G0(s) = F (s)G(s)e−Tds. Notera
att |F (jw)G0(jw)| = |F (jw)G(jw)e−jTdw| = |F (jw)G(jw)||e−jTdw| =
|F (jw)G(jw)|, medan arg(F (jw)G0(jw)) = arg(F (jw)G(jw)) − Tdw.
Eftersom tidsfördröjningen bara påverkar fasen tittar vi på fasmarginalen.
Regulatorn är designad så att ϕm = 40◦ = 40◦

180◦π rad. Alltså ϕ0
m =

ϕm−Tdwc. Slutna systemet är stabilt om ϕ0
m > 0, vilket ger ϕm−Tdwc >

0⇔ Td <
ϕm
wc

= 0.0233 s.

c) Slutna systemets (Gc) snabbhet ges av dess bandbredd, vilken är wB ≈
50 rad/s. Ett lågpassfilter Fr(s) = 1

1+τs uppfyller |Fr(jw)| ≈ 1 för
w < τ−1, medan för w > τ−1 avtar förstärkningen med lutning −1 i
ett bodediagram. Approximativt gäller då att Fr bara reducerar hela
systemets bandbredd om wB > τ−1, vilket ger τ > w−1

B = 1
50 .
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6 Sensitivity and Robustness
6.1 The sensitivity function is the transfer function from v to y. The block diagram

gives

Y (s) = 1
1 + K

s(s+1)
V (s) = s2 + s

s2 + s+K︸ ︷︷ ︸
S(s)

V (s)

|S(iω)| = ω
√
ω2 + 1√

(K − ω2)2 + ω2

For ω = 1 we get

|S(1i)| =
√

2√
(K − 1)2 + 1

The amplitude of y(t) is less than the amplitude of v(t) if |S(1i)| < 1, that is,
√

2√
(K − 1)2 + 1

< 1 ⇔ 2 < (K − 1)2 + 1 K>0⇔ K > 2

6.2 Determine the upper limit of the relative model error

G∆(s) = G0(s)−G(s)
G(s) = s ⇒ |G∆(iω)| = ω

The stability is then guaranteed if

|Gc(iω)| =
∣∣∣∣ F (iω)G(iω)
1 + F (iω)G(iω)

∣∣∣∣ < 1
ω

∀ω

No steady state error for steps implies Gc(0) = 1 and the bandwidth ωB is
thus defined by the smallest value that satisfies

|Gc(iω)| < 1√
2
, ω > ωB

The curve 1/ω crosses 1/
√

2 at ω =
√

2. Thus, the bandwidth must be less
than

√
2. However, the curve |Gc(iω)| asymptotically approaches a line with

slope −20 dB20/decade, which implies that ωB cannot be arbitrarily close to√
2.

For example, if Gc is a first order system, then the breakpoint of the asymptote
must be 1 rad/s if it shall coincide with 1/ω. The first order system with that
asymptote is 1

1+s/1 , which has a bandwidth of 1 rad/s. If Gc would be a higher
order system, the bandwidth could be made slightly higher, but the limited
information about Gc excludes this possibility.
Answer: The maximum bandwidth is ωB = 1.

−1

Re

Im

Go

Figure 6.3a

6.3 The disturbance is amplified when the magnitude of the sensitivity function
exceeds one, that is, when ∣∣∣∣ 1

1 +Go(iω)

∣∣∣∣ > 1

that is
|1 +Go(iω)| < 1

which corresponds to the part of Go(iω) that is within a circle with center at
−1 and radius 1, see Figure 6.3a.
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6.4 Let
g(ω) = 0.9√

1 + ω2

denote the upper bound on the norm of the relative model error. Robustness
condition:

|T (iω)| =
∣∣∣∣ F (iω)G(iω)
1 + F (iω)G(iω)

∣∣∣∣ < 1
g(ω) ∀ω

Now,

F (s)G(s) = s+ 10
s

1
s+ 10 = 1

s
⇒∣∣∣∣ F (iω)G(iω)

1 + F (iω)G(iω)

∣∣∣∣ =
∣∣∣∣ 1
iω + 1

∣∣∣∣ = 1√
ω2 + 1

so the robustness condition becomes

∀ω : 1√
ω2 + 1

<

√
ω2 + 1
0.9 ⇔

∀ω : 0.9 < ω2 + 1

which is satisfied.

Answer: Yes.

6.5 a) Using notation similar to that in Glad&Ljung, we have

G∆(s) = e−sT − 1

that is, G∆(iω) = cosωT − 1− i sinωT . This implies

|G∆(iω)| =
√

2− 2 cosωT

and in particular

|G∆(iω)| =
{

0, when cosωT = 1
2, when cosωT = −1

In Figure 6.5a, |G∆(iω)|−1 is plotted as a function of ωT .

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20 25 30

1
/
√

2
−

2
co

s
ω

T

ωT

Figure 6.5a

b) The robustness criterion results in

∀ω :
∣∣∣∣ F (iω)G(iω)
1 + F (iω)G(iω)

∣∣∣∣ < 1
|G∆(iω)|

Figure 6.5a therefore provides the answer.
Answer: ∣∣∣∣ F (iω)G(iω)

1 + F (iω)G(iω)

∣∣∣∣ < 1
2

6.6 a) First identify the relative model error:

G0(s) = G(s) + G̃(s) = G(s)
(

1 + G̃(s)
G(s)

)
that is,

G∆(s) = G̃(s)
G(s)

The robustness criterion

∀ω :
∣∣∣∣ 1
G∆(iω)

∣∣∣∣ =
∣∣∣∣G(iω)
G̃(iω)

∣∣∣∣ > ∣∣∣∣ KG(iω)
1 +KG(iω)

∣∣∣∣
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gives

∣∣G̃(iω)
∣∣ < |iω(iω + 5) +K|

|Kiω(iω + 5)| = 2
25 ·

√
(25/2− ω2)2 + 25ω2

ω2(ω2 + 25) =

= 2
25 ·

√
ω4 + (25/2)2

ω2(ω2 + 25) =: g(ω)

Because g(ω) → 2/25 as ω → ∞ stability cannot be guaranteed when
G̃(s) = 1. Also note that the requirement that G0(iω)F (iω) → 0 as
ω →∞ fails, since G0(iω)→ 1, ω →∞.

b) When G̃(s) = α the closed loop system becomes

KG0(s)
1 +KG0(s) = K(1 + αs(s+ 5))

s(s+ 5) +K(1 + αs(s+ 5))

with characteristic equation

s2(2 + 25α) + 5s(2 + 25α) + 25 = 0

Rouths algorithm gives the condition

2 + 25α > 0 ⇔ α > −2/25

This is not contradictory since the robustness criterion is a sufficient but
not necessary condition.

6.7 a) The characteristic equation can be determined for a generic nominal loop
gain. Note that you are not required to derive the generic formula — just
make sure that you are able to determine the correct polynomials P (s)
and Q(s) below. Let

Go(s) = b(s)
a(s)

denote the nominal loop gain. The true closed loop system becomes

Gc(s) =
b(s)
a(s)

α
s+α

1 + b(s)
a(s)

α
s+α

= b(s)α
a(s)(s+ α) + b(s)α = b(s)α

a(s)s+ (a(s) + b(s))α

and has the same root locus with respect to α as the open loop system

a(s) + b(s)
a(s)s = Go + 1

s

has with respect to a proportional feedback. This can be used to draw
the root locus using Matlab. However, to draw the root locus by hand,
we use that here Go(s) = KG(s), so

b(s) = 4 a(s) = s(s+ 1)

which lets us identify the polynomials P and Q in the characteristic equa-
tion P (s) + αQ(s) = 0 as

P (s) = a(s)s = s2(s+ 1) Q(s) = a(s) + b(s) = s2 + s+ 4

� Starting points ⇒ zeros of P (s): 0 (double), and −1
End points ⇒ zeros of Q(s): − 1

2 ± i
√

15
2

� Number of asymptotes: 3− 2 = 1.
Direction of asymptote: 1

1 ·π, that is, the negative real axis.

� Part of the real axis that belongs to the root locus: (−∞, −1].

� Intersection with the imaginary axis: Set s = iω and solve the char-
acteristic equation:

−ω2(iω + 1) + α(−ω2 + iω + 4) = 0

Isolate real and imaginary parts:{
−ω2(1 + α) + 4α = 0
−ω3 + αω = 0

with solutions

(α = 0, ω = 0 ) or (α = 3, ω = ±
√

3 )

The root locus is shown in Figure 6.7a, from which the conclusion imme-
diately follows.
Answer: Asymptotically stable for α > 3.
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Figure 6.7a

b) Begin by identifying the relative model error:

G0(s) = G(s) α

(s+ α) = G(s)
(

1 + α

(s+ α) − 1︸ ︷︷ ︸
G∆(s)

)

Thus
1

|G∆(iω)| =
∣∣∣∣s+ α

−s

∣∣∣∣ =
√
ω2 + α2

ω
=: f(ω)

The robustness criterion ∀ω : |Gc(iω)| < f(ω) is fulfilled if the low fre-
quency asymptote of f(ω) exceeds the resonance peak at ω = 2, where
|Gc(i2)| = 2. This gives the condition

√
4 + α2

2 > 2 α>0⇔ α >
√

12

Answer: α >
√

12

c) The robustness criterion gives a sufficient but not necessary condition,
that is, the system can be stable even if the criterion is not satisfied.
In this case for 3 < α <

√
12. With a root locus we obtain an exact

characterization of the stabilizing parameter values, that is, a necessary
and sufficient condition.

6.8 Since the equation for Gc has the same “F” in the numerator and the denom-
inator, it follows that the complementary sensitivity function T and Gc are
the same. It can be shown that both F (iω)G(iω) and F (iω)G0(iω) tend to 0
as ω → ∞. The robustness criterion guarantees stability if |T (iω)| < 1/(γω)
since

|G∆(iω)| < γω ⇒ 1
γω

<
1

|G∆(iω)|
The transfer function T has a resonance peak at ω = 1 (seen in Figure 6.8a,
since T = Gc) with |T (i1)| = 35, which leads to the condition

35 < 1
γ · 1 ⇔ γ <

1
35

Trivially, γ must also be positive.
Answer: 0 ≤ γ < 1

35

6.9 The closed loop system becomes

Y (s) = V (s) +Go(s)(R(s)−N(s)− Y (s)) ⇒

Y (s) = Go(s)
1 +Go(s) (R(s)−N(s)) + 1

1 +Go
V (s)

where we can identify

T (s) = Go(s)
1 +Go(s) S(s) = 1

1 +Go(s)

Notice that S(s) + T (s) = 1. In the problem formulation we have Y (s) =
S(s)V (s) since the other inputs are zero. Hence, for v(t) = sin t, we have

L−1 {SV } (t) = 1√
2

sin(t− π

4 )

and thus for n(t) = sin t,

Y (s) = −T (s)N(s) = −(1− S(s))N(s) = S(s)N(s)−N(s) ⇒

y(t) = 1√
2

sin(t− π

4 )− sin(t)
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6.10 a) Putting
G0(s) = G(s) 1

(s+ 1) = G(s)(1 +G∆(s))

gives
G∆(s) = − s

s+ 1 ⇔ 1
G∆(s) = −s+ 1

s

b) Enter the system and
the regulator from Prob-
lem 5.13.

>> s = tf( ’s’ );
>> G = 725 / ...

( ( s + 1 ) * ( s + 2.5 ) * ( s + 25 ) );
>> wc = 5;
>> b = 0.21;
>> tD = 1 / ( wc * sqrt( b ) );
>> K = sqrt( b ) / 1;
>> Flead = ( tD * s + 1 ) / ( b * tD * s + 1 );
>> g = 0;
>> tI = 10 / wc;
>> Flag = ( tI * s + 1 ) / ( tI * s + g );
>> F = K * Flead * Flag;

Enter the inverse relative
model error and the com-
plementary sensitivity func-
tion obtained when G(s) is
controlled by F (s) = 1.
Plot the amplitude curve of
the inverse relative model
error in the same diagram
as the amplitude curve of
the complementary sensi-
tivity function.

>> IDG = - ( s + 1 ) / s;
>> T = feedback( 1 * G, 1 );
>> bode( IDG, ’k-’, ...

