
INOM TEKNIKOMRÅDETEXAMENSARBETE
TEKNISK FYSIK
OCH HUVUDOMRÅDET
ELEKTROTEKNIK,
AVANCERAD NIVÅ, 30 HP

, STOCKHOLM SVERIGE 2016

Automatic Control Design
Synthesis under
Metric Interval Temporal Logic
Specifications

SOFIE ANDERSSON

KTH
SKOLAN FÖR ELEKTRO- OCH SYSTEMTEKNIK

Automatic Control Design Synthesis under Metric

Interval Temporal Logic Specifications

Master Thesis

Sofie Andersson
sofa@kth.se

System Control and Robotics
Automatic Control Department, EES

Engineering Physics, KTH

Supervisor: Alexandros Nikou
Examiner: Prof. Dimos Dimarogonas

i

Abstract

The problem of synthesizing controllers for motion planning of multi-agent systems under Linear
Temporal Logic (LTL) high-level specifications has been of great interest and has been widely studied
over the last years. However, LTL cannot handle time constraints as specifications. The time aspect
would allow more complicated and specific tasks and it is therefore desirable to incorporate. This
work aims to determine how control synthesis for a continuous linear system can be performed based
on Metric Interval Temporal Logic (MITL), which is able to handle desired time constraints to high-
level specifications. Firstly, a control design synthesis method for a single-agent, based on previous
work within both the field of LTL and MITL is presented. Secondly, a control design synthesis
method for multi-agent systems considering both local an global MITL specifications is presented.
Extended simulations has been performed in MATLAB environment demonstrating the two proposed
methodologies. The result shows that the methods guarantee that the MITL specifications are
satisfied, for all cases for which a solution is found.

Sammanfattning

Problemet gällande regulator syntetisering för rörelse planering av fler-agents system under Line-
ar Temporal Logic (Linjär Temporal Logik=LTL) hög-niv̊a specifikationer har varit av stort intresse
och har studerats brett under de senaste åren. LTL kan emellertid inte hantera tidsbegränsingar som
specifikationer. Tidsaspekten skulle till̊ata mer komplicerade och specifika uppgifter. Det är därför
önskvärt att inkorporera. Målet med det här arbetet är att fastställa hur regulator syntetisering för
ett kontinuerligt, linjärt system kan utföras utg̊aende fr̊an Metric Interval Temporal Logic (Metrisk
Intervall Temporal Logic =MITL), en gren av Temporal Logik som kan hantera de önskvärda tidsbe-
gränsningarna för hög-niv̊a specifikationer. Först presenteras en metod för att syntetisera regulatorer
för en-agents system. Metoden är baserad p̊a tidigare arbeten inom fälten LTL och MITL. Sedan
presenteras en metod för att syntetisera regulatorer för fler-agents system som önskas uppfylla s̊aväl
lokala som globala MITL specifikationer. Utbredda simulationer har genomförsts i MATLAB miljö för
att demonstrera de tv̊a föreslagna metoderna. Resultatet visar att metoderna garanterar att MITL
specifikationerna är uppfyllda för alla fall för vilka en lösning hittas.

ii

Acknowledgements

Firstly, I would like to express my gratitude to Prof. Dimos Dimarogonas for giving me
the opportunity to explore the field of temporal logic as a Master Thesis student at the
control department. It has been a challenging and inspiring time and I greatly appreciate
your support. Secondly, I want to thank my supervisor, Alexandros Nikou, for hours of
rewarding discussion, tips and encouragement along the way and support throughout the
process. You have given me more confidence in my work and made my time on the project
more fun. Finally, I direct my appreciation towards my family who has always been sup-
portive of my studies. Without your encouragement and support throughout my years as a
student (in primary school, upper secondary school as well as here at KTH) I doubt I would
be where I am today.

Sofie Andersson
May 2, 2016

Stockholm

Erkännanden

Först vill jag uttrycka min tacksamhet till Prof. Dimos Dimarogonas, för att han gav
mig möjligheten att utforska fältet temporal logik som Master Examensstudent vid regler-
avdelningen. Det har varit en utmanande och inspirerande tid och jag uppskattar ditt stöd.
Sedan vill jag tacka min handledare Alexandros Nikou, för timmar av givande diskussioner,
tips och uppmuntran längs vägen och stöd igenom processen. Du har ökat mitt förtroende
för mitt arbete och gjort min tid inom projektet roligare. Tillsist riktar jag min uppskat-
tning mot min familj, som alltid varit stöttande av mina studier. Utan er uppmuntran
och ert stöd under mina år som student (i grundskolan, gymnasiet s̊aväl som här p̊a KTH)
tvivlar jag att jag varit där jag är idag.

Sofie Andersson
Maj 2, 2016

Stockholm

iii

Contents

1 Introduction 1

2 Temporal Logic 3
2.1 Linear Temporal Logic . 3
2.2 Metric Interval Temporal Logic . 6
2.3 Signal Temporal Logic . 9
2.4 Comparison . 12

3 Problem Definition 1 14

4 Solution Approach 1 14
4.1 Abstraction of the Continuous System to a Transition System 14
4.2 Translation of the MITL Formula to a Timed Büchi Automaton 20
4.3 Automata Product . 24
4.4 Control Design . 27

5 Implementation 1 27
5.1 Constructing the WTS . 28
5.2 Constructing the TBA . 31
5.3 Constructing the BWTS . 32
5.4 Designing the Control Signal . 35

6 Problem Definition 2 37

7 Solution Approach 2 37
7.1 Product Büchi Weighted Transition System . 38
7.2 Translation of a Global MITL Formula into a Global Timed Büchi Automaton 40
7.3 Global Automata Product . 41
7.4 Projection of a Global Accepting Timed Run onto Local Büchi Weighted Transition

Systems . 42

8 Implementation 2 43

9 Discussion and Conclusion 47

10 Future Work 47

References 48

Appendix 50

A MATLAB Result 50
A.1 Problem 1 . 50

A.1.1 Final Result 1 . 50
A.1.2 Final Result 2 . 54

A.2 Problem 2 . 58
A.2.1 Final Result 1 - Sub-problem . 58
A.2.2 Final Result 2 - Sub-problem . 60
A.2.3 Final Result 3 - Full Problem . 64

iv

List of Figures

1 Simple Motion Planning Example of Temporal Logic 2
2 Motion Planning Example of Temporal Logic . 2
3 Transition System of the Motion Planning Example 5
4 Timed Automata of an MITL Formula . 8
5 Motion Planning Example with Weighted Transitions 9
6 Signal Example of STL . 11
7 Example of an Advantage of STL Compared to LTL 11
8 LTL Scheme of the Solution Approach . 13
9 MITL Scheme of the Solution Approach . 14
10 Partition Example of a State Space . 19
11 Example of Facets and an Abstracted Weighted Transition System 19
12 Example of a TBA Constructed of an MITL Formula (1) 22
13 Example of a TBA Constructed of an MITL Formula (2) 22
14 Example of a TBA Constructed of an MITL Formula (3) 23
15 Example of a WTS Abstracted from a Continuous Linear System 25
16 Example of a TBA Translated from an MITL Formula 26
17 Example of a Constructed BWTS . 26
18 Partition constructed by the MATLAB scripts with the settings of Problem 1 as defined

in section 5. The circle with the 1 inside represents the initial state. 28
19 Example of a Constructed WTS . 31
20 Example of a Constructed TBA . 32
21 Example of a Constructed BWTS . 36
22 Quiver plots of the system evolution for the closed-loop system of the example in

section 5, when the designed controller is applied. 37
23 Example of a Global TBA . 41
24 Example of partition created in MATLAB. 44
25 Illustration of the path of the agents. 45
26 Illustration of the evolution of system 1 when the computed controllers are applied. . 45
27 Illustration of the evolution of system 2 when the computed controllers are applied. . 46

List of Tables

1 Comparision of LTL, MITL and STL . 12
2 Example Formulas of LTL, MITL and STL . 12

v

1 Introduction

This master thesis will consider automatic control design synthesis based on high level temporal logic
motion planning. The main purpose is to study how to design control input for a continuous linear
system such that the controlled system satisfies a temporal logic formula. Temporal logic consists of
mathematical formulas which express properties that a system is desired to satisfy. The formulas are
built by atomic propositions, logic connectives and temporal modal operators. Atomic propositions
are statements which can be true or false and which considers the system variables [1]. An example
of an atomic proposition is ”The robot is in room 1”, where the system is the robot motion and room
1 is a subset of the area the robot can move around in. The example is expressed as in equation (1).

φ1 = r1 (1)

Logic connectives are operators which, when applied to the atomic propositions, describes other
areas of the system’s state space as a function of the named propositions [1]. An example of a logic
connective is ”The robot is either in room 1 or in room 2.”, here the logic connective is the or which
is expressed as a disjunction (∨). The example is expressed as in equation (2).

φ2 = r1 ∨ r2 (2)

Other logic connectives includes negation (¬), conjunction (∧) and implies (⇒). Temporal modal
operators describe present and future events with respect to the atomic propositions [1]. An example
of a temporal modal operator is ”The robot will eventually be in room 2.”, where the temporal modal
operator is eventually (♦). The example is expressed as (3).

φ3 = ♦r2 (3)

Other temporal modal operators includes next (©), always (�) and until (U). Three simple
examples of implemented temporal logic are illustrated in figures 1 and 2. The examples consider a
robot which is moving around 6 rooms through a corridor. In figure 1a, the robot stands still in room
1. This example satisfies the atomic proposition r1 and the satisfied formulas include �r1. In figure
1b, the robot stands still in room 2. This example satisfies the atomic proposition r2. Furthermore it
satisfies the formula r1 ∨ r2, composed of the atomic propositions r1 and r2 and the logic connective
∨. In figure 2, the robots starts in room 1, moves through the corridor to room 2 followed by room 6
and finally return to room 1 where it stops. Throughout the run, different atomic propositions hold
at different point in time. The run itself, satisfies formulas such as ♦r2, r2Uc, ¬♦r5 among others.

