
EL2450 Hybrid and Embedded Systems

Exercise Notes

Sofie Ahlberg

February 6, 2020

This pdf contains my notes (as TA) for exercise 5-8.
There may be errors!

1

Exercise 5 - Implementation Aspects (Delays, Jitter, Quantization)

Problems considered in this exercise: 5.1, 5.2, 5.3

Brief Theory

• Delay - Process time and/or transmission time leads to the system not
excuting everything instantly.

• Jitter - Jitter is the maximum deviation of the time delay (δτ = τmax −
τmin).

• Packet loss - Due to errors or overload in the network some packet of data
doesn’t reach the receiver.

• Quantization - Discretization of a continous signal to specific levels, e.g.
rounding up to closest level.

This will effect the system (stability and performance).

Problems and Solutions

5.1)

H(z) =
1

(z − 1)(z − 0.5)(z2 + 0.5z + 0.25)
(1)

Consider the discrete-time controller characterized by the pulse-transfer function
H(z). Implement the controller in paralllel form.

Solution: What is parallel form?

Parallel form: u(k) =
∑

1 y(k) +
∑

2 y(k) +
∑

3 y(k) i.e.

∑

2

∑

1

∑

3

+
y(k) u(k)

We need to partition H(z), what should the new denominators be?
Why? How do we pick the corresponding numertors?

To rewrite H(z) on parallel form we need to partition it such that

H(z) =
A

z − 1
+

B

z − 0.5
+

Cz +D

z2 + 0.5z + 0.25
(2)

2

Why these denominators? Why not divide the third into two first order systems?
→ Check roots of the second order polynom (i.e. poles)!

z2 + 0.5z + 0.25 = 0 → z = −0.25±
√
0.0625− 0.25 = −0.25± i0.433 (3)

The second order polynom has complex poles, and hence can’t be divided into
two real one order polynoms!

How do we determine A, B, C and D?

Finding A, B, C and D:

H(z) =
A

z − 1
+

B

z − 0.5
+

Cz +D

z2 + 0.5z + 0.25
=

1

(z − 1)(z − 0.5)(z2 + 0.5z + 0.25)
(4)

→ A(z − 0.5)(z2 + 0.5z + 0.25) +B(z − 1)(z2 + 0.5z + 0.25) + (Cz +D)(z − 1)(z − 0.5) = 1 (5)

Rearranging we get: (A+B+C)z3+(−0.5B−1.5C+D)z2+(−0.25B+0.5C−
1.5D)z + (−0.125A− 0.25B + 0.5D) = 1 or

A+ B + C = 0 (6)

−0.5B − 1.5C +D = 0 (7)

−0.25B + 0.5C − 1.5D = 0 (8)

−0.125A− 0.25B + 0.5D = 1 (9)

How can we solve the equation system? There are many options,
make sure you know one!

3

The equation system can be solved by Gaussian elimination:

1 1 1 0
0 −0.5 −1.5 1
0 −0.25 0.5 −1.5

−0.125 −0.25 0 0.5

A
B
C
D

=

0
0
0
1

1 1 1 0
0 1 3 −2
0 1 −2 6
1 2 0 −4

A
B
C
D

=

0
0
0
−8

r1
r2 · −2
r3 · −4
r4 · −8

1 1 1 0
0 1 3 −2
0 0 −5 8
0 1 −1 −4

A
B
C
D

=

0
0
0
−8

r1
r2

r3 − r2
r4 − r1

1 1 1 0
0 1 3 −2
0 0 1 −8/5
0 0 −4 −2

A
B
C
D

=

0
0
0
−8

r1
r2

r3 · −1/5
r4 − r2

1 1 1 0
0 1 3 −2
0 0 1 −8/5
0 0 1 0.5

A
B
C
D

=

0
0
0
2

r1
r2
r3

r4 · −1/4

1 1 1 0
0 1 3 −2
0 0 1 −8/5
0 0 0 2.1

A
B
C
D

=

0
0
0
2

r1
r2
r3

r4 − r3

1 1 1 0
0 1 3 −2
0 0 1 −8/5
0 0 0 1

A
B
C
D

=

0
0
0

2/2.1

r1
r2
r3

r4 · 1/2.1

1 1 1 0
0 1 3 0
0 0 1 0
0 0 0 1

A
B
C
D

=

0
4/2.1
3.2/2.1
2/2.1

r1
r2 + 2r4

r3 + 8/5r4
r4

1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

A
B
C
D

=

−3.2/2.1
−5.6/2.1
3.2/2.1
2/2.1

r1 − r3
r2 − 3r3

r3
r4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

A
B
C
D

=

2.4/2.1
−15.2/2.1
3.2/2.1
2/2.1

r1 − r2
r2
r3
r4

A = 2.4/2.1 ≈ 1.14, B = −5.6/2.1 ≈ −2.67, C = 3.2/2.1 ≈ 1.52, D = 2/21 ≈

4

0.95. The same result can be found by solving X\y in Matlab, where X =

1 1 1 0
0 −0.5 −1.5 1
0 −0.25 0.5 −1.5

−0.125 −0.25 0 0.5

and yT =
[

0 0 0 1
]

.

To implement the controller on paralllel form we now have to rewrite the result-
ing H(z) as 3 discrete-time controllers. The first two controllers are first order
and hence

x1(k + 1) = aix1(k) + y(k) (10)

ui(k) = bix1(k) (11)

where u(z)i =
bi

z−ai
y(z) i.e.

x1(k + 1) = −x1(k) + y(k) (12)

u1(k) = 1.14x1(k) (13)

and

x1(k + 1) = −0.5x1(k) + y(k) (14)

u2(k) = −2.67x1(k) (15)

The third controller is second order:

x1(k + 1) = x2(k) (16)

x2(k + 1) = −bix1(k)− aix2(k) + y(k) (17)

u3(k) = cix1(k) + dix2(k) (18)

where ui(z) =
ci+diz

z2+aiz+bi
y(z), and hence in our case:

x1(k + 1) = x2(k) (19)

x2(k + 1) = −0.25x1(k)− 0.5x2(k) + y(k) (20)

u3(k) = 1.52x1(k) + 0.95x2(k) (21)

Why can we translate from u(z) = g(z)y(z) to a discrete-time system like this?
→ Comparable to translation from transfer function to state space representa-
tion in control courses.
First order: u(z) = bi

z−ai
y(z) use u = Bx → (z − ai)Bx = By → x(k + 1) −

aix(k) = y(k) → x(k + 1) = aix(k) + y(k).
Second order: u(z) = ci+diz

z2+aiz+bi
y(z), use u = cix1+dix2 where x2(k) = x1(k+1)

→ (z2+aiz+ bi)(ci+diz)x1 = (ci+diz)y → x1(k+2)+aix1(k+1)+ bix1(k) =
y(k) → x2(k+1)+aix2(k)+bix1(k) = y(k) → x2(k+1) = −bix1(k)−aix2(k)+
y(k).

We then have u(k) = u1(k) + u2(k) + u3(k).

Note! As for continuous transfer functions to state space, there are multiple
ways to express the same discrete transfer function on state space form! This is
one of them, there are several correct answers and depending on your method
you might get a different result.