T, ’k-.’ );
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Since the absolute value of the complementary sensitivity function goes
above the inverse relative model error over a frequency interval, we cannot
guarantee that the closed loop system obtained when G0(s) is controlled
by F (s) is asymptotically stable.

Enter the complemen-
tary sensitivity function
obtained when G(s) is
controlled by the lead-
lag regulator designed in
Problem 5.13. Plot the
amplitude curve of the
inverse relative model error
in the same diagram as the
the amplitude curve of the
complementary sensitivity
function.

>> T = feedback( F * G, 1 );
>> bode( IDG, ’k-’, ...

T, ’k-.’ );

−150

−100

−50

0

50

M
ag

ni
tu

de
 (d

B)

10−2 10−1 100 101 102 103
−270

−180

−90

0

90

180

Ph
as

e 
(d

eg
)

Bode Diagram

Frequency  (rad/sec)

In this case |T (iω)| stays below the inverse relative model error, and hence
we can guarantee that the closed loop system obtained when the lead-lag
regulator is applied to G0(s) will be asymptotically stable.

6.11 The transfer function between the reference and the error is the sensitivity
function. When the reference signal is a sinus the error signal will also be a
sinus with the same frequency and with an amplitude modified by the gain
of the transfer function at that frequency, |S(0.1i)| = −20 dB20 = 0.1. This
gives that the amplitude of the error is 0.2.

6.12 A way to see if the controller also stabilizes the system at 400 r/min is to look
at the phase and amplitude margin of

F (s)G(s) = 35.7 · 3 s+ 0.116
s+ 0.116 · 3

s+ 0.02
s

0.02
s+ 0.02

e−2s

1 + 20s

A bode plot of this system is given in Figure 6.12a were it can be seen that
the phase margin is 9.54◦ and that the amplitude margin is 1.3. The closed
loop system is stable but the margin is small.

64



10-1

100

101

-210◦

-180◦

-150◦

-120◦

-90◦

10-1 100

ωc = 0.26

ωp = 0.32

|G
O
(ι̂

ω
)|

a
rg

G
O
(ι̂

ω
)

ω [rad/s]

A
m

=
1
.3

3
ϕ

m
=

9
.6

7
◦

Figure 6.12a

6.13 The sensitivity function is given by

S(s) = 1
1 + F (s)G(s)

which in this case means

S(s) = (s+ 1)2

(s+ 1)2 +K

The demand that the amplification of the sensitivity function should be less
than 1 at ω = 1 gives

|S(i1)| = 2√
4 +K2

≤ 0.1

that is, K ≥
√

396 ≈ 19.9.

To illustrate, the condition is verified in Matlab.
Enter the system and create
the sensitivity function. Plot
with a grid.

>> s = tf( ’s’ );
>> G = 1 / ( s + 1 )^2;
>> K = 20;
>> S = minreal( 1 / ( 1 + K * G ) );
>> bode( S );
>> grid;
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6.14 a) S(s) är överföringsfunktionen från störsignal till utsignal. För att under-
trycka en störning av frekvens ω ska |S(iω)| < 1. −Gc(s) är överförings-
funktionen från mätbruset till systemets utsignal. För att undertrycka
mätbrus av frekvens ω ska |Gc(iω)| < 1. Vi har följande samband mellan
S(s) och Gc(s)

S(s) +Gc(s) = 1
1 +G0(s) + G0(s)

1 +G0(s) = 1.

På grund av detta samband så kan inte både S(s) och Gc(s) göras små
oberoende av varandra. Således kan vi inte både undertrycka störningen
och mätbruset godtyckligt mycket samtidigt.

b) S(s) är stabil så vi kan använda slutvärdessatsen:

lim
t→∞

e(t) = lim
s→0

sE(s) = lim
s→0

sS(s)1
s

= lim
s→0

S(s) = {nollställe i origo} = 0.
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7 Special Controller Structures
7.1 a) Derive the transfer function:

θ(s) = 1
(1 + 30s)(1 + 3s)θm(s)

θm(s) = GR2(s)
(1 + 10s) +GR2(s)W (s)

GR2(s) = K2 = 9 gives

θ(s) = 0.9
(1 + s

0.033 )(1 + s
0.33 )(1 + s)W (s) =: G(s)W (s)

Thus,
|G(iω)| = 0.9√

1 + ( ω
0.033 )2

√
1 + ( ω

0.33 )2
√

1 + ω2

with low frequency asymptote

|G(iω)| → 0.9, ω → 0

and
argG(iω) = − arctan ω

0.033 − arctan ω

0.33 − arctanω

The gain is drawn approximatively based on a known gain at some point
of the low frequency asymptote, 0.9, and the breakpoints and slopes of
the asymptotes:

Frequency [rad/s] 0.033 0.33 1
Slope 0 −1 −2 −3

The phase curve is drawn based on a couple of samples:
Frequency [rad/s] 0.033 0.1 0.2 0.5 1.0
Phase −52◦ −94◦ −123◦ −169◦ −205◦

The Bode plot in Figure 7.1a gives that the gain crossover frequency and
the phase margin are undefined, but we have a gain margin:

ωp = 0.61 rad/s Am = 50.5

A gain margin of 2 is obtained when

K1 ·
1

50.5 = 1
2
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Figure 7.1a

that is, K1 = 25.25. This results in a new gain crossover of 0.43 rad/s
(and new phase margin of 19◦). To find the steady state error, study
how the Laplace transforms of the controll error relates to that of the
reference:

E(s) = 1
1 +K1G(s)θref(s)

which with θref(s) = a
s gives

lim
t→∞

e(t) = lim
s→0

sE(s) = a

1 +K1 · 0.9
= 0.042 · a

b) Without the internal feedback we get the transfer function defined by

θ(s) = 1
(1 + s

0.033 )(1 + s
0.1 )(1 + s

0.33 )W (s) =: G(s)W (s)

66



and thus

|G(iω)| = 1√
1 + ( ω

0.033 )2
√

1 + ( ω
0.33 )2

√
1 + ( ω

0.1 )2

with low frequency asymptote

|G(iω)| → 1, ω → 0

and
argG(iω) = − arctan ω

0.033 − arctan ω

0.33 − arctan ω

0.1

The gain is drawn approximatively based on a known gain at some point
of the low frequency asymptote, 1, and the breakpoints and slopes of the
asymptotes:

Frequency [rad/s] 0.033 0.1 0.33
Slope 0 −1 −2 −3

The phase curve is drawn based on a couple of samples:
Frequency [rad/s] 0.033 0.1 0.2 0.4
Phase −69◦ −134◦ −174◦ −212◦

The Bode plot in Figure 7.1b gives that, again, the gain crossover fre-
quency and phase margin are undefined, but we have a gain margin:

ωp = 0.22 rad/s Am = 19

A gain margin of 2 is obtained when K1 · 1
19 = 1

2 , which leads to K1 = 9.5.
This results in a new gain crossover of 0.15 rad/s (and a new phase margin
of 21◦). As above, we get the controll error for step references:

lim
t→∞

e(t) = 1
1 + 9.5 · 1a = 0.095a

We conclude that due to the internal feedback, the system in a) is faster
(higher bandwidth) as well as more precise (smaller stationary error).

7.2 Consider the block diagram in Figure 7.2a. The change in tank volume per
time unit is given by

A
d
dth(t) = x(t)− v(t)
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or, equivalently,
A · s ·H(s) = X(s)− V (s)

which gives
H(s) = 1

As
(X(s)− V (s))

Furthermore,
X(s) = Gv(s)U(s)

where
Gv(s) = 1

1 + s/2
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a) We let the input u(t) be a function of v(t) only, that is,

U(s) = Ff(s)V (s)

The level h(t) as a function of v(t) then becomes

H(s) = 1
As

(Gv(s)Ff(s)− 1)V (s)

If we choose
Ff(s) = 1

Gv(s) = 1 + s/2

the level becomes independent of v(t), but to get the controller Stu uses,
we remove the derivative term:

Ff(s) = 1

The level as a function of v(t) then becomes

H(s) = 1
As

( 1
1 + s/2 − 1)V (s) = − 1

2A
1

1 + s/2V (s)

With V (s) = 0.1/s this yields

H(s) = −0.1
2A

1
s(1 + s/2) = −0.1

2A

(
1
s
− 1

2 + s

)
that is

h(t) = − 0.1
A · 2(1− e−2t)

which gives the steady state error −0.05/A.

b) We now choose the input u(t) to be a function of both h(t) and v(t), that
is, we add the term −Kh(t) to the control law from a). (See Figure 7.2b.)
Thus

u(t) = −Kh(t) + v(t)

or, equivalently,
U(s) = −KH(s) + V (s)

GvΣKΣ Σ G

Ff

0 h

v

−
+

+

+

−

+

Figure 7.2b

This gives

AsH(s) = Gv(s)(−KH(s) + V (s))− V (s)
(As+KGv(s))H(s) = (Gv(s)− 1)V (s)

H(s)
V (s) = −s/2

A/2 · s2 +As+K
= −s
A(s2 + 2s+ 2K/A)

To select K, we may compare∗

s2 + 2s+ 2K/A = 0

with the standard equation

s2 + 2ζω0s+ ω2
0 = 0

which gives
ω2

0 = 2 ·K/A ζω0 = 1
To obtain approximately 5% overshoot we choose ζ = 0.707, and from√

A/(2K) = ζ = 0.707

we get K = A. Hence,

H(s) = −s
A(s2 + 2s+ 2)V (s)

If v(t) is a step of amplitude 0.1, the final level becomes

lim
t→∞

h(t) = lim
s→0

sH(s) = s
−s

A(s2 + 2s+ 2)
0.1
s

= 0

∗Note that any K > 0 results in a stable closed loop system, and that the steady state error
computations below are independent of the particular value of K. Hence, selecting K is not
necessary for the solution of this problem.
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that is, there will be no steady state error in the level for a step distur-
bance.

Gv

ΣGu

Ff

y

v

+

+

Figure 7.3a

7.3 a) A block diagram of the system is given in Figure 7.3a. The output is
given by

Y = (Gv +GuFf)V
where

Gu(s) = 2
s+ 3 Gv(s) = 3

s+ 4
Chose Ff such that (Gv +GuFf)V = 0:

Ff = −Gv

Gu
= −3(s+ 3)

2(s+ 4)

Compute the controller. >> s = tf( ’s’ );
>> Gu = 2 / ( s + 3 );
>> Gv = 3 / ( s + 4 );
>> F = - Gv / Gu;

b) If v(t) = 2 sinωt then

u(t) = 2 |Ff(iω)| sin(ωt+ argFf(iω))

The amplitude is then

A(ω) = 2 |Ff(iω)| = 2 · 32

√
ω2 + 9
ω2 + 16 ≤ 3

A(ω)→ 3, ω →∞

Gv

ΣG̃u

Ff

y

v

+

+ΣK

−1

Figure 7.3b

c) A block diagram of the system with both feedforward and feedback is
shown in Figure 7.3b. The output is now given by

Y = GvV + G̃uU = (Gv + G̃uFf)V − G̃uKY

where
G̃u(s) = b

s+ 3
The transfer function from V to Y is given by

Y (s) = Gv + G̃uFf

1 + G̃uK
V (s) =

3
s+4 −

3b
2(s+4)

1 +K b
s+3

V (s)

= 3(1− b/2)(s+ 3)
(s+ 4)(s+ 3) +Kb(s+ 4)V (s)

This is stable for K ≥ 0 and b ≥ 0. The final value theorem can therefore
be used (with V (s) = 1

s ):

lim
t→∞

y(t) = lim
s→0

sY (s) = lim
s→0

s
3(1− b/2)(s+ 3)

(s+ 4)(s+ 3) +Kb(s+ 4) ·
1
s

= 9(1− b/2)
12 + 4Kb

7.4 a) The output is given by

Y = (Gv +GuFf)V
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where

Gu(s) = 3
s+ 1 Gv(s) = 4

(s+ 2)(s+ 5)

Chose Ff such that (Gv +GuFf)V = 0:

Ff(s) = −Gv(s)
Gu(s) = − 4(s+ 1)

3(s+ 2)(s+ 5)

Create the system and the
feedforward controller.