Temporal logic consists of several types such as Linear Temporal Logic (LTL), Metric Interval
Temporal Logic (MITL) and Signal Temporal Logic (STL). Which connectives and operators are
included in each type is defined by the grammar and semantics of the type, which is presented in
section 2. Up until now the focus area within research have been LTL. The subject of formal control
design based on LTL have been widely studied in papers such as [1], [2], [3], [4], [5], [6], [7], [8] and [9],
motivating a shift of focus to new areas such as MITL or STL. LTL considers discrete time [10], as
illustrated in tables 1 and 2. While MITL and STL both considers real-time [11], [12]. Adding a
time aspect to the problem would increase the possibilities regarding the specifications given to a
system. For instance, it would allow for language such as ”Remain within room 1 for all time in the
time interval 5 to 10 time-units.” (�[5,10]r1), a developed form of ”Remain within room 1, always.”
(�r1).

In this report, all three mentioned temporal logics will be presented; including grammar, semantics
and some easy to follow examples based on motion planning. This is done in section 2, which also
includes a comparison between the subjects. Based on this comparison, MITL have been chosen as
the topic of study in this master thesis. The problem definition and preliminaries of the single-agent
problem and the multi-agent problem are presented in section 3 and section 6 respectively, and the
approach to the problems, i.e. the solutions are described in section 4 and section 7. Examples and
results from MATLAB simulations are presented in sections 5 and 8. Finally, the result is summarized
and evaluated in section 9, and conclusions regarding the thesis as well as future work are presented
in section 10.

1

Room 1 Room 2 Room 3

Corridor

Room 5Room 4 Room 6

(a) The robot is in room 1. Hence, for-
mulas φ1 and φ2 holds, while formula φ3

doesn’t.

Room 1 Room 2 Room 3

Corridor

Room 5Room 4 Room 6

(b) The robot is in room 2. Hence for-
mulas φ2 and φ3 holds while formula φ1

doesn’t.

Figure 1: Example of two very simple runs of a motion planning system. The system
consists of a robot which moves around in 6 rooms through a corridor. The atomic
proposition set consists of the set R = {ri|i = 1, 2, 3, 4, 5, 6} which considers if the
robot is in a given room. The red circle represents the robot.

Room 1 Room 2 Room 3

Corridor

Room 5Room 4 Room 6

4 2

3

1

Figure 2: The figure illustrates a slightly more complicated run of the same system
as introduced in 1. The robot moves according to the arrows and numbers, starting
and ending in room 1. The run satisfies formula φ3. The other two formulas φ1 and
φ2 are satisfied at some points in time, but not throughout the entire run.

2

2 Temporal Logic

In this section, the topics of LTL, MITL and STL are presented. The grammar, semantics and
terminology of the three temporal logic versions are described in sections 2.1, 2.2 and 2.3, and the
differences are discussed in 2.4, ending with a motivation of the conclusion to base this master thesis
on MITL.

2.1 Linear Temporal Logic

The grammar of LTL is defined according to equation (4), and includes true, atomic proposition,
negation, disjunction, until and next [10].

φ := > | π | ¬ φ | φ ∨ ψ | φ U ψ | © φ (4)

The semantics of an LTL formula is defined as a language Words(φ) which contains all infi-
nite words over the alphabet, 2Π, that satisfy φ [10]. The language is defined in accordance with
Definition 2.1.1. The properties of the satisfaction relation (�) are defined in Definition 2.1.2.

Definition 2.1.1. Let φ be an LTL formula over Π. The linear-time property induced by φ is defined
by:

Words(φ) = {σ ∈ 2Π|σ � φ} (5)

where �⊆ 2Π × LTL is the satisfaction relation.

Definition 2.1.2. LTL semantics of the satisfaction relation is defined as:

σ � >
σ � π ⇔ π ∈ σ0, (σ0 � π)

σ � φ ∧ ψ ⇔ σ � φ and σ � ψ

σ � ¬φ ⇔ σ 2 ψ
σ �©φ ⇔ σ1σ2... � φ

σ � φ U ψ ⇔ ∃j ≥ 0, σjσj+1... � ψ and σiσi+1... � φ, ∀ i s.t. 0 ≤ i < j (6)

where σ = σ0σ1σ2.. ∈ 2Π is an infinite word (see Definition 2.1.3) over 2Π which satisfies φ and
Π = {πi|i = 0, ...n} is a set of atomic propositions πi.

From the grammar in equation (4); eventually, always, false, conjunction, implies, equivalence
and parity(exclusive or), can be deducted in accordance with equation (7).

♦φ = > U φ
�φ = ¬♦¬φ
⊥ = ¬>

φ ∧ ψ = ¬(¬φ ∨ ¬ψ)

φ⇒ ψ = ¬φ ∨ ψ
φ⇔ ψ = (φ⇒ ψ) ∧ (ψ ⇒ φ)

φ⊕ ψ = (φ ∧ ¬ψ) ∨ (¬φ ∧ ψ) (7)

In all temporal logics, there are some terminology which is used. This terminology includes
words and runs among other. The definitions of these terms are given below in Definition 2.1.3 and
Definition 2.1.4 .

Definition 2.1.3. A word σ is an infinite string σ0σ1..., where σi ∈ 2Π ∀ i ≥ 0.

Definition 2.1.4. A run of σ in an non-deterministic Büchi Automaton (NBA) (see Definition 2.1.6)

is an infinite sequence of states s.t. q0 ∈ Q0 and qi
σi→ qi+1, ∀ i ≥ 0. Where Q0 is the set of initial

states.

3

When approaching control problems with LTL, transition systems are considered. Transition
systems are a representation of systems just as automata and state space equations can be. The
definition of a transition system is given in Definition 2.1.5 [10]. Examples of words included in
the alphabet of a transition system and LTL formulas satisfied by a transition system is given in
Example 2.1.

Definition 2.1.5. A transition system is a tuple TS = (Π,Πinit,Σ,→, AP, L),
where

• Π = {ri|i = 0, ..., n} is a set of states,

• Πinit ⊂ Π is a set of initial states,

• Σ = {σi|i = 0, ..., l} is a set of actions,

• →⊆ Π×Σ×Π is a transition relation, the expression δ(ri, σj) = rk i used to express transition
from ri to rk under the action σj ,

• AP = {api|i = 0, ...,m} is a set of atomic propositions and

• L : Π→ 2AP is a labelling function.

As mentioned above, another representation is automata. The definition of a non-deterministic
automaton is given in Definition 2.1.6 [10]. LTL formulas can be translated into automata, using
the fact that some states are accepting, creating an automaton which is accepting of all runs which
satisfy the LTL formula it is built for. Definitions of accepting words and accepting runs are given
in Definition 2.1.8 and Definition 2.1.7, also accepting language in Definition 2.1.9 [13]. An example
of a automaton constructed from a temporal logic formula and accepting words/runs are given in
section 2.2 in Example 2.2.

Definition 2.1.6. A non-deterministic Büchi Automaton is a tuple A = (S, Sinit, E, F,AP,L) where

• S = {si|i = 0, ..., n} is a finite set of states,

• AP = {api|i = 0, ..., l} is a finite set of inputs, called an alphabet,

• E ⊆ S ×AP × S is a transition relation,

• Sinit ⊆ S is a set of initial states and

• F ⊆ S is a set of accepting states,

• L is a labelling function, labelling some set of atomic propositions to each state.

Definition 2.1.7. An accepting run is a run for which there are infinitely many j ≥ 0 s.t. qj ∈ F ,
i.e. a run which consists of infinitely many accepting states.

Definition 2.1.8. An accepting string is a string σ which has an accepting run in A.

Definition 2.1.9. An accepted language L(A) is a set of all accepting strings of A.

Example 2.1. Returning to the example with the robot moving around 6 rooms, the system can be
translated into the transition system presented in figure 3, assuming that the robot starts in room
1 and that the controllers which induces the transitions are a, b, ..., f according to the figure. The
language of the system includes any combination of a, b, .., f (any word) starting with a and otherwise
only containing any of the combinations (ba)n, (ac)n, (cb)n, (de)n, (ea)n and/or (fd)n, as well as a
possible end letter. An example of a word included in the language is: aaccbe, which would take the
robot from room 1 (q1

1), through the corridor (q0) to room 4 (q4), back through the corridor to room
5 (q5)and finally back through the corridor to room 3 (q3). Furthermore, the system would satisfy
LTL formulas such as: φ = r4 ⇒ (©c), where c is the corridor. The formula translates to ”The robot
being in room 4 implies that the next room it enters will be the corridor.”.

1Here qi is used to represent states in the transition system instead of ri, this is done in order to avoid confusion between
states and rooms.

4

q1, r1 q4, r4

q3, r3 q6, r6

q0, cq2, r2 q5, r5

a

b

c

a

e

d

a

e

d

f

b

c

Figure 3: Transition system of a robot moving through 6 rooms q1, .., q6 by a hallway
q0. The robot starts in room 1.

5

2.2 Metric Interval Temporal Logic

This section contains definitions and examples considering both MITL as well as the timed aspects
of automata and transition systems. Previous work within the fields which have been used as a basis
for this section, includes [14], [7], [15] and [12]. In MITL real-time is considered rather than discrete-
time. Therefore, this section is initialized by some definitions regarding timed terms. Namely, time
sequence, timed word and timed language, the definitions follow [13].

Definition 2.2.1. A time sequence τ = τ0τ1... is an infinite sequence of time values which satisfies

• τi ∈ I ⊂ Q+,

• τi < τi+1, ∀i ≥ 0 and

• ∃i ≥ 1, s.t. τi > t, ∀t ∈ I.

Definition 2.2.2. A timed word w over the set Π is a finite sequence w = (σ(0), τ0)(σ(1)τ1)...(σ(n)τn),
where σ = σ(0)σ(1)...σ(n) is a finite word over 2Π (see Definition 2.1.3) and τ = τ0τ1...τn is a time
sequence (see Definition 2.2.1).

Definition 2.2.3. A timed language L over Π is a set of timed words, i.e. L = {wi|i = 0, .., n}.
The MITL grammar is defined as equation (8) [12], translating to true, proposition, negation,

disjunction and until.
φ := > | p | ¬ φ | φ ∨ ψ | φ U[a,b] ψ (8)

The semantics of MITL is illustrated in Definition 2.2.4.