5

5.2)

∑

Cs(s) e−sτ P (s)
+

−

r y

a) Find Cs(s) s.t. the closed-loop transfer function from r to y becomes Hcl

Hcl(s) =
C(s)P (s)

1 + C(s)P (s)
e−sτ (22)

b) Let P (s) = 1
s+1 and Hcl(s) = 8

s2+4s+8e
−sτ . Find the expression for the

Smith predictor Cs(s)!

Solution:

We want to find another expression for Hcl dependent on Cs and
compare to the first. How do we find the transfer function of Hcl(Cs)?

The closed-loop transfer function is defined s.t. Y (s) = Hcl(s)R(s). From the
figure we get:

Y (s) = P (s)e−sτCs(s)(R(s) − Y (s)) (23)

→ Y (s) =
P (s)Cs(s)

1 + P (s)Cs(s)e−sτ
e−sτR(s) (24)

To achieve the desired closed-loop transfer function we then need:

P (s)Cs(s)

1 + P (s)Cs(s)e−sτ
e−sτ =

C(s)P (s)

1 + C(s)P (s)
e−sτ (25)

→ Cs(s)(1 + C(s)P (s)) = C(s)(1 + P (s)Cs(s)e
−sτ) (26)

→ Cs(s) =
C(s)

1 + C(s)P (s)(1 − e−sτ)
(27)

Is this a reasonable answer?

A Smith predictor for known time delays is illustrated by the block diagram
below. Here we can note that the inner loop is Cs(s). Hence we get directly

Cs(s) =
C(s)

1+C(s)P (s)(1−e−sτ) . We then conclude that our calculated answer is the

expected one!

∑ ∑

C

Pe−sτ − 1

e−sτ P (s)
+

−

+

+

r u y

6

What do we need to determine Cs? How can we do it?

We have an expression for Cs given P and C. To find the desired expression we
hence have to find C first. From the given transfer function of Hcl we have:

Hcl(1 + CP) = CPe−sτ (28)

→ C =
Hcl

P (e−sτ −Hcl)
= ... =

8(s+ 1)

s(s+ 4)
(29)

where the transfers functions P and Hcl has been inserted in the last equality.
Next we can find Cs from the formula calculated in (a).

Cs(s) =
C(s)

1 + C(s)P (s)(1 − e−sτ)
= ... =

8(s+ 1)

s(s+ 4) + 8(1− e−sτ)
(30)

An alternative is to find a formula for Cs dependent on P and Hcl. From

Hcl(s) =
C(s)P (s)

1+C(s)P (s)e
−sτ we get Cs = Hcl

Pe−sτ (1−Hcl)
, and the answer is found by

inserting the expressions of P and Hcl.

5.3)

P (z) = z
z−0.5 and C(z) = Kp + Ki

z
z−1 , Kp = 0.2, Ki = 0.1. Due to retrans-

PSfrag replacements

ZOH

Sample

G(s)

P (z)

C(z)

Wireless Network

missions of dropped packets, the network introduces time-varying delays. How
large can the maximum delay be so that the closed-loop system is stable?

Solution:

What problems are we trying to handle here? Packet loss or delay?
Delay! The packet loss is already handled by retransmissions. This approach is
the reason for the delays.

What conditions do we know for time delays corresponding to stabil-
ity?

7

τ < φm/ωc For CTS with fixed delays (31)

|Hcl(iω)| < 1/τmaxω, ∀ω ∈ [0,∞) For CTS with time-varying delays (32)

The second condition is sufficient if the non-delayed system is stable.

Can we use one of them? Not directly! The second is close since we have a
time-varying system, but we have a DTS!

Can we find a condition for a DTS using our knowledge of the CTS
bounds?

The closed-loop system is stable if

∣

∣

∣

∣

P (eiω)C(eiω)

1 + P (eiω)C(eiω)

∣

∣

∣

∣

<
1

N |eiω − 1| (33)

for a discrete-time system with time-varying delay, if the non-delayed system is
stable!

From lectures and reading material we have the condition |Hcl(iω)| < 1
τmaxω

for continuous-time systems with time-varying delays. To find the condition for
discrete-time we need to go back to the small gain theorem (which was used to
find the continous-time condition):

γ(Si) = sup
ei∈L2

‖Si(ei)‖2
|ei‖2

stability if γ(S1)γ(S2) < 1 (34)

For the continous case we had S1(s) =
sPC
1+PC which can be translated to S1(z) =

z−1
z

PC
1+PC , and S2(s) =

∆−1
s which can be translated into S2(z) =

(∆−1)z
z−1 .

For S1(z) we get γ(S1) =
∣

∣

∣

eiω−1
eiω

P (eiω)C(eiω)
1+P (eiω)C(eiω)

∣

∣

∣
= |(1 − e−iω)Hcl(e

iω)|. For

S2(z) it can be proven (paper 3 in the PhD thesis [L] from the reading material)
that γ(S2) ≤ N . It then follows that the stability criterion of the small gain
theorem is fullfilled if

|N(1− e−iω)Hcl(e
iω)| < 1 (35)

or

|Hcl(e
iω))| < 1

N |1− e−iω| (36)

We need to check if the non-delayed system is stable and the condi-
tion. How do we check stability?

Let’s check the poles! The non-delayed closed-loop system is given by:

Hcl(z) =
P (z)C(z)

1 + P (z)C(z)
=

z(Kp(z − 1) +Kiz)

(z − 1)(z − 0.5) + z(Kp(z − 1) +Kiz)
(37)

and hence the poles are: z = 0.65± 0.206, i.e. z1 = 0.86, z2 = 0.44. It is clear
that zi are within the unit circle and hence the system is stable.

How can we check the condition?

8

We now know that the condition is valid. It is however difficult to perform
explicit calculations to determine if it is satisfied. To check the condition we
therefore plot |Hcl(e

iω)| and 1
N |1−e−iω| for different values of N to check when

the condition holds. The resulting plot is found below. From the plot we
make the conlusion that the condition is satisfied for N ≤ 3. That is, the
maximum delay allowed to keep stability is N steps. (OBS! There is an error
in the solution manual for this task. The error occur only in the figure and
does not effect the answer. The error consists of them plotting the function
Hcl(e

iω) with a mistake in the nominator, adding an extra 1. That is they plot
z(Kp(z−1)+Kiz)+1

(z−1)(z−0.5)+z(Kp(z−1)+Kiz)
)

10-2 10-1 100 101
-20

-10

0

10

20

30

40

M
ag

ni
tu

de
 (

dB
)

DTS
N=2
N=3
N=4

Frequency (rad/s)

Figure 1: |Hcl|, and 1
N |1−e−iω| for N ∈ [2, 3, 4]

9

Exercise 6 - Eventbased Control and Real-Time Systems

Problems considered in this exercise: 6.1, 6.7, 6.8

Brief Theory

• Lyapunov theory - can be used to show if a system converges to the origin

• Sampling (periodic and aperiodic) - measuring the signals of the system
at specific times instead of continuously. Periodic means that we measure
at fixed times and aperiodic means that we measure at varying times.