>> s = tf( ’s’ );
>> Gv = 4 / ( s + 2 ) / ( s + 5 );
>> Gu = 3 / ( s + 1 );
>> F = - Gv / Gu;

b) The constant to replace Ff(s) is given by

F̃f = Ff(0) = − 4
30

The output is then given by

Y (s) =
(
− 12

30(s+ 1) + 4
(s+ 2)(s+ 5)

)
V (s) = 40(s+ 1)− 4(s+ 2)(s+ 5)

10(s+ 1)(s+ 2)(s+ 5) V (s)

= −4s2 + 12s
10(s+ 1)(s+ 2)(s+ 5)V (s)

Taking the Laplace transform of v(t) = −1−0.1t we get V (s) = − 1
s −

0.1
s2 .

The final value theorem then gives (verify that the system is stable)

lim
t→∞

y(t) = lim
s→0

s
−4s2 + 12s

10(s+ 1)(s+ 2)(s+ 5)

(
−1
s
− 0.1
s2

)
= 12

100 · (−0.1) = −0.012

Create the system with the
controller and create the
disturbance signal.

>> F = -4/30;
>> G = F * Gu + Gv;
>> t = ( 0 : 0.001 : 20 ).’;
>> v = -1 - 0.1*t;
>> lsim( G, v, t )
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c) With the P controller the output is given by

Y (s) = − 3
(s+ 1)KY (s) +

(
− 12

30(s+ 1) + 4
(s+ 2)(s+ 5)

)
V (s)

which means that

Y (s) =
40(s+1)−4(s+2)(s+5)

10(s+1)(s+2)(s+5)

1 + 3K
s+1

V (s) = −0.4s2 + 1.2s
(s+ 3K + 1)(s+ 2)(s+ 5)V (s)

Using the same disturbance, V (s) = − 1
s −

0.1
s2 , the final value theorem

gives (verify that the system is stable)

lim
t→∞

y(t) = lim
s→0

s
−0.4s2 + 1.2s

(s+ 3K + 1)(s+ 2)(s+ 5)

(
−1
s
− 0.1
s2

)
= 1.2

(3K + 1) · 10 · (−0.1) = − 0.012
3K + 1
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Create the new closed loop
system with different values
on K.

>> K = 1;
>> Gc = minreal( G / ( 1 + K * Gu ) );
>> lsim( Gc, v, t )
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d) When only a P controller is used we have the following relationship be-
tween the disturbance and the output

Y (s) = − 3
(s+ 1)KY (s) + 4

(s+ 2)(s+ 5)V (s)

which means that

Y (s) = 4(s+ 1)
(s+ 2)(s+ 5)(s+ 3K + 1)V (s)

Again using the same disturbance, V (s) = − 1
s −

0.1
s2 , a careful inspection

of Y (s) gives that there is no final value of y, hence the final value theorem
does not apply.∗ However, the possibility to simulate the system remains.

∗If it is assumed that the final value exists, a contradiction follows since then the final value
theorem would apply, but give

lim
t→∞

y(t) = lim
s→0

s
4(s + 1)

(s + 2)(s + 5)(s + 3K + 1)

(
−

1
s
−

0.1
s2

)
= − lim

s→0

4(s + 1)
(s + 2)(s + 5)(s + 3K + 1)

s + 0.1
s

= −∞

Simulate the output. >> Gc = minreal( Gv / ( 1 + K * Gu ) );
>> lsim( Gc, v, t )
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7.5 a) i) Y = G1G2(FrR− FyY )⇒ Y = G1G2Fr
1 +G1G2Fy

R.

Svar: G1G2Fr
1 +G1G2Fy

ii) Y = G2(D +G1FfD −G1FyY )⇒ Y = G2(1 +G1Ff )
1 +G1G2Fy

D.

Svar: G2(1 +G1Ff )
1 +G1G2Fy

a) Enligt boken (eller så inses det från överföringsfunktionen ovan) så elimin-

eras d om Ff (s) = −1/G1(s). I detta fallet alltså Ff (s) = −s
2 + 2s+ 1
s+ 2 .

(Detta val av Ff (s) kan dock ej implementeras eftersom det har de-
riverande verkan för höga frekvenser.) För att eliminera konstanta
störningar räcker det att framkoppla med den statiska förstärkningen av
Ff (s), d.v.s. Ff (0) = −1/2.
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8 State Space Description
8.1 According to Solution 2.1 the differential equation for the motor is

θ̈ + 1
τ
θ̇ = Ku

where
fRa + kakv

JRa
= 1
τ

ka
JRa

= K

Introduce the state variables x1 and x2 according to

x1 = θ x2 = θ̇

This gives the state space equations

ẋ1 = θ̇ = x2

ẋ2 = θ̈ = −1
τ
θ̇ +Ku = −1

τ
x2 +Ku

In matrix form we get

ẋ =
(

0 1
0 −1/τ

)
x+

(
0
K

)
u

y =
(
1 0

)
x

where xT =
(
x1 x2

)
.

8.2 We start with the differential equations

`θ̈ + g sin θ + z̈ cos θ = 0

The state variables
x1 = θ x2 = θ̇

input
u = z̈

`

and output
y = θ

gives the (nonlinear) state space description

ẋ1 = x2 =: f1(x, u)

ẋ2 = θ̈ = −g
`

sin θ − z̈

`
cos θ = −ω2

0 sin x1 − u cosx1 =: f2(x, u)

where ω2
0 = g/`. We get that

∂f1

∂x
=
(
0 1

)
∂f1

∂u
= 0

∂f2

∂x
=
(
−ω2

0 cosx1 + u sin x1 0
)

∂f2

∂u
= − cosx1

Introduce x1∆ = x1 − π, x2∆ = x2, u∆ = u, and y∆ = y − π. Linearization
around x1 = π, x2 = 0 and u = 0 gives

ẋ1∆ = x2∆

ẋ2∆ = ω2
0x1∆ + u∆

y∆ = x1∆

8.3 Introduce the state variables

x1 = y x2 = θ x3 = z

According to the figure, the variables are related as

X1(s) = Y (s) = 1
s

(Ml(s) +K2X2(s))

X2(s) = θ(s) = 1
s

(X3(s)−X1(s))

X3(s) = Z(s) = 1
s

(K1I(s)−K2X2(s))
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Inverse Laplace transformation gives, in the time domain,

ẋ1(t) = K2x2(t) +Ml(t)
ẋ2(t) = −x1(t) + x3(t)
ẋ3(t) = −K2x2(t) +K1i(t)

In matrix notation this becomes

ẋ(t) =

 0 K2 0
−1 0 1
0 −K2 0

x(t) +

 0
0
K1

 i(t) +

1
0
0

Ml(t)

y(t) =
(
1 0 0

)
x(t)

8.4 a)
d3

dt3 y(t) + 6 d2

dt2 y(t) + 11 d
dty(t) + 6y(t) = 6u(t)

The state variables

x1(t) = y x2(t) = ẏ x3(t) = ÿ

gives

ẋ1(t) = x2(t)
ẋ2(t) = x3(t)

ẋ3(t) = d3

dt3 y(t) = −6ÿ(t)− 11ẏ(t)− 6y(t) + 6u(t)

= −6x3(t)− 11x2(t)− 6x1(t) + 6u(t)

In matrix form we get

ẋ(t) =

 0 1 0
0 0 1
−6 −11 −6

x(t) +

0
0
6

u(t)

y(t) =
(
1 0 0

)
x(t)

b)

d3

dt3 y(t) + d2

dt2 y(t) + 5 d
dty(t) + 3y(t) = 4 d2

dt2u(t) + d
dtu(t) + 2u(t)

If we introduce x1(t) = y(t) in the equation and collect all terms without
differentiation on the right hand side we get

d3

dt3x1(t) + d2

dt2x1(t) + 5 d
dtx1(t)− 4 d2

dt2u(t)− d
dtu(t) = −3x1(t) + 2u(t)

that is

d
dt

(
d2

dt2x1(t) + d
dtx1(t) + 5x1(t)− 4 d

dtu(t)− u(t)
)

= −3x1(t) + 2u(t)

Now introduce the expression within the parenthesis as a new state vari-
able

x2(t) = d2

dt2x1(t) + d
dtx1(t) + 5x1(t)− 4 d

dtu(t)− u(t)

that is
ẋ2(t) = −3x1(t) + 2u(t) (8.1)

Repeating this procedure yields

d
dt (

d
dtx1(t) + x1(t)− 4u(t)) = x2(t)− 5x1(t) + u(t) (8.2)

and we can introduce

x3(t) = d
dtx1(t) + x1(t)− 4u(t)

that is
ẋ1(t) = x3(t)− x1(t) + 4u(t) (8.3)

Equation (8.1), (8.2), and (8.3) define the state space equations

ẋ(t) =

−1 0 1
−3 0 0
−5 1 0

x(t) +

4
2
1

u(t)

y(t) =
(
1 0 0

)
x(t)

c) Partial fraction expansion of

Y (s) = 2s+ 3
s2 + 5s+ 6U(s)
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gives
Y (s) = − 1

s+ 2U(s) + 3
s+ 3U(s)

Introducing the state variables

X1(s) = − 1
s+ 2U(s) X2(s) = 3

s+ 3U(s)

gives

ẋ1(t) = −2x1(t)− u(t)
ẋ2(t) = −3x2(t) + 3u(t)

in the time domain. Furthermore, we have

y(t) = x1(t) + x2(t)

In matrix form

ẋ(t) =
(
−2 0
0 −3

)
x(t) +

(
−1
3

)
u(t)

y(t) =
(
1 1

)
x(t)

8.5 The impulse response
g(t) = 2e−t + 3e−4t

gives the transfer function

G(s) = 2
s+ 1 + 3

s+ 4
The output can then be written

Y (s) = 2
s+ 1U(s)︸ ︷︷ ︸

X1(s)

+ 3
s+ 4U(s)︸ ︷︷ ︸

X2(s)

Defining the state variables as above gives

sX1(s) +X1(s) = 2U(s)
sX2(s) + 4X2(s) = 3U(s)

which in time domain can be written as

ẋ1(t) = −x1(t) + 2u(t)
ẋ2(t) = −4x2(t) + 3u(t)
y(t) = x1(t) + x2(t)

8.6 The transfer function is given by

G(s) = C(sI −A)−1B

=
(
−1 2

)(s+ 2 −1
0 s+ 3

)−1(1
1

)
= 1

(s+ 2)(s+ 3)
(
−1 2

)(s+ 3 1
0 s+ 2

)(
1
1

)
= s

(s+ 2)(s+ 3)

8.7

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

The state space equations have the general solution

x(t) = eA(t−t0)x(t0) +
∫ t

t0

eA(t−s)Bu(s) ds

The input signal u is constant, that is, u(t) = u0, on the interval (t0, t0 + T ).
This implies

x(t0 + T ) = eATx(t0) +
(∫ t0+T

t0

eA(t0+T−s) ds
)
Bu0

where
eAT and

∫ t0+T

t0

eA(t0+T−s) ds B

are constant matrices.
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8.8 a) Introduce the state variables x1 = h, x2 =
∫ t

0 (href − h) dτ and x3 =∫ t
0 (href−h) dτ . This gives the following expressions for the control signals

u1 = href − x1 + x2

u2 = href − x1 + x3

by using these expressions we can eliminate u1 and u2 form ḣ+h = u1+u2.
This gives

ẋ1 = −x1 + href − x1 + x2 + href − x1 + x3

By taking the Laplace transform on the expressions for x2 and x3 we
obtain

X2(s) = Href(s)−H(s)
s

X3(s) = Href(s)−H(s)
s

Inverse Laplace transformation gives

ẋ2 = href − x1

ẋ3 = href − x1

In matrix notation this becomes

ẋ(t) =

−3 1 1
−1 0 0
−1 0 0

x(t) +

2
1
1

href(t)

h(t) =
(
1 0 0

)
x(t)

b) The observability matrix is

O =

 C
CA
CA2

 =

 1 0 0
−3 1 1
7 −3 −3


A vector which span the null space of a matrix must satisfy Ox = 0. 1 0 0

−3 1 1
7 −3 −3

 0
−1
1

 =

0
0
0


This means in practise that you can’t say if it is u1 or u2 or a combination
of the two which fills the tank.

c) With href = 0 and u1 = −h− n+
∫ t

0 −h− ndτ we get

ẋ2 = −x1 − n
ẋ3 = −x1

and
ẋ1 = −x1 − x1 − n+ x2 − x1 + x3

this gives in matrix form

ẋ(t) =

−3 1 1
−1 0 0
−1 0 0

x(t) +

−1
−1
0

n(t)

h(t) =
(
1 0 0

)
x(t)

8.9 The controllability matrix is

S =
(
B AB

)
=
(

1 0
1 −1

)
Since detS = −1 6= 0 the system is controllable and it is possible to control
the system from the origin to xT =

(
1 3

)
within 4 seconds.