Definition 2.2.4. Let φ be an MITL formula over Π and τ(s, I) be a timed state sequence (timed
word). The semantics of the satisfaction relation is then defined as:

τ � π ⇔ π ∈ s0 (s0 � π)

τ � ¬φ ⇔ τ 2 φ
τ � φ ∧ ψ ⇔ τ � φ and τ � ψ

τ � φ UI ψ ⇔ ∃t ∈ I, s.t. τ t � ψ and ∀t′ ∈ (0, t), τ t
′
� φ (9)

The grammar in (8) can be extended to include eventually, always, false and conjunction, as
illustrated in equation (10).

♦[a,b]φ = > U[a,b] φ

�[a,b]φ = ¬♦[a,b]¬φ
⊥ = ¬>

φ ∧ ψ = ¬(¬φ ∨ ¬ψ) (10)

As for the LTL, the system which is evaluated can be represented by a transition system. How-
ever, in order to take in consideration the time aspect which MITL includes, weights are added to
transitions. These weights corresponds to the time a transition takes. The definition of a weighted
transition system is given in Definition 2.2.5 [16].

Definition 2.2.5. A weighted transition system is a tuple T = (Π,Πinit,Σ,→, AP, L, d)
where

• Π = {ri|i = 0, ..., n} is a set of states,

• Πinit ⊂ Π is a set of initial states,

• Σ = {σi|i = 0, ..., l} is a set of inputs,

• →: Π × Σ → 2Π is a transition map, the expression δ(ri, σj) = rk i used to express transition
from ri to rk under the action σj ,

• AP is a set of observations,

• L : Π→ AP is an observation map and

• d : Π× Σ→ R+ is a positive weight assignment map.

Corresponding to the runs, defined in section 2.1, there are timed runs, taking in consideration
whether some clock-constraints are fulfilled. The definition is given in Definition 2.2.6.

6

Definition 2.2.6. A timed run rt = (r(0), τ0)(r(1), τ1)...(r(n)τn) ∈ Π× I for a transition system T
(see Definition 2.2.5) is a finite sequence where r(0)r(1)...r(n) is an untimed run (see Definition 2.1.4)
and τ0τ1...τn is a time sequence s.t.

• τ0 = 0

• τi+1 = τi + d(r(i), r(i+ 1)), ∀i ∈ {0, 1, ..., n− 1},
where d(r(i), r(i+ 1)) is the transition weight for the transition between the state corresponding to
r(i) to the state which corresponds to r(i+ 1), i.e. the time the transition needs.

Finally, the MITL formula can be translated into a timed automaton (see section 4.2 for details).
The timed automaton includes clocks and clock-constraints. Before presenting the definition of a
timed Büchi automaton, the definitions of clock constraints and clock valuation will be considered.
The definition of clock constraints is given in Definition 2.2.7 [17].

Definition 2.2.7. Let C be a finite set of clocks C = {c1, c2, ..., cM}, a set of clock constraints ΦC
over C is then defined as:

ΦC := >|⊥|c ./ k|c− c′ ./ k|Φ1 ∧ Φ2|Φ1 ∨ Φ2,

where k ∈ N is a non-negative integer, ./∈ {=, 6=, <,>,≤,≥} is an comparison operator and c, c′ ∈ C
are clocks.

The clock valuations are defined as Definition 2.2.8 [18].

Definition 2.2.8. A clock valuation (or interpretation) v for a set of clocks C, assigns a real value to
each clock and hence maps from C to R+ ∪ {0}. v+ δ denotes the valuation which maps every clock
c to the value v(c) + δ. v[R := 0] denotes the valuation for C which assigns 0 to each c ∈ R ⊆ C,
and agrees with v over the rest of the clocks.

Now, we proceed with the definition of a timed Büchi automaton, which is given in Definition 2.2.9
[13].

Definition 2.2.9. A timed Büchi Automaton (TBA) is a tuple
A = (S, S0, X, I, E, F,AP,L) where

• S = {si|i = 0, 1, ...} is a finite set of locations,

• S0 ∈ S is the set of initial locations,

• 2AP is the alphabet or set of actions (AP is the set of atomic propositions),

• X is a finite set of clocks,

• F ∈ S is a set of accepting locations,

• I : S → ΦX is a map labelling each state si with some clock constraint,

• E ⊆ S × ΦX × 2X × S is a set of transitions and

• L is a labelling function, labelling some set of atomic proposition to each state.

A state of A is a pair (s, v) where s ∈ S is a location and v is a valuation that satisfies I(s). The
initial state of A is a pair (s0, (0, 0, ..., 0)), where s0 ∈ S0 and the null-vector (0, 0, ..., 0) is a vector of
|X| number of valuations vi = 0.

Similarly to the accepting word and accepting runs of the BA constructed from the LTL formula,
there are accepting timed words and accepting timed runs for the TBA. An example of accepting
timed words and accepting timed runs are given in Example 2.2.

Example 2.2. Consider the timed automata Aφ illustrated in figure 4. The automata consists of
3 states; s0, s1 and s2, where s0 is the initial state and s1 is the accepting state. The accepting
words of Aφ, are the words which results in the system visiting the accepting state s1 infinitely often.
Similarly, the accepting runs of Aφ, are the runs which visits the accepting state infinitely many
times. An example of an accepting word of Aφ is:

(0, {¬a})(t′, {a})

where t′ ≤ b. The corresponding accepting run is :

(s0, 0)
0,{¬a}−→ (s0, 0)

t′,{a}−→ (s1, 0)

7

s0 s1

s2

a, c ≤ b, c := 0

>, c > b, c := 0

¬a, c ≤ b

>,>, c := 0

>,>, c := 0

Figure 4: Illustration of the timed automata Aφ, constructed of the MITL formula
φ = ♦≤ba, where a is an atomic proposition i.e. Π = {a}.

Examples of a non-accepting words of Aφ is:

(0, {¬a})(t′′, {a})

where t′′ > b, and
(τ, ({¬a})w)

for any infinite time sequence τ . In the first example the system transition to state s2 due to the
clock-constraint c ≤ b being broken, in the other example the atomic proposition a is never fulfilled.
The corresponding runs of the words are:

(s0, 0)
0,{¬a}−→ (s0, 0)

t′′,{a}−→ (s2, 0)

and

(s0, 0)
τ [0...i−1],({¬a})i

−−−−−−−−→ (s0, 0)
τ [i],{¬a}

−−−−−−−−→ (s2, 0)
τ [i+1...],({¬a})w

−−−−−−−−→ (s2, 0)

where τ [i] is the ith element of the sequence τ , τ [i..j] is the elements between i and j and τ [i] is the
first element which is greater than b.

The accepting words corresponds to the sequences of atomic propositions and time which satisfies
the MITL formula φ = ♦≤ba, which the automaton is constructed of.

Notice: All accepting words are those with a prefix (0, {¬a})(τ, ({¬a})n)(t′, {a}), for some t′ ≤ b,
where τ is a finite time sequence of length n and t′ > τj , ∀j ≤ n.

An example of a weighted transition system which is evaluated by an MITL formula follows in
Example 2.3.

8

1s2s

2s

1s

(a) The robot (illustrated as a black dot),
can move within the 5 × 5 area. Mov-
ing one square upwards or to the left
demands 2s, while moving one square
downwards or to the right only demands
1s.

4s

4s

2s

2s6s

(b) Example of a run which fulfils the
MITL formula given in Example 2.3.

Figure 5: Motion planning example of a robot moving through a partitioned space.
The figures illustrate costs of movements and a possible run.

Example 2.3. Considering the system illustrated in figure 5a, a robot is moving within a partitioned
area of the size 5 × 5. Movements upwards or to the left costs the robot 2s, while movements
downwards or to the right only costs 1s. Now, consider the MITL formula

φ = ♦≤5sred ∧ ¬blue U≤10s yellow ∧�(yellow ⇒ ♦≤12sblue)

The formula states

• that the robot must reach the red square within 5s,

• that it mustn’t go to the blue square until it has been at the yellow square,

• that it must reach the yellow square within 10s and

• that it always must go to the blue square within 12s if it enters the yellow square.

Assuming the robot starts at the square which it is located at in the figure, the MITL formula can
be satisfied. An example of a run which satisfy the formula is given in figure 5b. Here the robot
reaches the red square by 4s (4 ≤ 5 - ok!), it doesn’t enter the blue square until it has been in the
yellow square, it enters the yellow square by 10s (10 ≤ 10 - ok!), and finally the blue square within
8s of entering the yellow square (8 ≤ 12 - ok!).

2.3 Signal Temporal Logic

Previous work within STL include papers such as [12], [19], [20], [21] and [22]. This section is based
on the information presented in those papers. The grammar of STL is given by equation (11) and
includes true, atomic proposition, negation, disjunction and until. The grammar can be extended to
include eventually, always, conjunction and false in accordance with equation (12).

φ := > | µ | ¬ φ | φ ∨ ψ | φ U[a,b] ψ (11)

9

♦[a,b]φ = > U[a,b] φ

�[a,b]φ = ¬♦[a,b]¬φ
φ ∧ ψ = ¬(¬φ ∨ ¬ψ)

⊥ = ¬> (12)

Where the value of µ is determined by the underlying signal x; µ ≡ f(x) ∼ c, where f is a
scalar-valued function over x, ∼∈ {<,>,≤,≥,=, 6=} and c is a constant real number. The boolean
semantics of the satisfaction relation is given by Definition 2.3.1.

Definition 2.3.1. The boolean semantics of STL is defined as

(x, t) � µ ⇔ x satisfies µ at time t

(x, 0) � φ ⇔ x � φ

(x, t) � ¬µ ⇔ (x, t) 2 µ
(x, t) � φ ∧ ψ ⇔ (x, t) � φ and (x, t) � ψ

(x, t) � φ ∨ ψ ⇔ (x, t) � φ or (x, t) � ψ

(x, t) � �Iφ ⇔ ∀t′ ∈ I + t, (x, t′) � φ

(x, t) � φ UI ψ ⇔ ∃t′ ∈ I + t, s.t. (x, t′) � ψ and

∀t′′ ∈
[
t, t′
]
, (x, t′′) � φ (13)

The new aspect of STL, which MITL is lacking is the possibility to measure how close the signal
is to not fulfil µ. This measurement is expressed by ρ. The value of ρ is determined by the signal x
the atomic proposition µ and the time t. The semantics of ρ, also called the quantitative semantics,
are given by Definition 2.3.2.