• Event-triggered control - The control input change dependent on events
instead of time, e.g. if a distance is too far.

Problems and Solutions

6.1

Consider the following first-order system:

ẋ = x+ u

where x, u ∈ R are the state and control input, respectively. Moreover, x = 5
when t = 0. The feedback control law is given by:

u = −2 x

(a) Show that under this control law, the closed-loop system asymptotically
converges to the origin, using a Lyapunov function.

(b) Suppose x(t) is sampled periodically and the controller is followed by a
Zero Order Hold, namely

u(t) = −2 x(kh), t ∈ [kh, kh+ h),

where k ∈ N, h > 0 is the sampling period. What is the maximal value
hmax of h before the closed-loop system becomes unstable?

(c) Now x(t) is sampled aperiodically at the sequence {tk}, k ∈ N and the
controller is followed by a Zero Order Hold, namely

u(t) = −2 x(tk), t ∈ [tk, tk+1).

how to design the sequence {tk}, k ∈ N such that the closed-loop sys-
tem still converges to the origin? what is the maximal sampling interval
maxk(tk+1 − tk) in this case?

(d) Describe how the event-triggered controller could be implemented on a
digital platform and compare it with periodic controller in (b).

Solution:

10

(a) What do we need to check?

Lyapunov theory tells us that x asymptotically converges to the origin if
ẋ = f(x), and there exists a function V : Rn → R such that

1. V (0) = 0

2. V (x) > 0 for x 6= 0

3. V̇ (x) = ∂V
∂x ẋ < 0 for x 6= 0

With the given controller we have

ẋ = x+ u = x− 2x = −x

We need to find a V that satisfies the conditions above! We test V = x2.

1. V (0) = 02 = 0 - ok!

2. V (x) = x2 > 0 for x 6= 0 - ok!

3. V̇ (x) = 2xẋ = −2x2 < 0 for x 6= 0 - ok!

It then follows from Lyapunov theory that the closed-loop system asymp-
totically converts to the origin!

(b) How does the closed loop system change? Is there a formula for
the sampled data system?

For a system ẋ = Ax+Bu with periodic sampling h > 0 the sampled data
system is:

x(kh+ h) = eAhx(kh) +

∫ h

0

eAsdsBu(kh) (38)

In our case this corresponds to A = B = 1 and hence we have

x(kh+ h) = ehx(kh) +

∫ h

0

esdsu(kh) = ehx(kh) + (eh − 1)u(kh) (39)

With u(kh) = −2x(kh) we then get

x(kh+ h) = ehx(kh)− (eh − 1)2x(kh) = (2 − eh)x(kh) (40)

Can we find some pattern from this?

We then have for k = 0, 1, ...

x(h) = (2− eh)x(0) (41)

x(2h) = (2− eh)x(h) = (2− eh)2x(0) (42)

... (43)

x(kh) = (2− eh)kx(0) (44)

How can we use this to guarantee stability?

11

To avoid instability, x(kh) → ∞, we need |2− eh| < 1. That is,

−1 < 2− eh < 1 (45)

1 < eh < 3 (46)

0 < h < ln 3 (47)

and hence, hmax = ln 3

(c) How does the closed-loop system change now?

We introduce e(t) = x(tk)− x(t) for t ∈ [tk, tk+1), as the error. It follows
that

u(t) = −2(x(t) + e(t)), t ∈ [tk, tk+1) (48)

We then get

ẋ = x(t) + u(t) = x(t)− 2x(t)− 2e(t) = −x(t)− 2e(t) (49)

How can we determine if we have convergance?

To study convergance we use the same technique as in (a) - Lyapunov.
We try with the same choice of V = x2. We already know that the first 2
criteria hold so we go directly for the third.

V̇ = 2x(−x− 2e) = −2x2 − 4xe = −2|x|2 − 4xe (50)

Using the inequality −ab ≤ |a| · |b| we get −xe ≤ |x| · |e| and hence

V̇ = −2|x|2 − 4xe ≤ −2|x|2 + 4|x| · |e| = −2|x|(|x| − 2|e|) (51)

It follows that we have asymptotic conversion if |x| − 2|e| > 0 or |e| < |x|
2 .

How can we express the sampled system? Formula?

For a aperiodic sampling on ẋ = Ax+Bu we have:

x(t) = eA(t−tk)x(tk) +

∫ t

tk

eA(t−s)Bu(s)ds (52)

It then holds for t ∈ [tk, tk+1):

x(t) = e(t−tk)x(tk) +

∫ t

tk

e(t−s)u(s)ds = (53)

= e(t−tk)x(tk) +

∫ t

tk

e(t−s)dsu(tk) = (54)

= e(t−tk)x(tk)− (et−t − et−tk)(−2x(tk)) = (55)

= e(t−tk)x(tk)− (1− et−tk)(−2x(tk)) = (56)

= e(t−tk)x(tk) + 2(1− et−tk)x(tk) = (57)

= (2 − e(t−tk))x(tk) (58)

which yields the error

e(t) = x(tk)− x(t) =

(

1

2− et−tk
− 1

)

x(t) =

(

et−tk − 1

2− et−tk

)

x(t) (59)

12

What requirement can we find to have convergence then?

To satisfy the condition from earlier and get convergence we need |e| < |x|
2

i.e.
|e|
|x| =

∣

∣

∣

∣

et−tk − 1

2− et−tk

∣

∣

∣

∣

<
1

2
(60)

or

et−tk − 2 < 2(et−tk − 1) < 2− et−tk (61)

0 < et−tk < 4/3 (62)

t− tk < ln 4/3 (63)

for this to hold for t ∈ [tk, tk+1) we need tk+1 − tk < ln 4/3 which is the
maximum sampling interval.

(d) Both the event-based and the periodic controller are implemented using
the same 4 steps, but the steps are implemented differently.

What are the steps? Can you describe the steps for periodic?
Describe it for event-triggered?

Periodic Event-based
1. Monitor Monitor the time t and

check if t = kh If it is, go
to 2!

Monitor the state x(t) and
check if |e| < 0.5|x|. If not
go to 2!

2. Sample Sample the x(t) to obtain
the x(kh), go to 3!

Sample x(t) to obtain
x(tk), go to 3!

3. Update Update u(t) = −2x(kh)
with the new value from 2,
go to 4!

Update u(t) = −2x(tk)
with the new value from 2,
go to 4!

4. ZOH Apply ZOH on u, go back
to 1!

Apply ZOH on u, go back
to 1!

How do the two control implementation differs?

Note that the difference occur mainly in step 1 where we monitor the state
instead of the time.

6.7

Consider the following linear second-order system

(S) :

{

ẋ1(t) = 3x1(t) + x2(t) + u(t)

ẋ2(t) = 5x1(t)− 2x2(t) + u(t)

with [x1, x2]
⊤ = x ∈ R

2, u ∈ R, t ≥ 0 and initial conditions x1(0) = x2(0) = 1.

(a) Show that the system is unstable.

(b) Determine a linear state-feedback controller u(t) = Kx(t) with K =
[K1 K2], K1,K2 ∈ R such that the poles of the closed loop system are
placed in −2 and −4.