8.10 a) The controllability matrix becomes

S =
(
B AB A2B

)
=

 1 −2 4
−1 3 −9
2 −6 18


and detS = 0 since rankS = 2. The controllable subspace is spanned by 1

−1
2

 ,

−2
3
−6


The observability matrix is

O =

 C
CA
CA2

 =

 1 3 1.5
−2 −3 −1.5
4 3 1.5
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with detO = 0. Solving for the unobservable subspace

Ox = 0

gives (Gauss elimination)

x1+3x2+1.5x3=0
3x2+1.5x3=0

x1 =0

Introducing x3 = a gives x2 = −0.5a and xT =
(
0 −0.5a a

)
, that is,

the silent (unobservable) subspace is spanned by 0
−1
2


b) The controllability matrix becomes

S =

 0 0 0
4 −8 16
−2 8 −32


with rankS = 2. The controllable subspace is spanned by, for example, 0

4
−2

  0
−8
8


The observability matrix is

O =

 0 3 0
3 −6 0
−9 12 0


Solving for the unobservable subspace Ox = 0 gives

x =

0
0
a



The unobservable subspace is spanned by0
0
1



8.11 a)

ẋ1 = −x1 + u ⇒ x1 = 1− e−t

ẋ2 = 2x2 + u ⇒ x2 = 0.5(e2t − 1)

b) The system is not asymptotically stable since x2 → ∞ as t → ∞, but
input-output stable because the transfer function has its pole in the com-
plex left hand plane.

c)

S =
(

1 −1
1 2

)
detS = 3

The system is controllable.

O =
(

1 0
−1 0

)
detO = 0

The system is not observable. Ox = 0 has solutions

x =
(

0
a

)
This implies that the second component of the state vector cannot be seen
in the output.

d) Because the second component of the state vector has unconstrained
growth and this is not reflected in the output, the system will finally
collapse.

8.12

G(s) = C(sI −A)−1B

=
(
1 1

)(s− 1 1
−2 s− 1

)−1(1
0

)
= s+ 1

(s− 1)2 + 2

This gives poles in 1± i
√

2 and zeros in −1.
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8.13 a) For pendulum 1 we have

z̈ cos(φ1) + αφ̈1 = sin(φ1)

and for pendulum 2
z̈ cos(φ2) + φ̈2 = sin(φ2)

Linearization gives

z̈ + αφ̈1 = φ1

z̈ + φ̈2 = φ2

Consider z̈ as an input to the system (the acceleration of the trolley ∼
the force applied to the system). Introduce the state variables

x1 = φ1 x2 = φ̇1 x3 = φ2 x4 = φ̇2

This gives the state space equations

ẋ1 = x2

ẋ2 = 1
α
x1 −

u

α
ẋ3 = x4

ẋ4 = x3 − u

In matrix form

ẋ =


0 1 0 0

1/α 0 0 0
0 0 0 1
0 0 1 0



x1
x2
x3
x4

+


0
−1/α

0
−1

u

b) The controllability matrix becomes

S =


0 −1/α 0 −1/α2

−1/α 0 −1/α2 0
0 −1 0 −1
−1 0 −1 0

 detS = 1
α2 (1− 1

α
)2

Thus, the system is controllable except for the case α = 1, that is, when
the two pendulums have the same lengths. If the pendulums have different
lengths they react differently to the input, but if they have the same length
there is no possibility to act upon them separately using the input.

8.14 The figure gives

X1(s) = 1
(s+ 1)U(s) ⇒ sX1(s) = −X1(s) + U(s)

and

X2(s) = 1
(s+ 3)(U(s) +X1(s)) ⇒ sX2(s) = −3X2(s) + U(s) +X1(s)

Inverse Laplace transformation gives

ẋ1 = −x1 + u

ẋ2 = −3x2 + x1 + u

In matrix form this becomes

ẋ =
(
−1 0
1 −3

)
x+

(
1
1

)
u

y =
(
1 1

)
x

8.15 a) Mass balance gives

d (V cA)
dt = V rA + qcA,in − qcA

d (V cB)
dt = V rB + qcB

By using rA = −k1c
3
A and rB = −rA

3 the following expression is obtained

V
dcA
dt = −V k1c

3
A + qcA,in − qcA

V
dcB
dt = V k1c

3
A

3 − qcB

b) Linearization around c∗A, c∗B, and c∗A,in gives

d
dt

(
cA,∆
cB,∆

)
=
(−q−3k1c

∗
AV

V 0
k1c
∗
A

−q
V

)(
cA,∆
cB,∆

)
+
(
q
V
0

)
u

y =
(
0 1

)(cA,∆
cB,∆

)
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8.16 a)

ẋ =
(
−k21 k12
k21 −k12

)
x+

(
0
K

)
u

y =
(
0 1

)
x

with

x =
(
x1 x2

)T

b) The poles of the system are the eigenvalues of the A-matrix,

A =
(
−k21 k12
k21 −k12

)
which are the zeros of the characteristic polynomial

det(λI −A) =
∣∣∣∣λ+ k21 −k12
−k21 λ+ k12

∣∣∣∣ = (λ+ k21)(λ+ k12)− k21k12

= λ2 + (k12 + k21)λ+ k21k12 − k21k12 = λ(λ+ k12 + k21)

i.e. the poles are 0 and −(k12 + k21). Hence, the system contains an
integrator (the pole at the origin) and is thus not stable.

c) The observability matrix is

O =
(
C
CA

)
=
(

0 1
k21 −k12

)
with determinant −k21. I.e. the system is observable (the determinant is
non-zero) precisely when k21 6= 0. If k21 = 0 we are not able to observe
state x1 by measuring x2.

d) The nonlinear state space is given by

ẋ1 = −k21x1 + Vmaxx2

KM + x2

ẋ2 = − Vmaxx2

KM + x2
+ k21x1 +Ku

e) The relation is shown in Figure 8.16a.

Vmax
2

KM

Vmax

x2

Figure 8.16a

f) We have the nonlinear state space description

ẋ1 = −k21x1 + Vmaxx2

KM + x2

ẋ2 = − Vmaxx2

KM + x2
+ k21x1 +Ku

and the stationary point

x0 =
(
Vmax
2k21

KM

)T

, u0 = 0.

The A-matrix of the linearized system is given by the Jacobian of the
dynamics (w.r.t x) evaluated at the stationary point. The Jacobian is

Jf (x, u) =
(
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

)
=
(
−k21

VmaxKM
(KM+x2)2

k21 − VmaxKM
(KM+x2)2

)
which gives us

A = Jf (x0, u0) =
(
−k21

Vmax
4KM

k21 −Vmax
4KM

)
.

Similarly, we get the B-matrix, with x = x0 and u = u0, as

B =
(
∂f1
∂u
∂f2
∂u

)
=
(

0
K

)
.
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Introduce x∆ = x − x0, u∆ = u − u0. The linear approximation of the
system around x0, u0 is then given by

ẋ∆ = Ax∆ +Bu∆.

g)

ẋ =

−k21 k12 0
k21 −(k12 + k32) k23
0 k32 −k23

x+

 0
K
0

u

y =
(
0 1 0

)
x

h) The observability matrix is given by

O =

 C
CA
CA2


Consider

A2 =

−k21 k12 0
k21 −(k12 + k32) k23
0 k32 −k23

−k21 k12 0
k21 −(k12 + k32) k23
0 k32 −k23


=

 ∗ ∗ ∗
−k21(k21 + k12 + k32) ∗ −k23(k23 + k12 + k32)

∗ ∗ ∗


where ∗ represent elements that are not of interest. The observability
matrix thus becomes

O =

 0 1 0
k21 −(k12 + k32) k23
O1 O2 O3


with O1 = −k21(k21 + k12 + k32), O2 = k21k12 + (k12 + k32)2 + k23k32
and O3 = −k23(k23 + k12 + k32). The determinant of O can be expanded
along the first row to obtain

detO = −
∣∣∣∣ k21 k23
−k21(k21 + k12 + k32) −k23(k23 + k12 + k32)

∣∣∣∣
= k21k23(k23 + k12 + k32)− k23k21(k21 + k12 + k32)
= k21k23(k23 − k21).

I.e. the system is observable unless k21 = 0 or k23 = 0 or k23 = k21. The
first two cases mean that the corresponding state, x1 and x3 respectively,
do not influence x2 and would then not be visible in the output. In the
third case, k23 = k21, x1 and x3 do indeed influence x2 but they do it in
the exact same way and we can therefore not distinguish between them.

8.17 a) With ẋ = 0 and u ≡ 1,

0 =
(
−k21 k12
k21 −k12 − k2

)
x0 +

(
k1
0

)
⇒ x0 =

(
−k21 k12
k21 −k12 − k2

)−1(−k1
0

)
= 1
k21(k12 + k2)− k21k12

(
−k12 − k2 −k12
−k21 −k21

)(
−k1

0

)
= 1
k21k2

(
k1(k12 + k2)

k1k21.

)
Thus, the stationary point is

x0 =
(
k1(k12+k2)
k21k2

k1
k2

)T

.

b) The transfer function is computed as

G(s) = C(sI −A)−1B =
(
0 1

)(s+ k21 −k12
−k21 s+ k12 + k2

)−1(
k1
0

)
= k1k21

(s+ k21)(s+ k12 + k2)− k12k21
.

c) The final value theorem gives

lim
t→∞

y(t) = lim
s→0

sG(s)U(s) = G(0) = k1k21

k21(k12 + k2)− k12k21
= k1

k2
.

Since the output is defined as y = x2, it approaches the stationary point
x0,2.
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8.18 a) A stationary point fulfills f(x0, u0) = 0, y = h(x0, u0).

f1(x, u) = x2 ⇒ f1(x0, u0) = x20 = 0

f2(x, u) = − ku(t)
mx2

1(t) + g ⇒ f2(x0, u0) = − ku0

mx2
10

+ g = 0

y = x1 ⇒ y0 = x10

For any stationary y = x10 6= 0, we can rewrite the second row as

f2(x0, u0) = − ku0

mx2
10

+ g = 0 ⇐⇒ u0 = g
mx2

10
k

This means that any position (any x10 6= 0) can be a stationary point,
with the corresponding input u0 = g

mx2
10
k . The vertical velocity x20 has

to be zero.

b) Use
A = fx(x0, u0) B = fu(x0, u0)
C = hx(x0, u0) D = hu(x0, u0)

where

A =
(
∂f1
∂x1

(x0, u0) ∂f1
∂x2

(x0, u0)
∂f2
∂x1

(x0, u0) ∂f2
∂x2

(x0, u0)

)
B =

(
∂f1
∂u (x0, u0)
∂f2
∂u (x0, u0)

)

Differentiation gives the A matrix elements

f1(x, u) = x2 ⇒
∂f1

∂x1
(x0, u0) = 0, and ∂f1

∂x2
(x0, u0) = 1

f2(x, u) = − ku(t)
mx2

1(t) + g ⇒ ∂f2

∂x1
= 2ku
mx3

1
⇒

∂f2

∂x1
(x0, u0) = 2kgmx2

10
kmx3

10
= 2g
x10

, and ∂f2

∂x2
= 0

and the B matrix
∂f1

∂u
= 0

∂f2

∂u
= − k

mx2
1
⇒ ∂f2

∂u
(x0, u0) = − k

mx2
10
.

We thus have the matrices A, B and C (already linear)

A =
(

0 1
2g
x10

0

)
B =

(
0

− k
mx2

10

)
C =

(
1 0

)
and the linearized state space model is described by

∆ẋ = A∆x+B∆u
∆y = C∆x.

8.19 a) Linjärisera systemet runt jämvikspunkten y(t) = y0. Stationärt innebär
ẋ = 0, alltså 0 = −y0u0 + v, eller u0 = v

y0
.