Definition 2.3.2. The quantitative semantics of STL is defined as

ρ(µ, x, t) = f(x(t))

ρ(¬µ, x, t) = −ρ(µ, x, t)

ρ(φ ∧ ψ, x, t) = min(ρ(φ, x, t), ρ(ψ, x, t))

ρ(φ ∨ ψ, x, t) = max(ρ(φ, x, t), ρ(ψ, x, t))

ρ(�Iφ, x, t) = min
t′∈I

(ρ(φ, x, t′))

ρ(φ UI ψ, x, t) = max
t′∈I

(
min

(
ρ(ψ, x, t′), min

t′′∈[t,t′]
ρ(φ, x, t′′)

))
(14)

An example of a signal which is evaluated by some STL formulas follows in Example 2.4.

Example 2.4. An example of a system which can be evaluated by an STL formula is given in figure
6a. The figure illustrates a signal x evolving over time. It is clear from figure 6b, that the system
satisfies the STL formula �(|x| < 3). While it does not satisfy �(|x| < 2) (see figure 7a) for all t.
However, as illustrated in figure 7b, it does satisfy the formula for some t, hence the STL formula
�[2.15,4.2](|x| < 2) is satisfied.

10

x

t

-3

-2

-1

0

1

2

1 2 3 4 5

(a) A signal x evolving over time t, defin-
ing a system.

x

t

-3

-2

-1

0

1

2

1 2 3 4 5

(b) The absolute value of the signal never
exceeds 3, and hence satisfy �(|x| < 3).

Figure 6: Example of a signal under evaluation of an STL formula.

x

t

-3

-2

-1

0

1

2

1 2 3 4 5

(a) The absolute value of the signal
does exceed 2, and hence doesn’t satisfy
�(|x| < 2).

x

t

-3

-2

-1

0

1

2

1 2 3 4 5

(2.15,2.0) (4.2,2.0)

(b) The absolute value of the sig-
nal doesn’t exceed 2 at the time
interval [2.15, 4.2], and hence satisfy
�[2.15,4.2](|x| < 2).

Figure 7: Example of how the real-time could be applied in order to satisfy the
softer version of a temporal logic formula.

11

2.4 Comparison

The main differences between the already studied LTL and the possible areas of study, STL and
MITL, are illustrated in table 1. An example is given in table 2. It follows that MITL is an extension
of LTL which includes time-constraints and that STL is a further extension which, besides including
time-constraints, also predicates over real-values compared to LTL and MITL which predicates over
boolean. When approaching the problem at hand the considered methods would therefore differ.

Table 1: Properties that differ between LTL, MITL and STL, [23].

Predicates over Time property
LTL Boolean Discrete-time
MITL Boolean Real-time
STL Real-value Real-time

Table 2: Example of differences conserning the expression possibilities of LTL, MITL
and STL.

Example
LTL p U q At some point in the future, q will be true, until

then p will be true.

MITL p U[1,5] q At some point in the time interval 1 to 5 time-
units, q will be true, until then p will be true.

STL (x(t) < 2) U[1,5] (y(t) > 5) At some point in the time interval 1 to 5 time-
units, y will be greater than 5, until then x will
be smaller than 2.

The approach to the problem using LTL is described by scheme 8. The scheme is a remake of the
image”Temporal Logic-Based Planning: Hierarchical Approach” in [24]. In short, the LTL formula
and the continuous system is abstracted into a joint discrete model by creating an automata product
of a Büchi automaton representing the LTL formula and a discrete model abstracted directly from
the system. The control input is then designed based on accepted runs of the automata product.

Due to STL predicating over real-values, it is not possible to translate an STL formula to an
automaton. This would not be an issue for the MITL approach. To solve the problem based on STL,
the considered approach would become an optimization problem where the system is considered as the
cost function and the STL formula as conditions. Due to the authors preference towards automaton,
the area of MITL has been chosen.

12

Figure 8: Remake of the scheme ”Temporal Logic-Based Planning: Hierarchical
Approach” in [24] by Jana Tumova.

13

3 Problem Definition 1

The problem considered in this master thesis is finding a control input for the continuous linear
system (15), which fulfil the MITL formula φ. (15) is assumed to be controllable and stabilizable.

ẋ = Ax +Bu (15)

x ∈ X u ∈ U

4 Solution Approach 1

The intended approach to the problem is illustrated in scheme 9. The approach has been constructed
based on previous work such as [23], [2], [1] and [3], the idea being to adapt the approach towards
the LTL problem such that it suits the MITL issue. Each step of the approach is described in more
detail in sections 4.1, 4.2, 4.3 and 4.4.

Figure 9: Scheme describing the MITL approach to the problem.

4.1 Abstraction of the Continuous System to a Transition System

Assuming that x ∈ RN (aX, bX) ⊂ RN in (15), that is that the state space of the system can be divided
into rectangles of dimension N (see Definition 4.1.1), the following approach towards abstracting the
environment into a weighted transition system is suggested, it follows the theory presented in [16].

Definition 4.1.1. An N -dimensional rectangle RN (a, b) ⊂ RN is characterized by two vectors a, b,
where a = (a1, a2, ..., aN), b = (b1, b2, ..., bN) and ai < bi, ∀ i = 1, 2, ..., N . The rectangle is then given
by

RN (a, b) = {x ∈ RN |∀i ∈ {1, 2, .., N} : ai ≤ xi ≤ bi} (16)

That is, the vector a includes the points in each dimension which the rectangle’s first vertex is
positioned in and the b vector includes the points in each dimension which the rectangle’s last vertex
is positioned in.

Firstly, the state space x is divided into rectangles in accordance with the atomic propositions
which are considered. Namely, if AP = {api|i = 0, ..., l} is the set of atomic propositions then the
partition follows equation (17). Which ensures that there is always a distinct answer regarding if an
atomic proposition is true or false within a rectangle, i.e. it eliminates the possibility of an atomic
proposition being true in part of a rectangle and false in the other part. Now, if the MITL formula is
constructed of the atomic propositions api, it will be possible to determine if a run in the partitioned
state space satisfies the formula. The first step in abstracting system (15) to a weighted transition
system, is then to define the states q in Definition 2.2.5 as the rectangles RN (aX, bX).

[api] = ∪dij=1RN (aj,api , bj,api) ⊂ RN (aX, bX), di ∈ N (17)

14

The next step is to include the time aspect in the abstraction. [16] suggest a solution by introducing
the Facet Reachability Problems, which considers whether a closed-loop system can reach determined
facets of a rectangle. Namely, is it possible to design a control input such that the system can exit
one rectangle and enter another? A theorem determining when the problem is solvable, i.e. when
such a controller can be designed, is presented in Theorem 1, introduced in [16].

Theorem 1. Let RN (a, b) be a rectangle and ε ⊂ F(a, b) be a non-empty subset of its facets. ∃ a
multi-affine feedback controller k : RN (a, b) → U s.t. all the trajectories of the closed-loop system
(15), originating in RN (a, b), leave it through a facet from the set ε in finite time if:

n>F (Av +Bk(v)) ≤ 0,∀F ∈ Fv\ε, ∀v ∈ V(a, b), (18)

and
0 /∈ Conv({Av +Bk(v)|v ∈ V(a, b)}) (19)

where Conv denotes the convex hull and V(a, b) is the vertexes (corners) of the rectangle.

Equation (18) states that the closed-loop system (15) must move away from the facets which are
not approved. While equation (19) includes that the system must always evolve (the speed of the
system can’t be 0). Note, equation (19) contains more information than this. Theorem 1, states
that it is possible to design a controller such that the system always exit a rectangle through a
determined facet if equation (18) and equation (19) are satisfied. If there is only one approved facet,
i.e if ε = {F}, condition (19) can be simplified to equation (20), stating that the system must move
towards the approved facet.

n>F (Av +Bk(v)) > 0, ∀v ∈ V(a, b) (20)

[16] continue by proposing that the system will leave the rectangle through the given facet in
time less than or equal to TF , where TF is defined according to equation (21), where i corresponds
to the outer normal ei which the particular facet has and sF and sF are defined according to (22).

TF = ln

(
sF
sF

)
bi − ai
sF − sF

(21)

sF = min
v∈V(F)

(h(v) +Bk(v))i sF = min
v∈V(F)

(h(v) +Bk(v))i (22)

The idea behind TF is to calculate the time it would take for the system to reach the facet,
assuming that it starts at the point the furthest away from it, i.e. on the opposite facet, and that it
moves towards the facet at the slowest possible rate given the determined u. That is, choosing TF

as the maximum time required for the transition to occur. For a continuous linear system (15) this
corresponds to solving the problem

ẋi = (Ax)i + (Bu)i (23)

x(0)i = x0 x(t1)i = x1

where i is the norm direction of the facet, for t1. Which gives the time it will take for the system
(15) to evolve from x0 to x1 in direction i. Hence, if x1 is a point along the facet, t1 is the time it
will take for the system to reach the facet from the point x0. Now, assuming that u is linear, i.e.
Bu = B1x+B2 system (23) can be rewritten to (24).

ẋi = ((A+B1)x)i + (B2)i = (A∗x)i +B∗i =
n

Σ
j=1

a∗ijxj +B∗i (24)

Finally, by introducing C∗i = B∗i +
n

Σ
j=1,j 6=i

a∗ijxj , the system can be further simplified to (25).

ẋi = a∗iixi + C∗i (25)

x(0)i = x0 x(t1)i = x1

15

The equation is solved by separating xi from t as shown in (26), assuming that C∗i can be treated
as a constant. The assumption is directly valid if u is designed such that the dependence ẋi has of
xj for j 6= i is cancelled out, i.e. if a∗ij = aij + (B1)ij = 0. If this is not true, i.e. if there is a
desire to choose (B1)ij differently, the assumption would still be indirectly valid. The motivation
for this is that the dependence on xj will be linear, this corresponds to solving the problem as if C∗i
were constant for two cases - xj = xj,max and xj = xj,min where min and max are the smallest and
biggest value xj can have in the rectangle - and then using the maximum of the two solutions.

dxi
dt

= a∗iixi + C∗i →∫
dt =

∫ (
1

a∗iixi + C∗i

)
dxi →

t+ k =
ln(a∗iixi + C∗i)

a∗ii
(26)

Now, k can be determined using x(0)i = x0, giving the result shown in (27), and using x(t1)i = x1,
t1 can be determined as (28).

k =
ln(a∗iix0 + C∗i)

a∗ii
(27)

t1 =
ln(a∗iix1 + C∗i)− ln(a∗iix0 + C∗i)

a∗ii
(28)

Finally, TF is the maximum time it will take for the system to reach the facet (x1). This
corresponds to t1, when x0 is one of the points which is the furthest away from x1, i.e. when x0 is a
point on the opposite facet F , and when the system evolves at the slowest possible speed, i.e.when
C∗i is minimized. Hence, TF , for a continuous linear system can be defined as (29), where sF and
sF are defined as (30), and a∗ii is the i × ith element of the matrix A + B1. Here A is the matrix
determining the open-loop dependence on x, and B1 is the matrix determining the added dependence
of x from the closed-loop.