13

(c) In order to implement the controller on a digital platform, the state of the
system is sampled aperiodically at a sequence of time instants {tk}, k ∈ N,
and the control signal is now given by

u(t) = Kx(tk), t ∈ [tk, tk+1).

Find the closed loop equation of the system in terms of the state x(t) and
the state error e(t), where

e(t) = x(tk)− x(t), t ∈ [tk, tk+1).

(d) By using the positive definite quadratic Lyapunov function

V (x) =
1

2
x⊤

[

2 0
0 1

]

x

find a relation between the error e(t) and the state x(t) such that the
system is still asymptotically stable.

Solution:

(a) How do we check stability?

To check stability we can write the system on matrix form and check the
eigenvalues of A (which corresponds to the poles).

ẋ = Ax +Bu =

(

3 1
5 −2

)

x+

(

1
1

)

u (64)

The poles are then found by solving det(λI − A) = 0. This yields λ2 −
λ− 11 = 0 or poles in λ = 0.5± 3.35. It is clear that one of the poles is a
positive real number, i.e. in the RHP, and hence the system is unstable!

(b) What is the closed-loop system? How do we get the closed-loop
poles?

With the given controller the closed-loop system becomes

ẋ = (A+BK)x (65)

The closed-loop poles are then given as the eigenvalues of A+BK. Using
the same method as in (a), we get

λ2 − (1 +K1 +K2)λ− 11− 3K1 − 2K2 (66)

How can we place the poles where we want? How should the
equation look like?

To place the poles in −2 and −4 we need

0 = (λ+ 2)(λ+ 4) = λ2 + 6λ+ 8 (67)

Comparing the two characteristic equations (the one we have and the one
we want) we get

6 = −(1 +K1 +K2) 8 = −(11 + 3K1 + 2K2) (68)

or K1 = −5 and K2 = −2.

14

(c) How does the closed-loop system change? What information do
we have now?

We then have

ẋ(t) = Ax(t) +Bu(t) (69)

u(t) = Kx(tk) t ∈ [tk, tk+1) (70)

e(t) = x(tk)− x(t) t ∈ [tk, tk+1) (71)

We can then rewrite u(t) = K(e(t) + x(t)) and the closed-loop system
becomes

ẋ(t) = Ax(t) +BK(e(t) + x(t)) = (A+BK)x(t) +BKe(t) (72)

or with the values

ẋ =

(

−2 −1
0 −4

)

x+

(

−5 −2
−5 −2

)

e (73)

(d) What do we need to check?

Let’s first check if V satisfies the first two criteria!

V (0) = 0 (74)

V (x) > 0 (75)

are satisfied! The second hold since

(

2 0
0 1

)

is positive definite (eigenval-

ues are positive).

Finally, let’s check the last criteria to find the relation! We have

V =
1

2
xT

(

2 0
0 1

)

x =
1

2
(2x2

1 + x2
2)

V̇ =
∂V

∂x1
ẋ1 +

∂V

∂x2
ẋ2 = 2x1ẋ1 + x2ẋ2 = (76)

= 2x1(−2x1 − x2 − 5e1 − 2e2) + x2(−4x2 − 5e1 − 2e2) = (77)

= −4(x2
1 + x2

2)− (5e1 + 2e2)(2x1 + x2)− 2x1x2 = (78)

= −4‖x‖2 − (5e1 + 2e2)(2x1 + x2)− 2x1x2 (79)

Can we use any inequalities to get the realtion between ‖x‖ and
‖e‖ from this?

We use the inequalities −2ab ≤ a2 + b2 and −ab ≤ |a| · |b| and conclude
that

V̇ ≤ −4|x‖2 + (5|e1|+ 2|e2|)(2|x1|+ |x2|) + x2
1 + x2

2 (80)

15

Finally, we use that v21 + v22 = v2 and |vi| ≤ ‖v‖ for a signal v =
(

v1 v2
)

and apply it to e1, e2, x1 and x2.

V̇ ≤ −4‖x‖2 + 7‖e‖3‖x‖+ ‖x‖2 = ‖x‖(−3‖x‖+ 21‖e‖) (81)

From this we see that V̇ ≤ 0 if −3‖x‖+21‖e‖ < 0 whcih yields the relation

‖e‖ <
‖x‖
7

(82)

OBS! Depending on what inequlities we use we can reach different limits.
Alternative limits are not wrong but may be more or less conservative.
For isntance we could have used only the inequality −ab ≤ |a||b| in the

first step. Doing so the result is ‖e‖ < ‖x‖
10.5 , which is more conservative

then what we got above.

6.8

Consider three robots R1, R2 and R3 that want to meet at the same place. Each
robot is controlled as a simple integrator; i.e., if we denote as pi(t) ∈ R

2 the
position of robot Ri, then the motion of the robot is described by

ṗi(t) = ui(t).

In order to meet at the same place, R1 follows R2, R2 follows R3, and R3 follows
R1, as described by the following equations:

u1(t) = p2(t)− p1(t),

u2(t) = p3(t)− p2(t),

u3(t) = p1(t)− p3(t).

Consider the state variables x1(t) = p2(t)−p1(t) and x2(t) = p3(t)−p2(t). Note
that the robots reach their goal if and only if x1 = x2 = 0.

(a) Find the state space representation

ẋ(t) = Bu(t),

where x(t) = [x1(t), x2(t)]
⊤ and u(t) = [u1(t), u2(t), u3(t)]

⊤.

(b) Find the matrix K such that u(t) = Kx(t).

(c) Write the closed-loop system as

ẋ(t) = BKx(t).

(d) Use the Lyapunov function

V (x) =
1

2
x2
1 +

1

2
x2
2

to show that the robots asymptotically meet at the same place.

16

Now suppose that the robots measure each other’s positions only on the aperi-
odic sampling times tk, with k ∈ N. Therefore, the control inputs become

u1(t) = p2(tk)− p1(tk),

u2(t) = p3(tk)− p2(tk),

u3(t) = p1(tk)− p3(tk),

for t ∈ [tk, tk+1).

(e) Let e(t) = x(t)− x(tk), and write the closed-loop system for t ∈ [tk, tk+1)
as a function of x(t) and e(t).

(f) Using the same Lyapunov function as in (d), to find a condition in the
form ‖e(t)‖ ≤ α‖x(t)‖, with α > 0, that guarantees that the robot asymp-
totically meet at the same place. Choose α as large as possible.
Hint: for a matrix M ∈ R

n×m, we have ||M || =
√

λmax(MTM), where
λmax(·) denotes the largest eigenvalue.

Solution:

(a) What do we know of how x depends on u? can we adapt it to ẋ?

As x1 and x2 are defined we have

ẋ1 = ṗ2 − ṗ1 = u2 − u1 (83)

ẋ2 = ṗ3 − ṗ2 = u3 − u2 (84)

We can then write the system as

ẋ = Bu =

(

−1 1 0
0 −1 1

)

u (85)

(b) What do we know of how u depends on x?