Taylorutveckling av ẏ = f(y, u) runt jämviktspunkten y = y0 + ∆y, u =
u0 + ∆u, där alltså f(y0, u0) = 0 ger

ẏ = ∆ẏ = f(y0 + ∆y, u0 + ∆y)

≈ f(y0, u0) + ∂f(y0, u0)
∂y

∆y + ∂f(y0, u0)
∂u

∆u

= 0− u0∆y − y0∆u = − v

y0
∆y − y0∆u.

b) Laplacetransformera det linjäriserade systemet från a).

s∆Y (s) = − v
y0

∆Y (s)− y0∆U(s), dvs.
∆Y (s) = −y2

0
y0s+v∆U(s) = G(s)∆U(s).

Det återkopplade systemet fås från

U(s) = F (s)(Y0 − Y (s))
Y (s) = G(s)U(s)

vilket ger
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Gc(s) = F (s)G(s)
1 + F (s)G(s) =

K τis+1
τis

−y2
0

y0s+v

1 +K τis+1
τis

−y2
0

y0s+v

= −Ky2
0(τis+ 1)

(τis)(y0s+ v)−Kτisy2
0 −Ky2

0

= −Ky2
0(τis+ 1)

y0τis2 + vτis−Kτiy2
0s−Ky2

0
.

Enligt t.ex. Routh’s algoritm, krav för stabilitet hos det återkopplade
systemet är K < 0 samt att v − Ky2

0 > 0 vilket då är uppfyllt för alla
v > 0 då τI > 0.

8.20 a) Systemet kan skrivas som

ẋ = A(α)x+Bu

y = Cx

där

x =
[
x1
x2

]
A(α) =

[
1 0
−2 α

]
B =

[
1
−1

]
C =

[
0 1

]
Egenvärdena av systemmatrisen A ges av lösningarna till den karakteris-
tiska ekvationen

det (A(α)− sI) = det
([

1 0
−2 α

]
− s

[
1 0
0 1

])
= det

([
1− s 0
−2 α− s

])
= (1− s)(α− s) = 0

alltså s1 = 1 och s2 = α. Då egenvärdet s1 > 0 är systemet instabilt för
alla α.

OBS! Notera att

det(A(α))− sI) = 0⇔ det(sI −A(α)) = 0,

och att den senare formen är den som vi använt oftast i kursen för att
räkna ut den karakteristiska ekvationen. Av ekvivalensen följer att båda
formerna är rätt.

b) Systemet är observerbart då observerbarhetsmatrisen

O =
[

C
CA(α)

]
=
[

0 1
−2 α

]
ej är singulär. Då

det
([

0 1
−2 α

])
= 2 6= 0

är systemet observerbart för alla α.

c) Systemet är styrbart då styrbarhetsmatrisen

S =
[
B A(α)B

]
=
[

1 1
−1 −2− α

]
ej är singulär. Då

det
([

1 1
−1 −2− α

])
= 1 · (−2− α)− (−1) = −1− α

är systemet styrbart precis då α 6= −1.
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9 State Feedback
9.1 a) The control law

u = −Lx+ yref

gives the closed loop system

ẋ = (A−BL)x+Byref

and the poles of the closed loop system are given by the eigenvalues of
A−BL.

A−BL =
(
−2 −1
1 0

)
−
(

1
0

)(
l1 l2

)
=
(
−2− l1 −1− l2

1 0

)
The characteristic equation is given by

det(sI −A+BL) = s2 + (2 + l1)s+ 1 + l2 = 0

Poles in {−3, −5 } implies that we will have the equation

(s+ 3)(s+ 5) = s2 + 8s+ 15 = 0

Identification of the coefficients gives

l1 = 6 l2 = 14

This gives the control law

u = −6x1 − 14x2 + yref

Similarly, poles in {−10, −15 } gives

l1 = 23 l2 = 149

corresponding to the control law

u = −23x1 − 149x2 + yref

One observes that the coefficients in the control law increase when the
poles are placed further into the left half plane. In a physical system, this
means that larger forces are required to realize to the control law.

b) Employ an observer

˙̂x(t) = Ax̂(t) +Bu(t) +K(y(t)− Cx̂(t))

where
K =

(
k1
k2

)
By combining the differential equations for the system and the observer
we obtain an equation for the estimation error, x̃ = x− x̂,

˙̃x = Ax+Bu−Ax̂−Bu−K(Cx− Cx̂) = (A−KC)x̃

If K is chosen so that A−KC gets eigenvalues in the complex left hand
plane, then x̃(t) → 0 as t → ∞. It is desirable that the estimation error
approaches zero faster than the dynamics of the system. Thus, one should
place the eigenvalues of the observer to the left of the poles of the closed
loop system, for example, in −20. Regarding the influence of the pole
placement, placing the poles too far into the left half plane will make the
observer unneccessary sensitive to measurement noise. The characteristic
equation is given by

det(sI −A+KC) = s2 + (2 + k1)s+ 1− k2 = 0

Two poles in −20 corresponds to the equation

s2 + 40s+ 400 = 0

Identification of the coefficients gives

k1 = 38 k2 = −399

The resulting observer becomes

˙̂x =
(
−2 −1
1 0

)
x̂+

(
1
0

)
u+

(
38
−399

)(
y −

(
1 0

)
x̂
)

9.2 a) Introduce the state variables

x1 = ż x2 = θ x3 = θ̇
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The figure gives the state equations

X1(s) = 1
s
K2X2(s)

X2(s) = 1
s
X3(s)

X3(s) = 1
s
K1U(s)

Inverse Laplace transformation gives

ẋ1(t) = K2x2(t) ẋ2(t) = x3(t) ẋ3(t) = K1u(t)

In matrix form we get

ẋ(t) =

0 K2 0
0 0 1
0 0 0

x(t) +

 0
0
K1

u(t)

b) Since it is assumed that all states are measurable we apply a state feedback

u = −Lx+ yref

which gives the closed loop system

ẋ = (A−BL)x+Byref

where

A−BL =

 0 K2 0
0 0 1

−K1l1 −K1l2 −K1l3


The characteristic equation

det(sI −A+BL) = s3 +K1l3s
2 +K1l2s+K2K1l1 = 0

All three poles in −0.5 implies that we will have the equation

(s+ 0.5)3 = s3 + 1.5s2 + 0.75s+ 0.125 = 0

Identification of the coefficients gives

l1 = 1
8K1K2

l2 = 3
4K1

l3 = 3
2K1

c) If only x1 is measurable we have

y =
(
1 0 0

)
x

Employ the observer

˙̂x(t) = Ax̂(t) +Bu(t) +K(y(t)− Cx̂(t))

where

K =

k1
k2
k3


The characteristic equation is

det(sI −A+KC) = s3 + k1s
2 + k2K2s+ k3K2 = 0

To get a similar behavior as in a), the poles of the observer are placed to
the left of the poles of the closed loop system, for example, in −2. This
pole placement corresponds to the equation

s3 + 6s2 + 12s+ 8 = 0

Identification of the coefficients gives

k1 = 6 k2 = 12/K2 k3 = 8/K2

9.3 Introduce the state variables

x1 = θ x2 = ω

This gives the state equations

ẋ =
(

0 1
0 −1/τ

)
x+

(
0
c1

)
u+

(
0
c2

)
T

a) The feedback

u = −Lx+ l0θref = −l1θ − l2ω + l0θref

gives

A−BL =
(

0 1
−c1l1 −(c1l2 + 1/τ)

)
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The characteristic equation

det(sI −A+BL) = s2 + (l2c1 + 1
τ

)s+ c1l1 = 0

Poles in 1/τ(−1± i) corresponds to

(s+ 1− i
τ

)(s+ 1 + i
τ

) = s2 + 2
τ
s+ 2

τ2 = 0

Identification of the coefficients gives

l1 = 2
c1τ2 l2 = 1

τc1

This gives the closed loop system

ẋ =
(

0 1
−2/τ2 −2/τ

)
x+

(
0
c1

)
l0θref +

(
0
c2

)
T

At steady state, that is, when ẋ1 = ẋ2 = 0, we should have θ = θref when
T = 0. ẋ1 = 0 implies that x2 = 0, and ẋ2 = 0 then gives

−2
τ2 x1 + c1l0θref = 0

so that
l0 = 2

c1τ2

The resulting control law becomes

u = − 2
c1τ2 θ −

1
τc1

ω + 2
c1τ2 θref

b) Introduce the integrated control error as an extra state:

ẋ3 = θref − θ

The new state equations become

ẋ =

 0 1 0
0 −1/τ 0
−1 0 0

x+

 0
c1
0

u+

 0
c2
0

T +

0
0
1

 θref

Using the feedback law

u = −l1θ − l2ω − l3x3

we get the state derivative term 0
c1
0

u =

 0 0 0
−c1l1 −c1l2 −c1l3

0 0 0

x

and hence the closed loop system

ẋ =

 0 1 0
−c1l1 −1/τ − c1l2 −c1l3
−1 0 0

x+

 0
c2
0

T +

0
0
1

 θref

The poles of the closed loop system are the eigenvalues of the “A” matrix,
that is, they are given by the characteristic equation

det

 −λ 1 0
−c1l1 −1/τ − c1l2 − λ −c1l3
−1 0 −λ

 = 0

Writing out and changing sign yields

λ3 + (c1l2 + 1
τ

)λ2 + c1l1λ− c1l3 = 0

Poles in { 1
τ (−1± i), 1

τ (−2) } correspond to the equation

λ3 + 4
τ
λ2 + 6

τ2λ+ 4
τ3 = 0

where the coefficients may be identified as:

l1 = 6
c1τ2 l2 = 3

c1τ
l3 = − 4

c1τ3

The resulting control law becomes (note that the static gain is 1 by con-
struction, so there is no “l0” in this controller)

ẋ3 = θref − θ

u = − 6
c1τ2 θ −

3
c1τ

ω + 4
c1τ3x3
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9.4 The feedback u = −Lx+ yref gives the closed loop system

ẋ = (A−BL)x+Byref

with characteristic equation

s2 + (1 + l1 + l2)s+ l1 = 0

Poles in {−2, −3 } implies that we will have the equation

(s+ 3)(s+ 2) = s2 + 5s+ 6 = 0

Identification of the coefficients gives

l1 = 6 l2 = −2

and the control law becomes

u = −6x1 + 2x2 + yref

Introduce the observer

˙̂x(t) = Ax̂+Bu(t) +K(y(t)− Cx̂(t))

It is desirable that the estimation error converges to zero faster than the dy-
namics of the system. Thus, we should place the eigenvalues of the observer
to the left of the poles of the closed loop system, for example, in −4. The
characteristic equation of the observer is

s2 + (1 + k1 − k2)s+ k1 = 0

and poles in −4 corresponds to the equation

s2 + 8s+ 16 = 0

Identification of coefficients gives

k1 = 16 k2 = 9

The complete system, that is, the closed loop system with reconstructed states,
will have poles in {−2, −3 }, and the observer will have poles in {−4, −4 }.

9.5 The system has the observability matrix

O =


1 0 0 0
0 1 1 1
0 0 1 3
0 0 0 4


that is, detO 6= 0. The system is observable and thus the poles of the observer
may be placed arbitrarily.