TF = ln

(
sF
sF

)
1

a∗ii
(29)

sF = a∗iixi + C∗i
x∈F

sF = a∗iixi + C∗i
x∈F

(30)

Furthermore, [16] states that the time bound can be minimized by using the controller which
maximizes n>F (Av + Buv), i.e. which maximizes the speed of which the system moves towards the
given facet. More precisely the optimization problem given by equation (31) must be solved for all
vertexes in a rectangle for a given facet. In a 2 dimensional case this results in 4 problems for each
approved facet in each rectangle.

max
uv∈U

(
n>F (Av +Buv)

)
n>F ′(Av +Buv) ≤ −ε, ∀F ′ ∈ Fv�F

uv ∈ U ε > 0 (31)

Now, the time can be incorporated into the weighted transition system by setting the weights d
for each transition according to TF , that is as the maximal time the system will need to finish the
transition. Also, the inputs σ can be set to the control-input u which will cause the transition.

As for the remaining properties of the weighted transition system; → corresponds to the allowed
transitions i.e. the approved facets, AP = AP (the set of atomic propositions) and L is the function
that maps which atomic propositions that holds in each state (rectangle). An example is given in
Example 4.1.

16

Example 4.1. Let the continuous linear system to be controlled be:

ẋ = x+ u (32)

where x ∈ [(1, 1)>, (5, 6)>] ⊂ R2 and u ∈ [(−7,−7)>, (6, 6)>] ⊂ R2. Furthermore, let the MITL
formula to be satisfied φ be over the atomic proposition set AP = {ap0, ap1, ap2, ap3}. Where api is
defined as:

ap0 : x1 > 4, x2 < 3

ap1 : x1 > 4, x2 > 3

ap2 : x1 < 3, x2 < 3

ap3 : x1 < 3, x2 > 3 (33)

The state space of the linear system (32) is then illustrated in figure 10a. By applying equation (17)
on the state space, with api as defined in (33), the partition illustrated in figure 10b follows. This
corresponds to a weighted transition system T = (Π, ,Πinit,Σ,→, AP, L, d) with 5 states ri according
to equation (34).

Π = {ri|i = 0, 1, .., 4}
r0 = R2((1, 1), (3, 3)) r1 = R2((3, 1), (5, 3))

r2 = R2((1, 3), (5, 4)) r3 = R2((1, 4), (3, 6))

r4 = R2((3, 4), (5, 6)) (34)

It also follows that the observation set AP is equal to the atomic proposition set AP and that
the observation map L is described by equation (35).

L(r0) = ap2

L(r1) = ap3

L(r2) = ∅
L(r3) = ap0

L(r4) = ap1 (35)

Left to define is now Σ, → and d. This is done by considering one rectangle at a time and
solving the facet reachability problem for each approved facet of that rectangle. Starting with state
r0 = R2((1, 1), (3, 3)) we must solve the optimization problem of equation (36) for each vertex of the
rectangle (i.e. each corner), for each approved facet.

max
uv∈U

n>F (x+ uv)

n>F ′(x+ uv) ≤ −ε ε > 0 (36)

Due to the definition of the state space, there are two possible facets which the system is allowed
to transition through, F ∗ and F ∗∗ which is illustrated in figure 11a. Hence the optimization prob-
lem must be solved 8 times. First, considering F ∗, yields a transition δ(r0, σ0) = r2, if the facet
reachability problem is solvable. It is simple to see that both condition (18) and (19) are fulfilled for
some u. Namely, x + u > 0 in both direction x1 and x2 for some u, and 0 is not in the convex hull
of the rectangle. Now, by solving the optimization problem for each corner of the rectangle one can
conclude that u2 must be greater than −1 in order to ensure that the system doesn’t move in the
wrong direction, also u1 must be greater than −1 at the facet opposite F ∗∗ but less than −3 along
F ∗∗. One possibility could then be to set u2 = umax = 6 and u1 = −x1. This would then yield
σ0 = (−x1, 6). Furthermore, solving equations (22) yields sF∗ = 9 and sF∗ = 7, which when together

with equation (21) gives a maximal time of TF
∗

= ln(9/7) ≈ 0.25. Hence, d(δ(r0, σ0)) = 0.25.

17

Following the same theory, each transition in the direction of x1 or x2 from a rectangle of size 2× 2
will result in the same maximal time (≈ 0.25). Furthermore, transitions in the direction of −x1 from
a rectangle of size 2 × 2, will need TF = ln(2) ≈ 0.7 and transitions in direction −x2 from named
rectangle will cost TF = ln(3) ≈ 1.1. Finally, the transitions out of the rectangle of size 4 × 1 will
yield a maximal time of TF = ln(10/9) ≈ 0.1 in direction x2 and TF = ln(4/3) ≈ 0.3 in direction
−x2. The final non-deterministic weighted transition system is given in equations (37), (38), (39),
(40), (41), (42) and (43).

T = (Π,Πinit,Σ,→, AP, L, d) (37)

Π = {r0, r1, r2, r3, r4} = {R2((1, 1), (3, 3)), R2((3, 1), (5, 3)),

R2((1, 3), (5, 4)), R2((1, 4), (3, 6)), R2((3, 4), (5, 6))} (38)

Σ = {σ0, σ1, σ2, σ3} = {(−x1, 6), (6,−x2), (−6,−x2), (−x1,−6)} (39)

δ(r0, σ0) = r2 δ(r0, σ1) = r1

δ(r1, σ0) = r2 δ(r1, σ2) = r0

δ(r2, σ0) ∈ {r3, r4} δ(r2, σ3) ∈ {r0, r1}
δ(r3, σ1) = r4 δ(r3, σ3) = r2

δ(r4, σ2) = r3 δ(r4, σ3) = r2 (40)

AP = {ap0, ap1, ap2, ap3} (41)

L(r0) = ap2 L(r1) = ap3

L(r2) = ∅ L(r3) = ap0

L(r4) = ap1

(42)

d(δ(r0, σ0)) ≈ 0.25 d(δ(r1, σ0)) ≈ 0.25

d(δ(r0, σ1)) ≈ 0.25 d(δ(r3, σ1)) ≈ 0.25

dδ(r1, σ2)) ≈ 0.7 d(δ(r4, σ2)) ≈ 0.7

d(δ(r3, σ3)) ≈ 1.1 d(δ(r4, σ3)) ≈ 1.1

d(δ(r2, σ0)) ≈ 0.1 d(δ(r2, σ3)) ≈ 0.3 (43)

The weighted transition system is illustrated in figure 11b.

18

x2

x1

0

1

2

3

4

5

6

0 1 2 3 4 5

(a) The grey area represents the state
space of the continuous linear system
(32) in Example 4.1.

x2

x1

0

1

2

3

4

5

6

0 1 2 3 4 5

ap2 ap3

ap0 ap1

∅

(b) The figure illustrates the partition
of the state space of system (32), done
according to equation (17), for Exam-
ple 4.1.

Figure 10: The state space and rectangular partition of Example 4.1.

x2

x1

0

1

2

3

4

5

6

0 1 2 3 4 5

ap2, r0

F ∗

F ∗∗

(a) The blue marked edges of rectangle
R2((1, 1), (3, 3)) are the facets which the
system is allowed to exit through in Ex-
ample 4.1.

r0, ap2 r1, ap3

r4, ap1 r3, ap0

r2, ∅

σ2

σ1

σ0

σ3

σ0

σ3

σ3

σ0

σ3

σ0

σ1

σ2

(b) The figure illustrates the weighted
transition system (37), which the contin-
uous linear system in Example 4.1 can be
abstracted to.

Figure 11: The facets of one of the rectangles of the partitioned system and the final
weighted transition system of Example 4.1.

19

4.2 Translation of the MITL Formula to a Timed Büchi Automaton

In this section, the step of translating an MITL formula φ to a timed Büchi automaton (TBA)
is described. Approaches towards translating an MITL formula into a timed automata has been
presented in [14], [25], [26], [27] and [28]. The construction described in [26] and [27] regards MTL
formulas rather than MITL, however since MITL is a subset of MTL, the method applies here as
well. The main result of [25] is the corollary given in Corollary 1. The statement is supported and
extended by the results of [27] presented in Corollary 2, as well as the results of [28] presented in
Definition 4.2.1. The latter results extends the former by stating complexity of the automata.

Corollary 1. MITL formulas can be transformed into timed automata using a simple procedure.

Corollary 2. For every MTL formula φ with m propositions, n unbounded temporal operators and
inputs of bounded variability k, there exists

• ...a non-deterministic timed automaton with 2m
⌈
k·fut(φ)

2

⌉
+ 1 clocks and((

2
⌈
k·fut(φ)

2

⌉
+ 1

)m
+ 1

)
(2 · 4n + 1) states that accepts the language of φ.

• ...a deterministic timed automaton with 2m
⌈
k·fut(φ)

2

⌉
+ 1 clocks and((

2
⌈
k·fut(φ)

2

⌉
+ 1

)m
+ 1

)
· 22O(nlogn)

states that accepts the language of φ.

where fut(φ) is a measurement of the time demanded to check if φ holds, the semantics are defined
as:

fut(φ) = 0, p is a proposition.

fut(φ1 ∨ φ2) = max
(
fut(φ1), fut(φ2)

)
fut(¬φ) = fut(φ)

fut(φ1UIφ2) =

{
a+ 2 +max(fut(φ1), fut(φ2)), I = (a,∞)
b+max(fut(φ1), fut(φ2)), I = (a, b) or I = [b, b]

Definition 4.2.1. For all MITL formulas φ, Bφ has M(φ) clocks and O((|φ|)(m.|φ|)) locations, where

m = max
I∈Iφ

{
2×

⌈
inf(I)
|I|

⌉
+ 1,

⌈
sup(I)
|I|

⌉
+ 1

}
, and Iφ is the set of time intervals included in φ.