We have

u1 = p2 − p1 = x1 (86)

u2 = p3 − p2 = x2 (87)

u3 = p1 − p3 = −(p2 − p1)− (p3 − p2) = −x1 − x2 (88)

We can then write the system as

u = Kx =

1 0
0 1
−1 −1

 x (89)

(c) How do we solve it?

With B and K from (a) and (b) we get

ẋ = BKx =

(

−1 1 0
0 −1 1

)

1 0
0 1
−1 −1

 x =

(

−1 1
−1 −2

)

x (90)

17

(d) What does it mean mathematically that they meet?

They will meet at the same place if x converges to the origin!

How can we determine that?

Hence we need to show that V satisfies the 3 criteria.

We note directly that V (0) = 0 and V (x) > 0 for x 6= 0. Finally we check:

V̇ = x1ẋ1 + x2ẋ2 = x1(−x1 + x2) + x2(−x1 − 2x2) = (91)

= −x2
1 + x1x2 − x1x2 − 2x2

2 = −x2
1 − 2x2

2 (92)

it is then clear that V̇ ≤ 0 and we have convergence!

(e) How is the closed-loop system change? What is u?

The new u(t) is then

u(t) = Kx(tk) = K(x(t) − e(t)) (93)

and hence we get

ẋ(t) = BK(x(t)− e(t)), t ∈ [tk, tk+1) (94)

(f) We have already checked the first two criteria. Let’s check the third!

V̇ = x1ẋ1 + x2ẋ2 = x1(−x1 + x2 + e1 − e2) + x2(−x1 − 2x2 + e1 + 2e2) = (95)

= −x2
1 − 2x2

2 + x1(e1 − e2) + x2(e1 + 2e2) ≤ −‖x‖2 + xT

(

1 −1
1 2

)

e ≤ (96)

≤ −‖x‖
(

‖x‖ −
∥

∥

∥

∥

(

1 −1
1 2

)∥

∥

∥

∥

‖e‖
)

(97)

Why do the inequalities above hold? What condition do we get
for convergence?

Hence V̇ ≤ 0 if

(

‖x‖ −
∥

∥

∥

∥

(

1 −1
1 2

)∥

∥

∥

∥

‖e‖
)

≥ 0 which gives the relation

‖‖e‖ ≤ ‖x‖
∥

∥

∥

∥

(

1 −1
1 2

)∥

∥

∥

∥

(98)

We then identify α = 1
∥

∥

∥

∥

∥

∥

1 −1
1 2

∥

∥

∥

∥

∥

∥

.

How can we determine α?

Using the hint we have
∥

∥

∥

∥

(

1 −1
1 2

)∥

∥

∥

∥

= ‖M‖ =
√

λmax(MTM) = (99)

=

√

λmax

((

2 1
1 5

))

≈
√
5.3 ≈ 2.3 (100)

18

and hence α ≈ 1/2.3 ≈ 0.43.

19

Exercise 7 - Real Time Scheduling

Problems considered in this exercise: 7.3, 7.4, 7.9, 7.10

Brief Theory

• Scheduling algorithms (fixed and dynamic) - deciding what task sould be
performed when, planning such that deadlines are met. Fixed priority
such as RM determines which task has priority before planning starts,
this never change. Dynamic priority such as EDF determines a law for
priority before planning, priority is then updated dynamically during the
scheduling.

• Utilization factor - Quantative metric on how much capacity the set of
tasks requires to schedule.

• Periodic and aperiodic tasks - tasks that are released with a fixed period
and tasks that are released aperiodically. The scheduling of these tasks
are a bit different.

Problems and Solutions

Exercise 7.3

Consider the following set of tasks

Ci Ti Di

J1 1 3 3
J2 2 4 4
J3 1 7 7

Are the tasks schedulable with rate monotonic algorithm? Are the tasks schedu-
lable with earliest deadline first algorithm?

Solution: How can we know if it is schedulable for RM/EDF?

We can use the utilization factor: U =
∑n

i=1
Ci

Ti
. We know that for

RM) Schedulable if U < n(21/n − 1)

EDF) Schedulable if and only if U ≤ 1

The condition for EDF scehdulability is also the condition for schedulability
overall. That is, if a set of tasks are schedulable, they are schedulable with
EDF!

Let’s check if the conditions hold!

U =
1

3
+

2

4
+

1

7
=

41

42
≈ 0.976 (101)

n(21/n − 1) = 3(21/3 − 1) ≈ 0.78 (102)

20

What are our conclusions?

We can conclude that it is schedulable with EDF, and it may be schedulable
with RM (the condition is not satisfied but it is only sufficient not necessary).

How can we determine if it is schedulable with RM then?

Let’s draw the schedule!

1. Some analysis:
length of schedule: lcm(Ti) = 3 · 4 · 7 = 84
priority: shorter period=higher priority → T1 < T2 < T3 → J1 > J2 > J3

2. Draw! The drawing should include i) task releases, ii) which task is per-
formed at each time-step, and iii) remarks on if deadlines are missed.

J1

J2

J3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Missed deadline

Bonus! Draw the schedule for EDF!

Priority: Earliest deadline first, i.e. the task with the next deadline is performed.
If multiple deadlines at the same time, we can pick which one we want freely.
OBS! If this is the case this should be marked in the schedule, pointing out that
we have a choice and which choice you made.

J1

J2

J3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Pick between J1 and J2

Is this drawing enough to prove that it is EDF schedulable?

Not this one, but a drawing can be enough! However, to show it we need to
make the drawing for the entire length, i.e. 84 time units in this case.

21

Exercise 7.4

Consider the following set of tasks

Ci Ti Di

J1 1 4 4
J2 2 5 5
J3 3 10 10

Assume that task J1 is a control task. Every time that a measurement is
acquired, task J1 is released. When executing, it computes an updated control
signal and outputs it.

(a) Which scheduling of RM or EDF is preferable if we want to minimize the
delay between the acquisition and control output?

(b) Suppose that J2 is also a control task and that we want its maximum delay
between acquisition and control output to be two time steps. Suggest a
schedule which guarantees a delay of maximally two time steps, and prove
that all tasks will meet their deadlines.

Solution:

What is the goal with respect to the tasks?

We want J1 to be completed as fast as possible upon release.

How does RM and EDF work?

RM: Fixed priority. The task with shortest release period is given highest pri-
ority and hence it is always executed at release time.

EDF: Dynamic priority. The task with the closest deadline is executed at all
time. Which task this is will hence vary throughout the schedule.

Which one seem to fit best with our goal?

RM! J1 has the shortest release period and will hence always be performed at
release!

Let’s verify! How can we do that?

We can consider worst case response time Rk for fixed priority, as well as draw
the schedules for all algorithms.

We have for task Jk that Rk is the smallest positive solution to (OBS! order
according to priority):

Ri = Ci +

i−1
∑

j=1

⌈

Ri

Tj

⌉

Cj (103)

We then get

R1 = C1 = 1 (104)

This confirms our conclusion that task J1 is completed at latest 1 time unit after
release when using RM. However, this is only true if the task is schedulable with
RM!

22

How can we check if it is schedulable with RM?