9.6 The system is described in matrix form by

ẋ(t) =

−2 1 0
1 −2 1
0 1 −2

x(t) +

1
0
0

u(t)

a) Arbitrary values of the states can be obtained if the system is controllable.
The controllability matrix becomes

S =

1 −2 5
0 1 −4
0 0 1


and since detS = 1 the system is controllable and an arbitrary tempera-
ture profile can be obtained.

b) How the state decays depends on the poles of the closed loop system.
Poles in −3 will yield the desired result. The closed loop system,

ẋ = (A−BL)x+Byref

A−BL =

−2− l1 1− l2 −l3
1 −2 1
0 1 −2


has the characteristic equation

s3 + (6 + l1)s2 + (10 + 4l1 + l2)s+ 4 + 3l1 + 2l2 + l3 = 0

Poles in −3 implies that this coincide with the equation

(s+ 3)3 = s3 + 9s2 + 27s+ 27 = 0
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Identification of the coefficients gives

l1 = 3 l2 = 5 l3 = 4

Thus, the control law is given by

u = −3x1 − 5x2 − 4x3 + yref

c) Check when the system is observable. The sensor at x1 corresponds to
C =

(
1 0 0

)
, and results in

O =

 0 0 1
−2 1 0
5 −4 1

 detO = 1

The sensor at x2 corresponds to C =
(
0 1 0

)
, and results in

O =

 0 1 0
1 −2 1
−4 6 −4

 detO = 0

The sensor at x3 corresponds to C =
(
0 0 1

)
, and results in

O =

0 0 1
0 1 −2
1 −4 5

 detO = −1

The system is hence observable when the sensor is placed at x1 or x3,
but not with the sensor placed at x2. That is, the specifications may be
fulfilled with the sensor placed at x1 or x3. If the sensor is placed at x1,
the characteristic equation of the observer is given by

s3 + (6 + k1)s2 + (10 + 4k1 + k2)s+ 4 + 3k1 + 2k2 + k3 = 0

Placing the poles in −4 (which is somewhat faster than the nominal closed
loop system) corresponds to the equation

(s+ 4)3 = s3 + 12s2 + 48s+ 64 = 0

Identification of coefficients gives

k1 = 6 k2 = 14 k3 = 14

9.7 From Solution 9.2 we have the state space description

ẋ(t) =

0 K2 0
0 0 1
0 0 0

x(t) +

 0
0
K1

u(t)

y(t) =
(
1 0 0

)
x(t)

Introduce a reduced observer to estimate x3 from m2. The last row in the
state space description implies

˙̂x3 = K1u+K(x3 − x̂3) = K1u+K(ẋ2 − x̂3)

The estimation error becomes

˙̃x3 = x3 − x̂3 = −Kx̃3

With a suitable choice of K, the estimation error can be made to decrease
arbitrarily fast. To avoid differentiation of x2 we introduce

z = x̂3 −Kx2

which implies
ż = ˙̂x3 −Kẋ2 = −K(z +Kx2) +K1u

This gives

X̂3(s) = K1

s+K
U(s) + K2s

s+K
X2(s)

which results in the block diagram in Figure 9.7a.

1
s + K

ΣK1

K

K

Σ
z

x2

u x̂3
−

+

+

+

Figure 9.7a
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9.8 a) The equations

T q̇ = −q + k1u

Aḣ = q − v

with k1 = 1, T = 0.5 and A = 1 give, in state space form,(
q̇

ḣ

)
=
(
−2 0
1 0

)(
q
h

)
+
(

2
0

)
u+

(
0
−1

)
v

The feedback
u = −l1q − l2h+ r

gives the closed loop system(
q̇

ḣ

)
=
(
−2− 2l1 −2l2

1 0

)(
q
h

)
+
(

2
0

)
r +

(
0
−1

)
v

with characteristic equation

(s+ 2 + 2l1)s+ 2l2 = s2 + (2 + 2l1)s+ 2l2 = 0

Comparison with the desired characteristic equation

(s+ 2)2 = s2 + 4s+ 4 = 0

gives
l1 = 1 l2 = 2

b) At steady state we have q̇ = 0 and ḣ = 0. With v = 0.1 and r = 0 we get

0 = −4q − 4h
0 = q − 0.1

which gives h = −0.1.

c) In order to determine the feedforward controller we start from the de-
scription

Y (s) = G1(s)R(s) +H(s)V (s)
The state space description(

q̇

ḣ

)
=
(
−4 −4
1 0

)(
q
h

)
+
(

2
0

)
r +

(
0
−1

)
v

y =
(
0 1

)(q
h

)

gives

H(s) = 1
s2 + 4s+ 4

(
0 1

)(s −4
1 s+ 4

)(
0
−1

)
= − (s+ 4)

s2 + 4s+ 4

and

G1(s) = 1
s2 + 4s+ 4

(
0 1

)(s −4
1 s+ 4

)(
2
0

)
= 2
s2 + 4s+ 4

To eliminate v completely we shall choose the feedforward controller

R(s) = Ff(s)V (s)

where
Ff(s) = − H(s)

G1(s)
The computations above give

Ff(s) = (s+ 4)
2 = 1

2s+ 2

Removing the differentiation term yields Ff(s) = 2 or

r = 2v

At steady state this gives

0 = −4q − 4h+ 4v
0 = q − v

that is h = 0.

d) Because k1 6= 1 the feedback u = −q − 2h+ 2v gives, at steady state,

0 = −2(1 + k1)q − 4k1h+ 4k1v

0 = q − v
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which gives
h = k1 − 1

2k1
v

Because k1 6= 1 we get a steady state control error. In order to deter-
mine when the expression for h is valid we consider the stability. The
characteristic equation

s2 + (2 + 2k1)s+ 4k1 = 0

has both roots in the complex left hand plane for k1 > 0, that is, the
expression is valid for all k1 > 0.

e) Introduce the integral of the height as a new state

z(t) =
∫ t

0
h(s) ds ⇒ ż = h

With the state vector

x(t) =
(
q(t) h(t) z(t)

)T

this gives

ẋ =

−2 0 0
1 0 0
0 1 0

x+

2k1
0
0

u+

 0
−1
0

 v

The state feedback u = −Lx gives

ẋ =

−2− 2k1l1 −2k1l2 −2k1l3
1 0 0
0 1 0

x+

 0
−1
0

 v

The third equation gives h = 0 at steady state, independent of k1 provided
L stabilizes the system.

9.9 The transfer function u to y is given by

Y (s) = C(sI −A)−1BU(s) = 1
s2U(s)

In order to study the effect of the time delay we consider the block diagram
in Figure 9.9a. The block diagram corresponds to the situation where the

G1Σ

e−sT

ur Lx̂

−
+

Figure 9.9a

observer uses the measured input (not the computed input). To determine the
effect of the time delay, we study the loop gain, G1(s)e−sT , where G1(s) is the
transfer function from U(s) to Z(s) = LX̂(s).
The equation for the observer

˙̂x = Ax̂+Bu+K(y − Cx̂)

gives

X̂(s) = (sI −A+KC)−1(BU(s) +KY (s))

= (sI −A+KC)−1(BU(s) +K
1
s2U(s))

Using this together with Z(s) = LX̂(s) gives

Z(s) = G1(s)U(s)

= L(sI −A+KC)−1(B +K
1
s2 )U(s)

=
(
1 2

)(s+ 4 −1
4 s

)−1((0
1

)
+
(

4
4

)
1
s2

)
U(s)

= 1 + 2s
s2 U(s)

We shall analyze the stability using the Nyquist curve∗ for Go = G1(s)e−sT ,
that is,

G1(iω)e−iωT = 1 + i2ω
−ω2 e−iωT

The crossover frequency is obtained from∣∣G1(iωc)e−iωcT
∣∣ =

√
1 + 4ω2

c
ω2

c
= 1

∗Using a Bode plot instead of the Nyquist curve would perhaps be more straightforward.
However, for no particular reason, we use the Nyquist curve here.
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or
ωc =

√
2 +
√

5
The phase of Go is

arg
(
G1(iω)e−ωT

)
= −π + arctan 2ω − ωT

In order to obtain a stable closed loop system it is required that

−π + arctan 2ωc − ωcT > −π

which gives
T <

arctan 2ωc

ωc
= 0.65 s

9.10 a) The observability matrix:

O =
(

2 1
−2 + a 0

)
detO = 2− a

The system is observable (and the poles of the observer can be placed
arbitrarily) when a 6= 2.

A−KC =
(
−1− 2k1 1− 2k2

1− k1 −2− k2

)
We desire that the eigenvalues be {−5, −10 }. Use that the determinant is
the product of the eigenvalues and the trace∗ is the sum of the eigenvalues:

5k1 + 3k2 + 1 = 50
−2k1 − k2 − 3 = −15

which gives
k1 = −13 k2 = 38

b) The equation for the estimation error is
˙̃x(t) = (A−KC)x̃(t)−Kv(t)

The transfer function from v to x̃1 is

−C1(sI −A+KC)−1K = 13s− 12
s2 + 15s+ 50

where C1 =
(
1 0

)
.

∗The trace of a matrix is the sum of its diagonal elements.

9.11 a) According to the initial value theorem we have that

y(0) = lim
s→∞

sG(s)U(s)

For a step input, that is, U(s) = 1/s, we get

ẏ(0) = lim
s→∞

s · sG(s)U(s) = lim
s→∞

s(1− s/α)
(1 + s

β )2 = −β
2

α

Hence ẏ(0) decreases as α decreases, that is, as the zero of the system
approaches the origin.

b) No. This problem is caused by a RHP zero and it is impossible to move
the zeros with state feedback.

9.12 A very fast closed loop system:

• implies that the poles are far into the LHP which implies a need for
generating large input signals.

• easily becomes unstable in case of model uncertainties.

• becomes sensitive to measurement noise.

• has a sensitivity function with a large peak.

9.13 a) The system G(s) = C(sI −A+BL)−1B has poles where

det(sI −A+BL) = s2 + (5− l1 + 2l2)s+ 5 + 6l2 = 0

The poles in −2± i implies the characteristic equation

(s+ 2 + i)(s+ 2− i) = s2 + 4s+ 5 = 0

Identification of coefficients gives

l1 = 1 l2 = 0
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b) The closed loop system is given by

ẋ(t) =
(
−2 1
−1 −2

)
x(t) +

(
−1
2

)
r(t)

y(t) =
(
1 1

)
x(t)

The condition y(t) = 0 gives x1 + x2 = 0, and hence ẋ1 = −ẋ2. From the
state equations we get

−2x1 + x2 − r = x1 + 2x2 − 2r ⇔
−3x1 = x2 − r

Together with x1 + x2 = 0 we get x1 = −x2 = r/2 and

ṙ = 2ẋ1 = 2(−2x1 + x2 − r) = −5r

Since r(t) = eαt we have α = −5. Moreover, for y(t) to be zero for all t,
the system must start in the initial condition x1(0) = −x2(0) = r(0)/2.

9.14 a) Enter the transfer function
and generate the state space
model.

>> s = tf( ’s’ );
>> G = ss( 1 / ( s * ( s + 1 ) ) )
a =

x1 x2
x1 -1 -0
x2 1 0

b =
u1

x1 1
x2 0

c =
x1 x2

y1 0 1

d =
u1

y1 0

Continuous-time model.

We hence have the state space representation

ẋ(t) =
(
−1 0
1 0

)
x(t) +

(
1
0

)
u(t)

y(t) =
(
0 1

)
x(t)

From the last equation we have x2(t) = y(t), that is, x2 is the motor
angle. From the first equation we have ẋ2(t) = x1(t), that is, x1 is the
angular velocity.
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b) Compute feedback gains.
This time, the gain l0 is
computed by explicitly con-
structing a system with
l0 = 1 first, and then cor-
recting by the inverse of
that system’s static gain.
Note that if we don’t need
l0, this approach simpli-
fies to Gc = Gc0 / dcgain(
Gc0 ). However, we do
need l0 in order to compute
the control signal.

>> L = place( G.a, G.b, [ -2.2 -2.1 ] );
>> Gc0 = ss( G.a - G.b * L, G.b, G.c, 0 );
>> l_0 = 1 / dcgain( Gc0 );
>> Gc = Gc0 * l_0;

Note that although l_0 * Gc0 and Gc0 * l_0 implement the same trans-
fer function, the states of the two implementations will differ. To obtain
the correct states the factor l0 must inserted at the input side of Gc0, that
is, as the right operand when the systems are connected in series using
the operator *.

Calculate the step response
and the corresponding con-
trol signal of the closed
loop system. To calcu-
late the control signal mag-
nitude use [ y, t, x ] =
step( Gc ). The function
step will in this case return
y, the output of the closed
loop system, t the time vec-
tor, and x the states of
the system. To compute
the control signal, use that
u(t) = l0r(t)−Lx(t), where
r(t) = 1. Then plot the re-
sult.

>> [ y, t, x ] = step( Gc, 10 );
>> u = l_0 - x * L.’;
>> plot( t, y, ’-’, ...

t, u, ’-.’ );
>> grid

0 1 2 3 4 5 6 7 8 9 10
−1

0

1

2

3

4

5

Compute a new feedback.
This time, we compute the
gain l0 by using the formula
for the static gain of the sys-
tem with l0 = 1 (put s = 0
in the generic expression for
the transfer function).

>> L = place( G.a, G.b, [ -1+i -1-i ] );
>> l_0 = 1 / ...

( G.c * inv( -G.a + G.b*L ) * G.b );
>> Gc = ss( G.a - G.b * L, G.b * l_0, ...

G.c, 0 );

Calculate the step response
and the corresponding con-
trol signal. Plot the result.