The result of previous work clearly states that all MITL formulas can be translated into timed
Büchi automata. Now, for the construction itself. The overall idea is as follows:

1. Define the initial location s0 as the initial copy of the MITL formula: φinit.

2. Consider all possible initial actions which could yield a satisfying run and create one location for
each such action. I.e. if the formula is φ = a ∨ b, the initial actions which could yield satisfying
runs are a and b. Create edges and define invariants and clock constraints accordingly.

3. Create a non-accepting state which handle all other possible actions. In the example above this
would be ¬(a ∨ b).

4. Iterate over step 2 and 3 considering the locations created in step 2 rather than the initial
location. When performing step 3 there is no need to create new non-accepting locations, it
is enough to create new edges to the already existing non-accepting location. As for step 2, it
might not always be a need to create a new location here either, in some cases a better solution
is to create a transition back to itself or to another already existing location.

5. Mark the locations at the end of a formula, i.e. the locations which the system will remain in if
the formula is satisfied, as accepting.

6. Add transitions to the non-accepting state and the accepting state, handling the time after the
MITL formula, i.e. when the time bound has exceeded. These transitions must be constructed
such that the suffix of infinite words doesn’t affect the acceptance. For example the TBA
constructed of the MITL formula �≤ba must not include transitions between accepting and
non-accepting states affected by whether a holds for t > b. This is generally done by adding
transitions from the state to itself for all atomic propositions when t is outside the interval.

20

7. Define one or two clocks x ∈ X for each bounded temporal operator in the MITL formula, i.e
for each clock constraint. If the interval which is bounding the operator includes 0 or ∞, one
clock is enough.

8. Define the labelling function in accordance with the created locations.

The statements regarding the creation of new locations in step 4 is of great importance. If the
approach is followed without taking this in to consideration, the end result can be an infinitely
growing automaton. For example the formula �≤b♦≤aφ will have an infinite set of states if a new
location was created for each action, while it is sufficient with two locations otherwise. To ensure that
the construction is correct one can determine the accepting language of the TBA. If (and only if)
the accepting language of the automaton is identical to the accepting language of the MITL formula,
the construction is correct. Note that there are multiple automata which corresponds to the same
formula.

A simple example of the translation was given already in Example 2.2 in section 2.2, where the
TBA constructed of φ = ♦≤ba was used to illustrate accepting and non-accepting runs and words.
Some other examples are presented in Example 4.2

Example 4.2. Consider the MITL formulas

φ1 = �≤ba

φ2 = aU≤bc
and

φ3 = �≤b(a→©c)
The formulas can be transformed into timed Büchi automata by following the steps above.

First, consider φ1. Define the initial state of Aφ1 as the initial copy of φ1 and name it s0. Now
the possible actions which can yield an accepting run is a, hence there should be a transition from
s0 guarded by a. Also, there should be a transition corresponding to the negation of a: ¬a to a
non-accepting state. We therefore create the preliminary locations s1 and s2, where s1 is the non-
accepting state and s2 is the potentially accepting state. Next, we consider the possible actions from
s2. Once again, the only possible action is a. Hence, it is clear that s2 demands the same edges
and guards as s0. We can therefore merge s0 and s2 without changing the acceptance. It is clear,
that the same will be true for each iteration as long as the clock constraint t ≤ b holds. Hence, a
transition from s0 back to itself is defined for a, t ≤ b, i.e. when a holds and the time constraint
is fulfilled. Now, we consider what happens when the time has exceeded b. At this point in time,
either the system is in location s0 and the formula has been fulfilled, or the system has transitioned
to s1. In the former case the transitions of the automaton should be constructed such that all runs
remain in an accepting state if it is located in s0 at this point of time. This is defined by creating a
transition from s0 to itself for all atomic propositions (>) when time b has exceeded. For the latter
case, a run which reaches s1 should never be able to reach an accepting state. Hence, a transition
from s1 to itself for all atomic propositions and all time is created. Finally, we can conclude that s0

is the accepting state (as well as the initial state) and there is need of one clock x evaluated over the
clock constraint ≤ b. The finished TBA is illustrated in figure 12.

Following the same procedure for φ2 and φ3 yields the result illustrated in figures 13 and 14
respectively. It is clear that the TBA’s have the same accepting language as the corresponding MITL
formula φi.

21

s0 s1

¬a, x ≤ b, x := 0

a, x ≤ b
or

>, x > b

>,>

Figure 12: The timed Büchi automaton Aφ1
constructed of the MITL formula φ1 =

�≤ba. The initial and accepting location is s0. A transition from s0 to s1 will occur
only if a doesn’t hold at some point in the time interval [0, b] which corresponds to
φ1 not being fulfilled.

s0 s1

s2

c, x ≤ b, x := 0

¬a,¬c,>, x := 0
or

>, x > b, x := 0

a,¬c, x ≤ b

>,>

>,>

Figure 13: The timed Büchi automaton Aφ2 constructed of the MITL formula φ2 =
aU≤bc. The initial location is s0 and the accepting location is s1. A transition
s0 → s1 will occur if c holds within the time interval, while a transition s0 → s2 will
occur if either; neither a nor c holds within the time interval or the time interval
expires. Hence the TBA is accepting of words with the prefix ancm+1, where n
and m are some non-negative integers. That is, c must hold at some point within
the time interval and until it does a must hold. Hence, it has the same accepting
language as φ2

22

s0 s1 s2

s3

a, x ≤ b c, x ≤ b

¬c, x ≤ b
or

>, x > b

>, x > b
or

¬a, x ≤ b

>,>

¬a,> or a, x > b

a, x ≤ b

Figure 14: The timed Büchi automaton Aφ3
constructed of the MITL formula φ3.

The initial location is s0 and the accepting locations are s0 and s2. A transition
s0 → s1 will occur only if a holds within the time interval. Furthermore, the system
can never stay in s1; transition s1 → s2 will occur if c holds and s1 → s3 will occur if
c doesn’t hold. Finally, the transition s2 → s1 will occur if a holds ones more within
the time interval. Hence the accepting language consists of words such that either a
never holds within the time interval or a is always followed by c. This corresponds
to the accepting language of φ3.

23

4.3 Automata Product

In this section, the construction of the automata product is described. The construction results in a
Büchi Weighted Transition System (BWTS), and follows Definition 4.3.1 [13].

Definition 4.3.1. Given a weighted transition system T = (Π,Πinit,Σ,→, AP, L, d) and a timed
Büchi automaton A = (S, Sinit, X, I, E, F,AP,L) with M = |X| and cmax as the largest constant in
A, their BWTS is defined as T p = T ⊗A = (Q,Qinit, , dp, Fp, AP, Lp) with:

• Q ⊆ {(r, s) ∈ Π× S : L(r) = L(s)× TM∞ ,

• Qinit = Πinit×Sinit×{0}× ...×{0}, where Qinit ⊆ Q and {0}× ...×{0} consists of M factors,
i.e. there is one factor {0} for each clock in A,

• q q′ iff

– q = (r, s, v1, ..., vM) ∈ Q, and q′ = (r′, s′, v′1, ..., v
′
M) where vi and v′i are clock valuations

(see Definition 2.2.8),

– r → r′ and

– ∃ γ,R, s.t.

∗ (s, γ,R, s′) ∈ E,

∗ v1, ..., vM � γ,

∗ v′1, ..., v′M � I(s′) and

∗

v′i =

0, if xi ∈ R
vi + d(r, r′), if xi /∈ R and

vi + d(r, r′) ≤ cmax
∞, otherwise

• dp(q, q′) = d(r, r′) if q q′,

• Fp = {(r, s, v1, ..., vM) ∈ Q : s ∈ F} and

• Lp(r, s, v1, ..., vM) = L(r)

A simple example is given in Example 4.3.

Example 4.3. Consider a continuous linear system ẋ = x + u of two dimensions evolving in the
state space x ∈ {(1, 1)(2, 3)} from the initial position x0, with the control input u limited by U =
{(−4,−4), (4, 4)}. Furthermore, the system should satisfy the MITL formula φ = ♦≤ab over the
atomic proposition set AP = {b}, where b holds for x2 > 2. Finally, x0 is such that x2 < 2. By
following the steps presented in section 4.1 the system can be abstracted to the weighted transition
system

T = (Π,Πinit,Σ,→, AP, L, d)

where

• Π = {r0, r1} = {R2((1, 1), (2, 2)), R2((1, 2), (2, 3)),

• Πinit = r0,

• AP = {b},
• →= {(ri, ri), (r0, r1), (r1, r0)} = {σ0, σ1, σ2},
• d(r0, r1) = ln(6/5), d(r1, r0) = ln2 and d(ri, ri) = 0 and

• L(r0) = ∅ and L(r1) = b

The resulting WTS is illustrated in figure 15. Furthermore, in accordance with section 4.2, φ can be
translated into the timed Büchi automaton

A = (S, Sinit, X, I, E, F,AP,L)

where

• S = {s0, s1, s2},
• Sinit = {s0},
• X = {x},

24

r0 r1

σ1

σ2

σ0

σ0

Figure 15: Weighted transition system abstracted from the continuous linear system
of Example 4.3

• I(s0) : x ≤ a,

• E = {(s0, x ≤ a, x := 0, s1), (s0, x ≤ a, ∅, s0), (s0, x > a, x := 0, s2), (s1,>, ∅, s1), (s2,>, ∅, s2)},
• F = {s1},
• AP = {b} and

• L(s1) = L(s2) = > and L(s0) = ∅
The resulting TBA is illustrated in figure 16. Now, the automata product as defined in Definition 4.3.1
yields that the system can be expressed as the BWTS

T p = (Q,Qinit, , dp, Fp, AP, Lp)

where

• Q = {q0, q1, q2, q3, q4} = {(s0, r0), (s1, r1), (s2, r0), (s1, r0), (s2, r1)},
• Qinit = (q0, 0) = (r0, s0, 0),

•

q0 q1 dp(q0, q1) = ln(6/5) (v′ = 0)

q0 q2 dp(q0, q2) = 0 (v′ = 0)

q0 q4 dp(q0, q4) = ln(6/5) (v′ = 0)

q2 q4 dp(q2, q4) = ln(6/5) (v′ = v + d)

q4 q2 dp(q4, q2) = ln(2) (v′ = v + d)

q1 q3 dp(q1, q3) = ln(2) (v′ = v + d)

q3 q1 dp(q3, q1) = ln(6/5) (v′ = v + d)

• Fp = {(q1, 0), (q3, t)}, for all t, and

• Lp(q0) = Lp(q2) = Lp(q3) = ∅ and Lp(q1) = Lp(q4) = b

The result is illustrated in figure 17.