Utilization factor: U = 0.95 > n(21/n − 1) = 0.78. The condition doesn’t hold.

Is it not schedulable with RM then?

Not necessarily! We can draw the schedule to check!

Length: lcm(Ti) = lcm(4, 5, 10) = 20.
Priority: T 1 < T2 < T3 → J1 > J2 > J3.

J1

J2

J3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

It is schedulable!

Draw for EDF to check worst case response time!

J1

J2

J3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Pick between J2 and J3 ...J2 and J3 ...J2 and J3 ...J1 and J2

To minimize the time of execution for J1, we make sure to always pick J1 when
we have the choice.

How can we check worst case response now?

Analyse the schedule! We can see from the figure that R1 = 2. As expected
RM was better w.r.t. our goal!

(b)

What is our new goal?

We need R2 = 2 and have C2 = 2, hence J2 must be executed immediately on
release. At the same time we want J1 to be executed as fast as possible.

What algorithm should we use?

We can use RM and give J2 highest priority and J1 second highest priority. As
discussed above J2 will then be executed on release and J1 as fast as possible
after that.

How can we check schedulability?

23

1. Draw schedule and check

2. Check if Ri ≤ Di ∀i (in which case it is schedulable)

With the formula from above:

R2 = C2 = 2 (105)

. (106)

Rj
1 = C1 +

⌈

Rj−1
1

T2

⌉

C2 (107)

R0
1 = C1 = 1 (108)

R1
1 = 1 +

⌈

1

5

⌉

2 = 3 (109)

R2
1 = 1 +

⌈

3

5

⌉

2 = 3 (110)

→ R1 = 3 (111)

. (112)

Rj
3 = C3 +

⌈

Rj−1
3

T2

⌉

C2 +

⌈

Rj−1
3

T1

⌉

C1 (113)

R0
3 = C3 = 3 (114)

R1
3 = 3 +

⌈

3

5

⌉

2 +

⌈

3

4

⌉

= 6 (115)

R2
3 = 3 +

⌈

6

5

⌉

2 +

⌈

6

4

⌉

= 9 (116)

R3
3 = 3 +

⌈

9

5

⌉

2 +

⌈

9

4

⌉

= 10 (117)

R4
3 = 3 +

⌈

10

5

⌉

2 +

⌈

10

4

⌉

= 10 (118)

→ R3 = 10 (119)

R2 = 2 < D2 = 5 (and achieves our goal), R1 = 3 < D1 = 4 and R3 = 10 = D3.
Hence it is schedulable!

Bonus drawing as well!

J1

J2

J3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

We confirm that it is schedulable.

24

Exercise 7.9

Together with the periodic tasks

Ci Ti

J1 1 4
J2 1 8

we want to schedule the following aperiodic tasks with a polling server having
Ts = 5 and Cs = 2. The aperiodic tasks are

ri Ci

a1 2 3
a2 7 2
a3 9 1
a3 29 4

Solution:

How do we schedule aperiodic tasks? What is a polling server?

The polling server is scheduled as a periodic task. When the polling server gets
execution time we have the possibility to execute an aperiodic task. We will
only execute a task if it has been released. If no aperiodic task i available when
the polling server gets it chance to execute that call is considered spent. That
is, if an aperiodic task is released a time unit after the polling server was called
it will have to wait to be executed until the next call of the polling server.

Is it schedulable?

U = 0.775 < n(21/n − 1) = 0.78

and hence we can use both RM or EDF to schedule the tasks!

We’ll use RM!

Length: lcm(4, 8, 5) = 40
Priority: J1 > Js > J2

25

J1

Js

J2

a1

a2

a3

a4

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Js is released but no ai is available No ai is available

Comments: At 2 time units a1 is released, but Js has laready been called this
period. As a result a1 will have to wait until the next call of Js. At 7 time units
Js capacity is fully utilized and a1 has to wait until the next call of Js. The
same thing occur for a2 at 12 time units, and a4 at 32 time units.

Exercise 7.10

Consider the set of tasks J1 and J2, assuming that an aperiodic task could ask
for CPU time. In order to handle the aperiodic task we run a polling server Js
with computation time Cs = 3 and period Ts = 6. Assume that the aperiodic
task has computation time Ca = 3 and asks for the CPU at time t = 3. Plot
the time evolution when a polling server is used together with the two tasks J1
and J2 using the rate monotonic algorithm.

Ci Ti Di

J1 1 3 3
J2 1 4 4

Describe the scheduling activity illustrated in the plots.

Solution: Is it schedulable?

Check utilization factor: U = 13/12 > 1

What does this mean?

This indicates that it is not schedulable with any algorithm!

Is it impossible to solve the problem?

26

Not necessarily! Since Js is a polling server for aperiodic tasks it may still
be schedulable. However, if all tasks would’ve been periodic it would not be
schedulable!

What is our aim?

Schedule J1, J2 and Js using RM.

Gather the information!

Ci Ti Di

J1 1 3 3
J2 1 4 4
Js 3 6 -

Ci ri
a 3 3

Draw a schedule!

Length: lcm(3, 4, 6) = 12
Priority: T1 < T2 < Ts → J1 > J2 > Js

J1

J2

Js

a

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

Js is called, but a is not yet released.

27

Exercise 8 - Models of Computation (Automata, Transition Systems)

Problem considered in this exercise: 8.2, 8.3, 8.6, 8.7, 8.9, 8.11

Brief Theory

• Transition System

• Automaton (Discrete Event System)

Both are tuples used to model/describe some system.

The transition system T = {S,Σ,→, S0} where S is a set of states, Σ is a set of
actions, → is a set of transitions, and SS is a set of initial states. The transition
system has no sense of goals.

The automaton A = {Q,E, δ, q0, Qm} where Q is a set of states, E is a set of
events, δ is a set of transitions, q0 is a set of initial states, and Qm is a set of
marked/final/accepting states.

Simplified, transition systems are used to model how something works while
automata are used to model how something should be done. That is if we have
a self-driving car and we want it to avoid crashing into obstacles while driving to
our goal, we can model the car with a transitions system and the task (avoiding
crashes and reaching the goal) with an automata.

Problems and Solutions

Exercise 8.2

A vending machine dispenses soda for $0.45. It accepts only dimes ($0.10) and
quarters ($0.25). It does not give change in return if your money is not correct.
The soda is dispensed only if the exact amount of money is inserted. Model the
vending machine using a discrete-event system. Is it possible that the machine
does not dispense soda? Prove it formally.

Solution: We should use an automaton to model the system.

What should the elements of the automaton describe?

Q: states, what can the status be? Total amount of inserted money

E: events, what can happen? Money is inserted, dime or quarter

δ: transitions, how does the state change given an event? How the total
amount of inserted money change when we insert a dime or a quarter.

q0: initial states, where do we start? Amount of money inserted at start.

Qm: marked states, what is our goal? Amount of money when achieveing
our goal.

Determine the specific values of the above!

28

All combinations of dimes and quarters:

Q = {0, 10, 20, 25, 30, 35, 40, 45,�} (120)

where � symbolizes > 45.