>> [ y, t, x ] = step( Gc, 10 );
>> u = l_0 - x * L.’;
>> plot( t, y, ’-’, ...

t, u, ’-.’ );
>> grid

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

1

1.5

2

The step responses have approximately the same rise and settling times.
By choosing the closed loop poles complex, and hence allowing a small
overshoot in the step response, we have however reduced the maximum
value of the input signal significantly.
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c) Case (i): Compute the feed-
back gain L, l0, and the
closed loop system.

>> L = lqr( G.a, G.b, diag([ 0 1 ]), 1 );
>> l_0 = 1 / ...

( G.c * inv( -G.a + G.b*L ) * G.b );
>> Gc = ss( G.a - G.b * L, G.b * l_0, ...

G.c, 0 );

Simulate the system and
plot the result.

>> [ y, t, x ] = step( Gc, 10 );
>> u = l_0 - x * L.’;
>> plot( t, y, ’-’, ...

t, u, ’-.’ );
>> grid

0 1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Compute the closed loop
poles. This time, via the
eigenvalues of the “A” ma-
trix.

>> eig( Gc.a )
ans =

-0.8660 + 0.5000i
-0.8660 - 0.5000i

Case (ii): Repeat, this time
with larger weight on the
motor angle.

>> L = lqr( G.a, G.b, diag([ 0 10 ]), 1 );
>> l_0 = 1 / ...

( G.c * inv( -G.a + G.b*L ) * G.b );
>> Gc = ss( G.a - G.b * L, G.b * l_0, ...

G.c, 0 );

Simulate the system and
plot the result. The step re-
sponse is now significantly
faster.

>> [ y, t, x ] = step( Gc, 10 );
>> u = l_0 - x * L.’;
>> plot( t, y, ’-’, ...

t, u, ’-.’ );
>> grid

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Compute the closed loop
poles. This time using
a dedicated command from
the toolbox. The poles
are now further away from
the origin and the relative
damping is slightly reduced.

>> pole( Gc )
ans =

-1.3532 + 1.1537i
-1.3532 - 1.1537i

Case (iii): Repeat, this time
with smaller weight on the
motor angle.

>> L = lqr( G.a, G.b, diag([ 0 0.1 ]), 1 );
>> l_0 = 1 / ...

( G.c * inv( -G.a + G.b*L ) * G.b );
>> Gc = ss( G.a - G.b * L, G.b * l_0, ...

G.c, 0 );
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Simulate the system and
plot the result. The step re-
sponse is now much slower.

>> [ y, t, x ] = step( Gc, 10 );
>> u = l_0 - x * L.’;
>> plot( t, y, ’-’, ...

t, u, ’-.’ );
>> grid

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Compute the closed loop
poles. We now get two
real closed loop poles, where
the pole in −0.34 causes the
slow step response.

>> pole( Gc )
ans =

-0.9420
-0.3357

d) If we start from case (ii) and increase the matrix called R in the call
to lqr, the closed loop system gradually becomes slower, since we put
an increasing weight on the control signal magnitude. When we reach
R = 10 we get exactly the same result as for case (i). Since it is the
“ratio” between Q and R that determines the closed loop properties we get
the same feedback gain if we scale Q and R by the same scalar.

e) Compute feedback gains,
adjust static gain, and com-
pute closed loop system.

>> L = lqr( G.a, G.b, diag([ 1 1 ]), 1 );
>> l_0 = 1 / ...

( G.c * inv( -G.a + G.b*L ) * G.b );
>> Gc = ss( G.a - G.b * L, G.b * l_0, ...

G.c, 0 );

Simulate the system and
plot the result. Then we
also plot the states, x1 and
x2, in two different dia-
grams.

>> [ y, t, x ] = step( Gc, 10 );
>> u = l_0 - x * L.’;
>> plot( t, y, ’-’, ...

t, u, ’-.’ );
>> grid
>> figure
>> subplot( 2, 1, 1 );
>> plot( t, x(:,1) );
>> grid; ylabel( ’x1’ );
>> subplot( 2, 1, 2 );
>> plot( t, x(:,2) );
>> grid; ylabel( ’x2’ );

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

x1

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

x2

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Increasing the weight on the angular velocity forces the motor to move
slower, and then also the step response becomes slower.

9.15 Introduce the state variables

x1(t) = q(t) x2(t) = m(t)

This gives the state space description

ẋ(t) =
(
−0.05 0
0.05 −0.02

)
x(t) +

(
1
0

)
u(t)

y(t) =
(
0 1

)
x(t)
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a) The system has the controllability matrix

S =
(
B AB

)
=
(

1 −0.05
0 0.05

)
detS = 0.05

Thus, the system is controllable.

b) The control law
u(t) = −Lx(t)

gives the closed loop system

ẋ(t) = (A−BL)x(t)

and the poles of the closed loop system is given by the eigenvalues of
A−BL.

A−BL =
(
−0.05− l1 −l2

0.05 −0.02

)
The characteristic equation is given by

det(sI −A+BL) = s2 + (0.07 + l1)s+ 0.001 + 0.02l1 + 0.05l2 = 0

Both poles in −0.1 implies that we shall have the equation

(s+ 0.1)2 = s2 + 0.2s+ 0.01 = 0

Identification of the coefficients gives

l1 = 0.13 l2 = 0.128

This gives the control law

u(t) = −0.13x1(t)− 0.128x2(t)

c) It is desirable that the estimation error converges to zero faster than the
dynamics of the system. Thus, we should place the eigenvalues of the
observer to the left of the poles of the closed loop system. To avoid large
amplification of the measurement noise the poles of the observer should
not be placed too far into the left hand plane.

d) Only y(t) = x2(t) is measurable. Employ the observer

˙̂x(t) = Ax̂(t) +Bu(t) +K(y(t)− Cx̂(t))

where
K =

(
k1
k2

)
The characteristic equation is

det(sI −A+KC) = s2 + (0.07 + k2)s+ 0.05k1 + 0.05k2 + 0.001

Both poles in −0.2 implies that we shall have the equation

s2 + 0.4s+ 0.04 = 0

Identification of the coefficients gives

k1 = 0.45 k2 = 0.33

9.16 Are the specifications 1–4 fulfilled?

1. The bandwidth is ωB ≈ 1.1 < 5 which is seen from the gain curve of the
closed loop system.
The bandwidth requirement is not fulfilled.

2. Stability despite model errors and disturbances?
We have Y (s) = κe−τsG(s)U(s) + E(s) instead of Y (s) = G(s)U(s).
The factor κ thus represents the gain uncertainty, while the factor e−τs
represents a phase uncertainty. These uncertainties are also present (with
the same magnitudes) in the loop gain Go = FG.
Looking in the Nyquist curve of Go, where amplitudes near 1 are easiest to
read, one can see that there is always just one intersection with |Go(iω)| =
1, independently of the present uncertainties in gain and phase. Thus the
stability criterion based on the Bode plot applies.
The uncertain phase lag is ωτ at the frequency ω. Thus the maximum
negative phase lag occurs for τ∗ = 0.3 s.
Next, we must find the worst case gain crossover frequency in order to see
if the worst case phase lag causes instability by reducing the phase margin
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below 0. Study the amplitude and phase curves for the loop gain Go(s).
Since the phase of Go is decreasing, higher gain crossover will always be
more critical since it both means a smaller phase margin to begin with,
and also a bigger phase lag due to the worst case time delay.
From the gain curve of Go it is clear that higher values of κ are more crit-
ical since those give the higher gain crossovers. By very careful inspection
of the gain curve, one can see that the most critical value, κ∗ = 1.1, leads
to ω∗c ≈ 2.3 rad/s < 3 rad/s, and ϕ∗m > 55◦.
Combining the worst case κ (leading to the ω∗c and ϕ∗m above) with the
worst case and τ∗ = 0.3 s results in a total worst case phase margin of at
least 55◦ − ω∗c τ∗ = 55◦ − 3 rad/s · 0.3 s = 55◦ − 0.9 rad ≈ 3◦ > 0. Thus
the system is guaranteed to be stable.
The system is stable despite the model errors.
Remark: The robustness criterion ∀ω : |Q(iω)| < 1

|G(iω)| is sufficient but
not necessary to show stability.

3. Both the Bode plot and the Nyquist curve of the loop gain tells us that
the loop gain does not contain an integration which could remove static
errors. This implies the model errors will influence the static gain. The
details of this argument follow.
With u = Frr − Fyy, the closed loop system is

Gc(s) = Fr(s)G(s)
1 + Fy(s)G(s)

The real closed loop system is

G0
c(s) = Fr(s)κe−τsG(s)

1 + Fy(s)κe−τsG(s)

Since the system is stable (see 2) the final value theorem gives the final
value of the step response as

lim
t→∞

y0(t) = lim
s→0

s ·G0
c(s) · 1

s
= Fr(0)κG(0)

1 + Fy(0)κG(0)

which cannot be 1 for all possible values of κ.
The gain will be different from 1 for some possible value of κ.

4. If e(t) is measurement noise, then the complementary sensitivity function,
T (s), should be checked. If e(t) is process noise, then the sensitivity
function, S(s), should be checked. Both T (s) and S(s) have peaks > 1 at
exactly ω = 10 rad/s, which implies the both measurement and process
noise are amplified.
The (measurement) noise is amplified by the system.

9.17 a) The linearized system is given by

ẋ =
(

0 1
−1 −3

)
x+

(
−1
1

)
u =: Ax+Bu

Using the state feedback law u = −Lx = −l1x1 − l2x2 gives

ẋ = A+B(−Lx) = (A−BL)x =
(

l1 1 + l2
−1− l1 −3− l2

)
x

The poles of this closed loop system are given by the eigenvalues of A−BL,
which are the roots of the characteristic polynomial

P (s) = det(sI − (A−BL)) = det
(
s− l1 −1− l2
1 + l1 s+ 3 + l2

)
= (s− l1)(s+ 3 + l2)− (1 + l1)(−1− l2)
= s2 + (−l1 + l2 + 3)s− 2l1 + l2 + 1

To place the poles in {−2, −4 }, P (s) must be the polynomial

(s+ 2)(s+ 4) = s2 + 6s+ 8

This gives the system of equations

−l1 + l2 + 3 = 6
−2l1 + l2 + 1 = 8

which has the solution
l1 = −4 l2 = −1

The state feedback law thus becomes u = −Lx = 4x1 + x2.
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b) If only x2 is measured, the output equation is given by

y = x2 =
(
0 1

)
x =: Cx

Given y (x2) and u, x1 can be estimated if the system is observable. The
observability matrix becomes

O =
(
C
CA

)
=
(

0 1
−1 −3

)
detO = 1

Hence the system is observable and x1 can be estimated using an observer.
It is essential that the input u is known since u is required in the observer
design to get an asymptotically vanishing state estimation error.

c) If u is unknown but constant, we can introduce a third state x3 = u
which has the dynamics ẋ3 = 0. Introducing zT =

(
x1 x2 x3

)
, the

system dynamics can be rewritten as

ż =

 0 1 −1
−1 −3 1
0 0 0

 z =: Ãz

y =
(
0 1 0

)
z =: C̃z

The observability matrix becomes

O =

 C̃
C̃Ã
C̃Ã2

 =

 0 1 0
−1 −3 1
3 8 −2

 detO = 1

(Tip: det(O) 6= 0 can be established without computing the determinant,
by checking that the rows of O are linearly independent.) The fact that
the system is observable means that x1 (and also u) can be estimated
from measurements of x2 using an observer of the form

˙̂z = Ãẑ +K(y − C̃ẑ) = (Ã−KC̃)ẑ +Ky

where the observer gain K is selected so that the observer poles, that is,
the eigenvalues of Ã−KC̃, are all in the left half plane.

