Hybrid and Embedded Systems EL2450 - Exercise 6

Sofie Ahlberg, sofa@kth.se
Division of Decision and Control Systems, School of Electrical Engineering, KTH Royal Institute of Technology EL2450 - Exercise 6, January 29th, 2020

Content

- Lyapunov
- Sampling
- Event-triggered control

> What can we use Lyapunov for? What is sampling? What is event-triggered control?

Exercise 6.1

Problem

$$
\begin{gathered}
\dot{x}=x+u \\
u=-2 x \\
x=5 \text { when } t=0
\end{gathered}
$$

(a) Show that under this control law, the closed-loop system asymptotically converges to the origin, using a Lyapunov function.
(b) Suppose $x(t)$ is sampled periodically and the controller is followed by a ZOH:

$$
u(t)=-2 x(k h), \quad t \in[k h, k h+h)
$$

where $k \in \mathbb{N}, h>0$ is the sampling period. What is the maximal value $h_{\max }$ of h before the closed-loop system becomes unstable?
(c) Now $x(t)$ is sampled aperiodically at the sequence $\left\{t_{k}\right\}, k \in \mathbb{N}$ and the controller is followed by a ZOH:

$$
u(t)=-2 x\left(t_{k}\right), t \in\left[t_{k}, t_{k+1}\right)
$$

how to design the sequence $\left\{t_{k}\right\}, k \in \mathbb{N}$ such that the closed-loop system still converges to the origin? what is the maximal sampling interval $\max _{k}\left(t_{k+1}-t_{k}\right)$ in this case?
(d) Describe how the event-triggered controller could be implemented on a digital platform and compare it with periodic controller in (b).

Exercise 6.7

Problem

$$
(S):\left\{\begin{array}{l}
\dot{x}_{1}(t)=3 x_{1}(t)+x_{2}(t)+u(t) \\
\dot{x}_{2}(t)=5 x_{1}(t)-2 x_{2}(t)+u(t)
\end{array}\right.
$$

with $\left[x_{1}, x_{2}\right]^{\top}=x \in \mathbb{R}^{2}, u \in \mathbb{R}, t \geq 0$ and initial conditions $x_{1}(0)=x_{2}(0)=1$.
(a) Show that the system is unstable.
(b) Determine a linear state-feedback controller $u(t)=K x(t)$ with $K=\left[K_{1} K_{2}\right], K_{1}, K_{2} \in \mathbb{R}$ such that the poles of the closed loop system are placed in -2 and -4 .
(c) In order to implement the controller on a digital platform, the state of the system is sampled aperiodically at a sequence of time instants $\left\{t_{k}\right\}, k \in \mathbb{N}$, and the control signal is now given by

$$
u(t)=K x\left(t_{k}\right), t \in\left[t_{k}, t_{k+1}\right)
$$

Find the closed loop equation of the system in terms of the state $x(t)$ and the state error $e(t)$, where

$$
e(t)=x\left(t_{k}\right)-x(t), t \in\left[t_{k}, t_{k+1}\right)
$$

(d) By using the positive definite quadratic Lyapunov function

$$
V(x)=\frac{1}{2} x^{\top}\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right] x
$$

find a relation between the error $e(t)$ and the state $x(t)$ such that the system is still asymptotically stable.

Exercise 6.8

Problem

3 robots R_{1}, R_{2} and R_{3} (controlled by a integrator) want to meet at the same place. $p_{i}(t) \in \mathbb{R}^{2}$ is the position of robot R_{i}, and the motion of the robot is described by: $\dot{p}_{i}(t)=u_{i}(t)$. R_{1} follows R_{2}, R_{2} follows R_{3}, and R_{3} follows R_{1}, as described by the following equations:

$$
u_{1}(t)=p_{2}(t)-p_{1}(t), \quad u_{2}(t)=p_{3}(t)-p_{2}(t), \quad u_{3}(t)=p_{1}(t)-p_{3}(t)
$$

Consider the state variables $x_{1}(t)=p_{2}(t)-p_{1}(t)$ and $x_{2}(t)=p_{3}(t)-p_{2}(t)$, $x(t)=\left[x_{1}(t), x_{2}(t)\right]^{\top}$ and $u(t)=\left[u_{1}(t), u_{2}(t), u_{3}(t)\right]^{\top}$. (The goal is reached if $x_{1}=x_{2}=0$.)
(a) Find the state space representation:

$$
\dot{x}(t)=B u(t)
$$

(b) Find the matrix K such that:

$$
u(t)=K x(t)
$$

(c) Write the closed-loop system as:

$$
\dot{x}(t)=B K x(t)
$$

(d) Use the Lyapunov function:

$$
V(x)=\frac{1}{2} x_{1}^{2}+\frac{1}{2} x_{2}^{2}
$$

to show that the robots asymptotically meet at the same place.

Exercise 6.8

Problem continued

Now, the positions are updated only on the aperiodic sampling times t_{k}, with $k \in \mathbb{N}$. Therefore, the control inputs becomes, for $t \in\left[t_{k}, t_{k+1}\right)$:

$$
u_{1}(t)=p_{2}\left(t_{k}\right)-p_{1}\left(t_{k}\right), \quad u_{2}(t)=p_{3}\left(t_{k}\right)-p_{2}\left(t_{k}\right), \quad u_{3}(t)=p_{1}\left(t_{k}\right)-p_{3}\left(t_{k}\right)
$$

(e) Let $e(t)=x(t)-x\left(t_{k}\right)$, and write the closed-loop system for $t \in\left[t_{k}, t_{k+1}\right)$ as a function of $x(t)$ and $e(t)$.
(f) Using the same Lyapunov function as in (d), to find a condition in the form $\|e(t)\| \leq \alpha\|x(t)\|$, with $\alpha>0$, that guarantees that the robot asymptotically meet at the same place. Choose α as large as possible.
Hint: for a matrix $M \in \mathbb{R}^{n \times m}$, we have $\|M\|=\sqrt{\lambda_{\max }\left(M^{T} M\right)}$, where $\lambda_{\max }(\cdot)$ denotes the largest eigenvalue.