Quarter or dime (we can insert oen of them):

E = {10, 25} (121)

δ(q, e) = q′ : δ(0, 10) = 10 δ(0, 25) = 25 (122)

δ(10, 10) = 20 δ(10, 25) = 35 (123)

δ(20, 10) = 30 δ(20, 25) = 45 (124)

δ(25, 10) = 35 δ(25, 25) = � (125)

δ(30, 10) = 40 δ(30, 25) = � (126)

δ(35, 10) = 45 δ(35, 25) = � (127)

δ(40, 10) = � δ(40, 25) = � (128)

δ(�, 10) = � δ(�, 25) = � (129)

What happens when q = 45? The goal is reached and the soda is dispensed.
Either we consider the machine to be one use only, in which case δ(45, e) = 45,
δ(45, e) = ∅ and δ(45, e) = � are all reasonable transitions, or the machine
should be reset to q = 0 to allow a new try to take place. Here we will use
δ(45, e) = ∅.
Start value and goal value:

q0 = 0 Qm = 45 (130)

Let’s draw the automaton!

0 10 20 30 40

25 35 45

�

10

25

10

25

10

25

10

25

10

25

10

25

10, 25

10, 25

What can we conclude from the drawing?

29

There’s a livelock at �, i.e. if we reach q = � q = 45 is not reachable and there
is no way of dispencing the soda. q = 45 is not reachable from 30, 40 or �.
There is also a deadlock at q = 45.

What about language? What is language?

The language of a DES L(A) is the set of all words which can be made with
A starting in q0, where words are combinations of events e ∈ E. The marked
language Lm(A) is the subset of L(A) which leads to Qm.

In our case? L(A) is then any combination of 10 and 25: L(A) = {(10∗25∗)∗},
here x∗ indiactes that we can repeat x any number of times from 0 to ∞.

Lm(A) is all combinations of 10 and 25 that will add up to 45: Lm(A) =
{102 25, 10 25 10, 25 102}. Note that depending on how we define the transitons
from 45 the words in Lm includes suffixes of any combination, i.e. Lm(A) =
{102 25(10∗25∗)∗, 10 25 10(10∗25∗)∗, 25 102(10∗25∗)∗}.
Will the soda always be dispensed?

No!

• If we have defined the automata such that 45 has self-loops and consider
only infinite words: since Lm(A) 6= L(A) there are words of L(A) which
doesn’t lead to Qm, and hence the soda may not be dispensed. OBS!
When considering infinite words, a word belongs to the marked language
if we will visit a marked state an infinite number of times.

• If we consider finite words, i.e. we stop when we reach a marked state:
the soda may be impossible to dispense if there exists at least one word
w ∈ L(A) for which w /∈ Lm(A) and w is not a prefix of a word in Lm(A),
i.e. there is no word w′ ∈ Lm(A) s.t. w′ = ww′′ where w′′ is any suffix.

In the discussion above, and in this exercise overall we have considered finite
words, hence the second item is the correct motivation to use here.

Exercise 8.3

Consider the automaton describing some discrete-event system shown in Fig-
ure 2. Describe formally the DES. Compute the marked language Lm and the

q1 q2

0

1

Figure 2: Automaton A.

generated language L.

Solution:

We need to determine Q,E, δ, q0 and Qm!

What are they?

30

Q = {q1, q2}
E = {0, 1}

δ(q, e): δ(q1, 0) = q2, δ(q2, 1) = q1

q0 = q1

Qm = {q2}
What is the language of A?

The combinatins of 0 and 1 which we can create, starting at q0:

L(A) = {0, 01, 010, 0101, ...}= {(01)∗, 0(10)∗} (131)

What about the marked language?

The subset of L(A) such that we end up in Qm:

Lm(A) = {0, 010, 01010, ...}= {0(10)∗} (132)

Exercise 8.6

Consider the automaton

A = ({q0, q1}, {0, 1}, δ, q0, {q1})

be a nondeterministic automaton where

δ(q0, 0) = {q0, q1} δ(q0, 1) = {q1} δ(q1, 0) = δ(q1, 1) = {q0, q1}.

Construct an deterministic automaton A′ which accept the same Lm.

Solution:

What is the marked language of A? Any word that takes us from q0 to q1
is contained by Lm, i.e. any combination of 0 and 1.

Let’s draw the automaton!

q0 q1

0, 1

0, 1

0, 10

What conclusions can we make from the figure?

We note from the transitions that both 0 and 1 may lead from q0 to q1 and that
both 0 and 1 may lead to q1 from q1. It then follows that Lm(A) = L(A) =
{0∗1∗0∗}.

31

What is a non-deterministic automaton/deterministic automaton?
Non-deterministic: a specfic event at a specific state leads to several succes-
sors! Determenistic: a specific event at a specific state has only one successor!

How can we define a deterministic automaton with the same lan-
guage? We need to eliminate the non-deterministic transitions!

Introduce a new state q2 = [q0, q1]!

We then get:

Q = {q0, q1, q2}, E = {0, 1} (as before)

δ(q0, 0) = q2 δ(q0, 1) = q1 (133)

δ(q1, 0) = q2 δ(q1, 1) = q2 (134)

δ(q2, 0) = q2 δ(q2, 1) = {q1, q2} = q2 (135)

q0 = q0 (as before), and Qm = {q1, q2}
Let’s draw the automaton!

q0 q1

q2

1

0, 1
0

0, 1

What is the language now? Did we do it right?

L(A′) = {(0∗1∗)∗} (as before any combination of 0 and 1)
Lm(A′) = {0((0∗1∗)∗), 10((0∗1∗)∗), 11((0∗1∗)∗)} = {(0∗1∗)∗} (as before).

Hence, we have succeeded!

Exercise 8.7

Consider the circuit diagram of the sequential circuit with input variable x,
output variable y, and register r, cf. Figure 3. The control function for output
variable y is given by

λy = ¬(x ⊕ r)

where ⊕ stands for exclusive (XOR, or parity function). The register evaluation
changes according to the circuit function

δr = x ∨ r

32

Figure 3: Diagram for a simple hardware circuit.

where ∨ stands for disjunction (OR). Initially, the register evaluation is [r = 0].
Model the circuit behavior by a finite transition system.

Solution: How does the circuit work? We control x by setting it to 0 or
1. The register r is determined by δr, it depends on x and r from the previous
time step. The output y is determined by λy, it depends on r and x. OR or
∧ is a disjunction operator, a ∧ b will be true (or have value 1) if either a, b or
both have value 1. XOR or ⊕ is an exlusive disjunction operator, a⊕ b will be
true (or have value 1) if a or b has value 1 (not if both have!).

What is a transition system? What do we need to do?

T = (S,Σ,→, S0) (136)

S: states - what is the status?

Σ: actions - what can happen?

→⊂ S × Σ× S: transition relation - how will the system react to actions?

S0: initial states - where do we begin?

Identify the elements!