9.18 a) The system is described by

ẋ =
(

0 1
−1 0

)
x+

(
0
1

)
u+

(
1
0

)
w

A P controller corresponds to u = K(r − x1), this means that the closed
loop system is given by

ẋ =
(

0 1
−1−K 0

)
x+

(
0
K

)
r +

(
1
0

)
w

The poles to the closed loop system are given by

det
(

s −1
1 +K s

)
= 0

which leads to s2 + 1 +K = 0. The poles are pure complex and thus the
system doesn’t have a well defined stationary error or speed of response.

b) A linear combination of r and x2 is given by

u = l0r − l2x2

with this controller the closed loop is

ẋ =
(

0 1
−1 l2

)
x+

(
0
l0

)
r +

(
1
0

)
w

The poles to the closed loop system are given by

det
(
s −1
1 s+ l2

)
= 0

which means s2 + l2s+ 1 = 0. The poles can be placed with l2 as

s = −l22 ±
√
l22 − 4

4
We have that ẋ = 0 at stationary which gives that x2 = −w and x1 =
l0r − l2x2 if w = 0. If we select l0 = 1 then the stationary error will be
zero. If w 6= 0 and l0 = 1 then there will be stationary error of size l2w.

c) Introduce a new state x3 = w to estimate the unknown signal. The
extended system is described by

ẋ =

 0 1 1
−1 0 0
0 0 0

x+

0
1
0

u

y =
(
0 1 0

)
x
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Create an observer to estimate the states

˙̂x = (A−KC)x̂+Bu+Ky

the poles of the observer can be placed with

det(sI − (A−KC)) = 0

which gives s3 + k2s
2 + (1− k1)s− k3 = 0. Place the poles for example in

−2, that is, seek the polynomial s3 + 6s2 + 12s+ 8 = 0. Comparison gives

k1 = −11 k2 = 6 k3 = −8

Now, let u = l0r − l2x̂2 − l3x̂3. At stationary we have x̂3 = w = −x̂2, so
with l3 = l2 we have x1 = l0r, and with l0 = 1 there will be no error.

9.19 a) Överföringsfunktionerna finnes genom:

i. X(s)G1(s)(U(s)−G2(s)X(s)) = G1(s)U(s)−G1(s)G2(s)X(s)
⇒ X(s)(1 +G1(s)G2(s) = G1(s)U(s)
⇒ X(s) = G1(s)

1+G1(s)G2(s)U(s)
⇒ GX(s) = G1(s)

1+G1(s)G2(s)

ii. Y (s) = G− 4(s)U(s) +G3(s)X(s) = G4(s)U(s) +G3(s)GX(s)U(s)
= (G4(s) + G1(s)G3(s)

1+G1(s)G2(s) )U(s)
⇒ G(s) = G4(s) + G1(s)G3(s)

1+G1(s)G2(s)

b) Vi kan skriva G(s) = s+2
s2 som

G(s) = s+ 2
s2 = s+ 2

s2 + 0s+ 0 = b1s+ b2
s2 + a1s+ a2

Detta kan nu skrivas enkelt på t.ex. styrbar kanonisk form:

ẋ =
(
−a1 −a2

1 0

)
x+

(
1
0

)
u =

(
0 0
1 0

)
︸ ︷︷ ︸

As

x+
(

1
0

)
︸︷︷︸
Bs

u

y =
(
b1 b2

)
x =

(
1 2

)︸ ︷︷ ︸
Cs

x

eller alternativt (det räcker med att svara med en korrekt form för att få
full poäng) på observerbar kanonisk form:

ẋ =
(
−a1 0
−a2 0

)
x+

(
b1
b2

)
u =

(
0 1
0 0

)
︸ ︷︷ ︸

Ao

x+
(

1
2

)
︸︷︷︸
Bo

u

y =
(
1 0

)︸ ︷︷ ︸
Co

x

Ett system är en minimal realisation om det är både styrbart och observer-
bart. Därför måste styrbarhetsmatrisen (S) och observerbarhetsmatrisen
(O) ha full rang.

detS = det
(

[Bs AsBs]
)

= det
([1 0

0 1

])
= 1 6= 0

detO = det
([

Cs
CsAs

])
= det

([1 2
2 0

])
= −4 6= 0

Alternativt om en observerbar kanonisk representation används:

detS = det
(

[Bo AoBo]
)

= det
([1 2

2 0

])
= −4 6= 0

detO = det
([ Co
CoAo

])
= det

([1 0
0 1

])
= 1 6= 0

I båda fallen har styrbarhetsmatrisen och observerbarhetsmatrisen full
rang, eftersom determianterna är skillda från noll. Därför är systemet en
minimal realisation.

c) Med tillståndsåterkopplingen u(t) = −Lx(t) + l0r(t), blir tillståndsekva-
tionen

ẋ(t) = Ax(t) +Bu(t) = (A−BL)x(t) + l0r(t)

Polerna ges då av egenvärden till (A − BL), dvs. genom den karakteris-
tiska ekvationen:

det(sI − (As −BsL)) = det
([

s 0
0 s

]
−
([0 0

1 0

]
−
[
1
0

] [
l1 l2

] ))
=

= det
([

s+ l1 l2
−1 s

])
= s2 + l1s+ l2 = 0
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Önskade poler i {−1,−1} ger följande karakteristiska ekvation:

(s+ 1)2 = s2 + 2s+ 1

Genom att identifiera kofficienter erhålles:

l1 = 2 l2 = 1

Notera: Detta kunde även inses snabbt genom att uppmärksamma att för
system skrivna på styrbar kanonisk form är koefficienterna i den önskade
karakteristiska ekvationen samma som parametrarna li i L-matrisen för
återkopplingen.
Systemet från r(t) är Y (s) = C(sI − (A−BL))−1Bl0R(s). Den statiska
förstarkningen erhålles då s = 0, vilket medför:

l0 = 1
Cs(−As +BsL)−1Bs

= 1
2

På liknande sätt kan L och l0 erhållas om kanonisk observerbar form
nyttjas, dvs. (Ao, Bo, Co). Då blir

L =
[ 1

2
3
4
]

l0 = 1
2

d) En observatör införs i systemet enligt:

ẋ(t) = Ax(t) +Bu(t) +K(y(t)− Cx̂(t))

Polerna ges nu av egenvärden till (A−KC):

det(sI − (As −KCs)) = det
([

s 0
0 s

]
−
([0 0

1 0

]
−
[
k1
k2

] [
1 2

] ))
=

= det
([

s+ k1 2k2
k2 − 1 s+ 2k2

])
= s2 + (k1 + 2k2)s+ 2k1 = 0

Önskade poler i {−10,−10} till observatören ger följande karakteristiska
ekvation:

(s+ 1)2 = s2 + 20s+ 100
Och genom koefficientidentifiering erhålles:

k1 = 50 k2 = −15 ⇒ K =
[
50 −15

]T

På likande sätt kan K erhållas om kanonisk observerbar form nyttjas.
För system skrivna på observerbar kanonisk form är koefficienterna i
den önskade karakteristiska ekvationen samma som parametrarna ki i
K-matrisen för observatören, dvs.

K =
[
20 100

]T
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11 Implementation
11.1 Inverse Laplace transformation of

U(s) = KN
s+ b

s+ bN
E(s)

gives the differential equation

u̇(t) + bNu(t) = KNė(t) + bKNe(t) (11.1)

At time t− T we have

u̇(t− T ) + bNu(t− T ) = KNė(t− T ) + bKNe(t− T ) (11.2)

By replacing u̇(t) and ė(t) in (11.1) and (11.2) with ∆tu(t) and ∆te(t), re-
spectively, and then adding the equations we get

∆tu(t) + ∆tu(t− T ) + bNu(t) + bNu(t− T )
= KN∆te(t) +KN∆te(t− T ) + bKNe(t) + bKNe(t− T )

Tustins formula
1
2(∆tu(t) + ∆tu(t− T )) = 1

T
(u(t)− u(t− T ))

now gives

2
T

(u(t)− u(t− T )) + bN(u(t) + u(t− T ))

= 2
T
KN(e(t)− e(t− T )) + bKN(e(t) + e(t− T ))

Inserting the numerical values, K = 2, T = 0.1, N = 10 and b = 0.1, we get

20(u(t)− u(t− T )) + (u(t) + u(t− T ))
= 400(e(t)− e(t− T )) + 2(e(t) + e(t− T ))

which gives
u(t) = 19

21u(t− T ) + 402
21 e(t)−

398
21 e(t− T )

that is
u(t) = 0.905u(t− T ) + 19.14e(t)− 18.95e(t− T )

11.2 a) Consider the differential equation

ẏ(t) = u(t)

during the sampling interval kT ≤ t < kT + T . The input is constant
during the sampling interval, u(t) = uk, which gives

ẏ(t) = uk

By integrating the left- and right-hand sides from t = kT to t = kT + T
we get

y(kT + T )− y(kT ) =
∫ kT+T

kT

uk dt = Tuk

With the notation yk+1 = y(kT + T ) and yk = y(kT ) this gives

yk+1 − yk = Tuk

b) The feedback
uk = −Kyk

gives
yk+1 = (1−KT )yk y0 = y0

that is
yk = (1−KT )ky0

The closed loop system is asymptotically stable if

|yk| → 0, t→∞

This gives the condition
|1−KT | < 1

or, equivalently, 0 < K < 2
T .

11.3 a) Because the prefilter is linear, the signal prior to sampling may be written

y(t) = y0(t) + y1(t)
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where y1(t) stems from the disturbance u1(t) = sinω2t. After all tran-
sients have disappeared, we get

y1(t) = A sin(ω2t+ Φ)

where

A = |G(iω2)| = 1√
1 + (ω2T1)2

Φ = argG(iω2) = − arctanω2T1

Let us introduce the notation ω1 = ωs−ω2 where ωs denotes the sampling
frequency, ωs = 2π/T . When y1(t) is sampled with the sampling interval
T , we get

y1(kT ) = A sin(ω2kT + Φ) = A sin((ωs − ω1)kT + Φ)
= A sin(2kπ − ω1kT + Φ) = A sin(−ω1kT + Φ)
= −A sin(ω1kT − Φ) = A sin(ω1kT + π − Φ)
= A sin(ω1kT + ϕ)

that is

A = 1√
1 + (ω2T1)2

ω1 = 2π
T
− ω2

ϕ = π + arctanω2T1

b) The bandwidth of the filter is obtained from the relation

|G(iωB)| = 1√
1 + (ωBT1)2

= 1√
2

which gives ωB = 1/T1. The signal u0 is in the interval 0 ≤ ω < π/T , and
this gives the specification

π

T
≤ 1
T1

The limiting case
π

T
= 1
T1

gives T1 = T/π. Inserting this in the expression for A in a), we get the
answer

A = 1√
1 + (ω2T/π)2

11.4 PI-regulatorn ges av
F (s) = K + K

TIs
.

Regulatorn är alltså
TI u̇(t) = KTI ė(t) +Ke(t).

Euler bakåt ger

TI(u(t)− u(t− 1)) = KTI(e(t)− e(t− 1)) +Ke(t)

⇒ u(t) = u(t− 1) + KTI +K

TI
e(t)−Ke(t− 1).

Vi i dentifierar K = TI = 1.

Svar: K = TI = 1.

11.5 a) Vi börjar med att skriva modellen på tillståndsform, ẋ = f(x, u). Om
tillståndsvektorn väljs som

x =

 θ
z
ż


kan ekvationerna skrivas

ẋ1 = Ku = f1(x, u)
ẋ2 = x3 = f2(x, u)

ẋ3 = − m

m+ J/r2 g sin x1 + m

m+ J/r2x2K
2u2 = f3(x, u)

Vid jämviktspunkten gäller f(x0, u0) = 0, vilket ger

x0 = [0 z0 0]T

u0 = 0,
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för valfri konstant z0, då u0 = θ0 = ż0 = 0 enligt uppgiften. Vi väljer
z0 = 0 i fortsättningen. Jakobianerna blir

∂f

∂x
=

 0 0 0
0 0 1

− 5
7g cosx1

5
7K

2u2 0


∂f

∂u
=

 K
0

10
7 K

2x2u


I jämviktspunkten får vi

A = ∂f

∂x
(x0, u0) =

 0 0 0
0 0 1
− 5

7g 0 0


B = ∂f

∂u
(x0, u0) =

 K
0
0


Beteckna 4x = x − x0 och 4u = u − u0. Det linjäriserade systemet ges
då av

4̇x = A4x+B4u.

b) Om y = θ så ẏ = Ku. För kT ≤ t < (k + 1)T , har vi

ẏ(t) = Kuk.

Integrerar vi över samplingsintervallet fås

y(kT + T )− y(kT ) =
∫ kT+T

kT

Kukdt = TKuk

Med y(kT ) = yk, fås
yk+1 = yk + TKuk.

c) Med uk = −Kpyk, får vi yk+1 = (1−KpTK)yk.
För asymptotisk stabilitet (yk → 0, k →∞) krävs |1−KpTK| < 1. Detta
ger oss 0 < Kp <

2
KT .
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