25

s0 s1

s2

b, x ≤ a, x := 0

>, x > a, x := 0

¬b, x ≤ a

>,>

>,>

Figure 16: Timed Büchi automaton which has the same accepted language as the
runs which satisfies φ = ♦≤ab.

q0
x ≤ a, ∅

q1
b

q2
∅

q3
∅

q4
b

σ1, x ≤ a, x := 0

σ2

σ1
σ0, x > a
x := 0

σ1, x > a
x := 0

σ2

σ1

Figure 17: Resulting BWTS of Example 4.3, i.e. the product of the WTS in figure
15 and the TBA in figure 16.

26

4.4 Control Design

This section describes how to design the controller based on the Büchi weighted transition system
which was constructed in the previous section (section 4.3).

The control design is fairly straight forward. As stated in section 4.2 the TBA constructed of an
MITL formula has the same accepting language as the formula. Furthermore, the WTS abstracted
from a continuous linear system has the same evolution as the system itself. Now, the automata
product of the TBA and the WTS has the same evolution as the WTS, while having the same
accepting language as the TBA. The result is hence a transition system for which all accepting runs,
correspond to the runs in the original system that satisfies the MITL formula. Hence, the controller
can be designed by finding an accepting run of the BWTS.

The accepting run of the BWTS is found by graph search algorithms such as Depth-First Search
(DFS) [29] or Dijkstra’s algorithm [30]. The DFS algorithm searches for a value in a graph by
exploring each path as far as possible before backtracking, starting at the root. Dijkstra adds all
graph-nodes which are successors of the initial node to a search-pool and then starts by determining
if the node closest to the initial node is accepting, if not it continues with the node which is second
in closeness, and so on. Along the way Dijsktra checks and updates the total node-distances if closer
paths are found and adds the successors of each tested node to the search-pool. Since the BWTS can
be viewed as a graph both the DFS and Dijkstra’s algorithm can be directly implemented to search
for an accepting run. When an accepting run is found the algorithm can be cancelled since there is
no need to find more than one accepting run.

Example 4.4. Considering Example 4.3 in section 4.3, an example of an accepting run is:

r = q0
σ1,ln(6/5)−→ q1

if ln(6/5) ≤ a. If ln(6/5) > a, there is no accepting run. Assuming ln(6/5) < a, the control input
needed for the transition is u = [−x1, 4], which is the control input calculated during the abstraction.
That is, applying u guarantees that the transition q0 → q1 occurs within ln(6/5)time units. Hence,
we can conclude that the closed-loop system in Example 4.3 will satisfy φ = ♦≤ab for all a ≥ ln(6/5)
for u = [−x1, 4].

5 Implementation 1

In this section, an example is presented covering all the steps of the solution. The example has been
simulated in MATLAB implementing the method presented in section 4.

Consider the example first discussed in section 1, a robot moving through 6 rooms and a corridor.
Let the motion of the robot follow the system equation (44), where u is defined according to equation
(45) and x is bounded in accordance with equation (46). Also, assume that the rooms have walls
between them, only allowing the robot to change room by going through the corridor.

ẋ =

[
2 1
0 2

]
x+ u (44)

u =

[
a11 a12

a21 a22

]
x+

[
b1
b2

]
∈ U = [−20, 20] (45)

x ∈ {(1, 1), (5.5, 4)} (46)

Furthermore, let AP = {r1, r2, r3, r4, r5, r6, c} be the set of atomic propositions which is consid-
ered, where ri holds in room i and c holds in the corridor. Now, design the control input u such
that the closed-loop system satisfies the MITL formula φ = ♦≤a1r2 ∧ (r2 → ♦≤a2r6) (”Reach room 2
within a1 time units and; if room 2 is entered, always go to room 6 within a2 time units.”).

27

Figure 18: Partition constructed by the MATLAB scripts with the settings of Prob-
lem 1 as defined in section 5. The circle with the 1 inside represents the initial
state.

5.1 Constructing the WTS

First, let’s construct a weighted transition system (WTS) of the system starting with partitioning
the state space. The information above yields a partition of the system consistent with the figure of
the rooms presented in figure 1 in section 1. The partition is defined as equation (47).

r1 = R2((1, 3)(2.5, 4)) r2 = R2((2.5, 3)(4, 4)) r3 = R2((4, 3)(5.5, 4))

r4 = R2((1, 1)(2.5, 2)) r5 = R2((2.5, 1)(4, 2)) r6 = R2((4, 1)(5.5, 2))

c = R2((1, 2)(5.5, 3)) (47)

The partition will (as in Example 4.1) yield a non-deterministic WTS. To avoid this the partition
of c can be further refined. This can be done by dividing c into three sub-rectangles c1, c2 and c3
which all have the same width as the rooms. Hence, ci is defined as equation (48).

c1 = R2((1, 2)(2.5, 3)) c2 = R2((2.5, 2)(4, 3)) c3 = R2((4, 2)(5.5, 3)) (48)

Implementing the MATLAB script containing the construction-steps of section 4.1, the same
result is achieved (however with another state numbering), which is illustrated in figure 18.

By following the linear abstraction presented in section 4.1, we conclude that the system can be
written as:

ẋ = A∗x+B =

[
2 + a11 1 + a12

a21 2 + a22

]
x+

[
b1
b2

]
To follow the suggested solution the non-diagonal elements of A∗ must be zero in all directions

ej which is in the norm-direction of the facet. I.e. for transitions in the direction of x2, a21 must be
0 and for transitions in the direction of x1, a12 = −1.

Now, we must solve the optimization problem

max
u∈U

(n>F (A∗x+B))

n>F ′(A
∗x+B) < −ε, F ′ ∈ F ∗ \F

28

where F∗ is the set of all facets of a rectangle.
We start with room 1. The only facet which the robot can exit through is the one shared with

c1, which is the only edge of the rectangle that isn’t closed off by a wall. Since the direction of the
transition is −e2, a21 = 0 for C∗2 to be a constant. Hence, the problem becomes:

(2 + a11)x1 + (1 + a12)x2 + b1 > ε, x1 = 1

(2 + a11)x1 + (1 + a12)x2 + b1 < −ε, x1 = 2.5

max
u∈U

(−((2 + a22)x2 + b2))

The result from the MATLAB script gave the following solution. One solution for the first
two equations is a11 = −5.4699, a12 = −1 and b1 = 8.1748. Which in turn yields B1u1 = u1 =
−5.4699x1 − x2 + 8.1748, (since B = I). Now, the third equation is maximized throughout the
rectangle if all the remaining control input is used at all time, i.e. if a22 = 0 and b2 = −umax,left,
where umax,left is what is left to use of the control input. With u1 as above and the limit being√
u2

1 + u2
2 ≤ 202, it is simple to calculate that umax,left = −19.2289. Hence, the resulting control

signal for the transition is:

u1 =

[
−5.4699 −1

0 0

]
x+

[
8.1748
−19.2289

]

Note, that this is only the optimal solution when the assumption that C∗ can be treated as a constant
is made.

Now, C∗2 = −19.2289 and a∗22 = 2. From here it follows that sF = −a∗22 · x2|x2∈F − C∗2 =
−2 · 3 − (−19.2289) = 13.2289 and sF = −a∗22 · x2|x2∈F − C

∗
2 = −2 · 4 − (−19.2289) = 11.2289 and

finally the maximal time the transition will take is given by:

TF1 = ln(
sF
sF

)
1

a∗22

= ln(
13.2289

11.2289
)
1

2
= 0.082

Following the same steps for room 2 and room 3 yields:

u2 =

[
−6.4314 −1

0 0

]
x+

[
17.2258
−18.1039

]
TF2 = 0.0903 From room 2

u3 =

[
−3.6181 −1

0 0

]
x+

[
8.3993
−16.3631

]
TF3 = 0.1072 From room 3

For room 4, room 5 and room 6 the direction of the transitions change to e2, but otherwise the steps
are the same. The difference in the calculation is hence choosing b2 as positive instead of negative,
due to the maximization problem changing sign. The result of the calculations are:

u4 =

[
−5.4957 −1

0 0

]
x+

[
8.2392
19.2289

]
TF4 = 0.0450 From room 4

u5 =

[
−7.1724 −1

0 0

]
x+

[
20.1895
18.1039

]
TF5 = 0.0474 From room 5

u6 =

[
−5.4399 −1

0 0

]
x+

[
18.4196
16.3631

]
TF6 = 0.0517 From room 6

For the corridor 6 external transitions towards the rooms and 4 internal transitions between ci are

29

considered. The transitions towards the room follows the same calculations as before yielding:

u7 =

[
−5.4701 −1

0 0

]
x+

[
8.1752
19.2289

]
TF7 = 0.0413 To room 1

u8 =

[
−5.4686 −1

0 0

]
x+

[
8.1716
−19.2289

]
TF8 = 0.0704 To room 4

u9 =

[
−6.3982 −1

0 0

]
x+

[
17.0928
18.1039

]
TF9 = 0.0433 To room 2

u10 =

[
−6.2329 −1

0 0

]
x+

[
16.4314
−18.1039

]
TF10 = 0.0765 To room 5

u11 =

[
−8.0926 −1

0 0

]
x+

[
33.0091
16.3631

]
TF11 = 0.0468 To room 3

u12 =

[
−10.5954 −1

0 0

]
x+

[
46.7750
−16.3631

]
TF12 = 0.0882 To room 6

Finally, the transitions within the corridor is calculated by maximizing in direction ±e1 and choosing
u2 s.t. there can’t be transitions towards the rooms. Starting with the transition from c1 to c2, the
problem becomes (here we assume a12 = −1):

(2 + a22)3 + a21x1 + b2 < −ε
(2 + a22)2 + a21x1 + b2 > ε

max
u∈U

((2 + a11)x1 + b1)