States: register evaluation and input variable (x, r) can be 0 or 1: {(0, 0), (0, 1), (1, 0), (1, 1)}.
Actions: input variable σ can be 0 or 1: {0, 1}
Transition relation: x′ takes on the value of σ, at the same time

r(k+1) =

{

0 if x(k) = r(k) = 0
1 if x(k) = 1, r(k) = 0 or x(k) = 0, r(k) = 1 or x(k) = r(k) = 1

and

y(k + 1) =

{

1 if x(k) = r(k)
0 if x(k) 6= r(k)

Hence we should have transitions: (x(k), r(k))
σ−→ (σ, r(k + 1))

33

(0, 0)
0−→ (0, 0) (0, 0)

1−→ (1, 0) (137)

(0, 1)
0−→ (0, 1) (0, 1)

1−→ (1, 1) (138)

(1, 0)
0−→ (0, 1) (1, 0)

1−→ (1, 1) (139)

(1, 1)
0−→ (0, 1) (1, 1)

1−→ (1, 1) (140)

(141)

Initial states: we’re given that r = 0 at the start: {(0, 0), (1, 0)}
Let’s draw!

0, 0 1, 0

0, 1 1, 1

1

0
1

1

0

10

0

{y} {x}

{r} {r, x, y}

where the curly bracket indicates the output of each state.

OBS! There are of course multiple ways to model the system! For instance one
could use (y, x, r) as states instead of (x, r). The result would then be a larger
transition system:

S′ = {(0, 0, 0), (1, 0, 0), (0, 0, 1), (1, 0, 1), (0, 1, 0), (1, 1, 0), (0, 1, 1), (1, 1, 1)},
Σ′ = Σ,
(y(k), x(k), r(k))

σ−→ (y(k + 1), σ, r(k + 1))

(0, 0, 0)
0−→ (1, 0, 0) (0, 0, 0)

1−→ (1, 1, 0) (142)

(1, 0, 0)
0−→ (1, 0, 0) (1, 0, 0)

1−→ (1, 1, 0) (143)

(0, 0, 1)
0−→ (0, 0, 1) (0, 0, 1)

1−→ (0, 1, 1) (144)

(1, 0, 1)
0−→ (0, 0, 1) (1, 0, 1)

1−→ (0, 1, 1) (145)

(0, 1, 0)
0−→ (0, 0, 1) (0, 1, 0)

1−→ (0, 1, 1) (146)

(1, 1, 0)
0−→ (0, 0, 1) (1, 1, 0)

1−→ (0, 1, 1) (147)

(0, 1, 1)
0−→ (1, 0, 1) (0, 1, 1)

1−→ (1, 1, 1) (148)

(1, 1, 1)
0−→ (1, 0, 1) (1, 1, 1)

1−→ (1, 1, 1) (149)

and S0 = {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0)}.

34

Exercise 8.9

Consider a simple T-intersection of the traffic system, as shown in Fig. 4. There
are four types of vehicles:

• (1, 2)-type vehicles coming from point 1 and turning right towards 2;

• (1, 3)-type vehicles coming from point 1 and turning left towards 3;

• (2, 3)-type vehicles going straight from 2 to 3;

• (3, 2)-type vehicles going straight from 3 to 2.

The traffic light is set so that it either turns red for (1, 2) and (1, 3) vehicles
(green for (2, 3) and (3, 2) vehicles), or it turns green for (1, 2) and (1, 3) vehicles
(red for (2, 3) and (3, 2) vehicles). Model the traffic system as a transition system
T = (S,Act,→, I) to describe the changes to the number of the vehicles of the
individual types waiting at the intersection over time. Model arrivals of new
cars and departures of the waiting cars and changes of the traffic light colors.
Assume that initially, there is no vehicle at the intersection.

Figure 4: A simple T-intersection with four types of vehicles.

Solution:

What should the elements be?

States: possible status of the intersection= number of vehicles of each type and
color of traffic lights. We’ll use the notation c ∈ {G,R} for color of traffic lights,
where G indicates that it is green for cars of type (1,2) and (1,3) and R indicates
that the same cars have a red light. We’ll also use xij to indicate the number
of cars of type (i,j):

S = {(x12, x13, x23, x32, c) : xij ∈ N0, c ∈ {G,R}} (150)

where N0 is the set of natural numbers including 0, i.e. 0 or any positive integer.

Actions: what can happen = arrival of car of type (i,j), departure of car of type
(i,j), light color change. We’ll use the notation g to indicate that the light turns
green, r to indicate that it turns red, aij to indicate that a car of type (i,j)
arrives, and dij to indicate that a car of type (i,j) departs:

Σ = {a12, a13, a23, a32, d12, d13, d23, d32, g, r} (151)

35

Initial state: how we start =we should assume that the intersection is empty:

S0 = {(0, 0, 0, 0, G), (0, 0, 0, 0, R)} (152)

Transition relation: How the system reacts = if light turns green (g) c should
change to G in the state, if a car arrives the corresponding car number should
increase, and if a car departs the corresponding car number should decrease:

Ex : (x12, x13, x23, x32, G)
a13−−→ (x12, x13 + 1, x23, x32, G) (153)

(x12, x13, x23, x32, G)
d32−−→ (x12, x13, x23, x32 − 1, G) (154)

(x12, x13, x23, x32, G)
r−→ (x12, x13, x23, x32, R) (155)

etc

Can we draw the system? Why/why not?

No! Since xij can take on any positive value there’s an infinte number of states.

Exercise 8.11

Consider the transition system T = {S,Σ,→, SS}, where the cardinality of S is
finite. The reachability algorithm is

Initialization : Reach1 = ∅;
Reach0 = SS;

i = 0;

Loop : While Reachi 6= Reachi−1 do

Reachi+1 = Reachi ∪ {s′ ∈ S : ∃ : s ∈ Reachi, σ ∈ Σ, s →σ s′ ∈→};
i = i+ 1;

Prove formally that

• the reachability algorithm finishes in a finite number of steps;

• upon exiting the algorithm, Reachi = ReachT (SS).

Solution:

Does it make sense? In each loop we add the states s′ to the set, where s′ is
any state whcih can be reached from some state s which is already in the set.

The algorithm stops when the set no longer changes. That is, we stop when the
set is invariant (all states which can be reached from the set are in the set).

Can we make a condition for if we’ll stop then?

Yes! We will stop if there is a finite number of states which can be added to the
set!

Formally: Each loop we have to add at least one state s′ to the set Reachi, or
the algorithm stops. The cardinality of S is finite, i.e. the number of states are

36

finite. Let’s intoduce X as the cardinality of S (number of states). The maxi-
mum number of states which can be added, and hence the maximum number of
loops are then X − 1 (since at least one state must be included in SS = Reach0

before the loop begins).

What about the resulting set? We know that Reachi contains all states
which are reachable from Reachi−1 in one step. Using induction we can show
that Reachi contains all states which are reachable from Reach0 in i steps.
Since Reach0 = SS and ReachT (SS) si the set of reachable states from SS in
any number of steps it follows that Reachi ⊂ ReachT (SS) for any value of i.
However, from the discussion above we know that all states which are reachable
from SS in any number of steps are in Reachi when the algorithm stops, since
SS ∈ Reachi, hence ReachT (SS) ⊂ Reachi for the final set Reachi. It then
follows that Reachi = ReachT (SS) for the final set Reachi.

37