Implementing the problem in MATLAB yielded that a22 = −9.9894 and b2 = 23.4681 is a solution.
With the same argument as before we choose b1 = 18.9143 which results in:

u13 =

[
0 −1
0 −9.9894

]
x+

[
18.9143
23.4681

]
TF13 = 0.0670 c1 to c2

The remaining controllers and time limits are calculated following the same steps resulting in:

u14 =

[
0 −1
0 −9.4712

]
x+

[
18.9143
21.9137

]
TF14 = 0.0591 c2 to c3

u15 =

[
0 −1
0 −7.6498

]
x+

[
−18.9143
16.4494

]
TF15 = 0.1214 c2 to c1

u16 =

[
0 −1
0 −8.2872

]
x+

[
−18.9143
18.3616

]
TF16 = 0.1607 c3 to c2

The abstracted WTS corresponding to the system can therefore be defined as:

T = (Π,Πinit,→,Σ, AP, L, d) (49)

Π = {r1, r2, r3, r4, r5, r6, c1, c2, c3}
Πinit = {c1, c2, c3}

AP = {r1, r2, r3, r4, r5, r6, c}

where the transitions are:

→ = {(r1, u1, c1), (r4, u4, c1), (c1, u7, r1), (c1, u8, r4), (c1, u13, c2), (c2, u9, r2), (r2, u2, c2), (c2, u10, r5),

(r5, u5, c2), (c2, u14, c3), (c3, u11, r3), (r3, u3, c3), (c3, u12, r6), (r6, u6, c3), (c3, u16, c2), (c2, u15, c1)}

30

c1 c2 c3

r1 r2 r3

r4 r5 r6

u13

u15

u14

u16

u7 u1

u8u4

u9 u2

u10u5

u11 u3

u12u6

Figure 19: Weighted transition system constructed from the continuous linear sys-
tem (44).

The weights d for respective transition are TFi , where i correspond to the index of the control signal
σi = ui which is applied to induce the transition. Finally, the labelling function L is defined as:

L(ri) = ri, ∀i ∈ {1, 2, ..., 6}
L(ci) = c, ∀i ∈ {1, 2, 3}

The resulting WTS is illustrated in figure 19.

5.2 Constructing the TBA

Now, let’s construct a timed Büchi automaton from the MITL formula.

φ = ♦≤a1r2 ∧ r2 → ♦≤a2r6 (50)

Since the construction of a TBA from an MITL formula presented in section 4.2 only consists of
guidelines, rather than a detailed method, this step cannot be performed in MATLAB. The imple-
mentation has instead been performed by constructing the TBA manually and defining the already
constructed TBA as input for the following steps.

We start the construction of the TBA by defining the initial location s0 as the initial copy of the
formula φinit. Now, let’s consider time less than a1. Either the robot reaches room 2, which would
satisfy the first part of the formula, or there still exist the possibility that it will do so within the
time limit. We therefore define location s1 = ♦≤a1r2. Furthermore, we define an edge from s0 to
itself for all positions the robot can have that is not room 2 within the time interval. Now, let’s

31

s0 s1

s2

s3

r2, x1 ≤ a1

>, x1 > a1

r6, x2 ≤ a2

>, x2 > a2

¬r2, x1 ≤ a1 ¬r6, x2 ≤ a2

>,>

>,>

Figure 20: Timed Büchi automaton constructed from the MITL formula φ =
♦≤a1r2 ∧ (r2 → ♦≤a2r6).

consider time greater than a1. If the system is still in location s0, i.e. if the robot hasn’t reached
room 2 yet, the formula can no longer be satisfied. We therefore define s2 = ¬♦≤a1r2. Now, consider
s1. From here, the robot should reach room 6 within a2 time units. Similarly to the first steps, we
define s3 = ♦≤a2r6 and we define an edge from s1 to s2 for x2 > a2 as well as an edge from s1 to
itself for ¬r6 and x2 ≤ a2. Now, we mark s0 as initial and s3 as accepting. Edges from s3 to itself as
well as from s2 to itself are defined for all atomic propositions and all time. The result is the TBA:

A = (S, Sinit, X, I, E, F,AP,L) (51)

S = {s0, s1, s2, s3}
Sinit = {s0} X = {x1, x2}

I : I(s0) : x1 ≤ a1, I(s1) : x2 ≤ a2

F = {s3} AP = {r1, r2, r3, r4, r5, r6, c}
L(s0) = AP \ {r2} L(s1) = AP \ {r6}
L(s2) = L(s3) = AP

where the edges are:

E = {(s0, x1 ≤ a1, s0), (s0, x1 ≤ a1, s1), (s0, x1 > a1, s2), (s1, x2 ≤ a2, s1),

(s1, x2 ≤ a2, s3), (s1, x2 > a2, s2), (s2,>, s2), (s3,>, s3)}

The resulting TBA is illustrated in figure 20.

5.3 Constructing the BWTS

The resulting BWTS constructed as the automata product of the WTS and the TBA, has 34 states
q = (r, s). Each state is a pair of a transition state r from the WTS and a location s from the TBA.
The maximal number of states which the given systems could have resulted in is 9 × 4 = 36 which
is the number of possible combinations. In this case however, there are fewer due to the labelling
functions. The combination which are of interest are those which share the same label. Therefore,

32

(r2, s0) and (r6, s1) are invalid combinations. The states of the BWTS are:

Q = {(c1, s0), (c2, s0), (c3, s0), (r1, s0), (r3, s0),

(r4, s0), (r5, s0), (r6, s0), (c1, s1), (c2, s1),

(c3, s1), (r1, s1), (r2, s1), (r3, s1), (r4, s1),

(r5, s1), (c1, s2), (c2, s2), (c3, s2), (r1, s2),

(r2, s2), (r3, s2), (r4, s2), (r5, s2), (r6, s2),

(c1, s3), (c2, s3), (c3, s3), (r1, s3), (r2, s3),

(r3, s3), (r4, s3), (r5, s3), (r6, s3)

Among these, the initial states are:

Qinit = {(c1, s0, 0, 0), (c2, s0, 0, 0), (c3, s0, 0, 0)}

The transition map consists of transitions between all states such that r (or c) follows the transition
map in the WTS and s follows the transition map of the TBA. The result is: Transitions from states
(ri, s0) and (ci, s0):

(c1, s0) (r1, s0) (c1, s0) (r4, s0) (c1, s0) (c2, s0)

(c1, s0) (r1, s2) (c1, s0) (r4, s2) (c1, s0) (c2, s2)

(c1, s0) (c1, s2)

(c2, s0) (r2, s1) (c2, s0) (r5, s0) (c2, s0) (c3, s0)

(c2, s0) (c1, s0) (c2, s0) (c2, s2) (c2, s0) (r2, s2)

(c2, s0) (r5, s2) (c2, s0) (c3, s2) (c2, s0) (c1, s2)

(c3, s0) (r3, s0) (c3, s0) (r6, s0) (c3, s0) (c2, s0)

(c3, s0) (r3, s2) (c3, s0) (r6, s2) (c3, s0) (c2, s2)

(c3, s0) (c3, s2)

(r1, s0) (c1, s0) (r1, s0) (c1, s2) (r1, s0) (r1, s2)

(r3, s0) (c3, s0) (r3, s0) (c3, s2) (r3, s0) (r3, s2)

(r4, s0) (c1, s0) (r4, s0) (c1, s2) (r4, s0) (r4, s2)

(r5, s0) (c2, s0) (r5, s0) (c2, s2) (r5, s0) (r5, s2)

(r6, s0) (c3, s0) (r6, s0) (c3, s2) (r6, s0) (r6, s2)

33

Transitions from states (ri, s1) and (ci, s1):

(c1, s1) (r1, s1) (c1, s1) (r4, s1) (c1, s1) (c2, s1)

(c1, s1) (r1, s2) (c1, s1) (r4, s2) (c1, s1) (c2, s2)

(c1, s1) (c1, s2)

(c2, s1) (r2, s1) (c2, s1) (r5, s1) (c2, s1) (c1, s1)

(c2, s1) (c3, s1) (c2, s1) (r2, s2) (c2, s1) (r5, s2)

(c2, s1) (c1, s2) (c2, s1) (c3, s2) (c2, s1) (c2, s2)

(c3, s1) (r3, s1) (c3, s1) (r6, s3) (c3, s1) (c2, s1)

(c3, s1) (r3, s2) (c3, s1) (c2, s2) (c3, s1) (c3, s2)

(c3, s1) (r6, s2)

(r1, s1) (c1, s1) (r1, s1) (r1, s2) (r1, s1) (c1, s2)

(r2, s1) (c2, s1) (r2, s1) (c2, s2) (r2, s1) (r2, s2)

(r3, s1) (c3, s1) (r3, s1) (c3, s2) (r1, s1) (r1, s2)

(r4, s1) (c1, s1) (r4, s1) (c1, s2) (r4, s1) (r4, s2)

(r5, s1) (c2, s1) (r5, s1) (c2, s2) (r5, s1) (r5, s2)

Transitions from states (ri, s2) and (ci, s2):

(c1, s2) (r1, s2) (c1, s2) (r4, s2)

(c2, s2) (r2, s2) (c2, s2) (r5, s2)

(c3, s2) (r3, s2) (c3, s2) (r6, s2)

(r1, s2) (c1, s2) (r2, s2) (c2, s2) (r3, s2) (c3, s2)

(r4, s2) (c1, s2) (r5, s2) (c2, s2) (r6, s2) (c3, s2)

Transitions from states (ri, s3) and (ci, s3)

(c1, s3) (r1, s3) (c1, s3) (r4, s3)

(c2, s3) (r2, s3) (c2, s3) (r5, s3)

(c3, s3) (r3, s3) (c3, s3) (r6, s3)

(r1, s3) (c1, s3) (r2, s3) (c2, s3) (r3, s3) (c3, s3)

(r4, s3) (c1, s3) (r5, s3) (c2, s3) (r6, s3) (c3, s3)

34

The weights of the BWTS are the labelled to the transitions in accordance with the transitions of
the WTS, i.e. all transitions which are from a state including r1 to a state including c1 is labelled
with the weight TF1 , and so on. The transitions which only change location, and for which ri (or ci)
remains unchanged, are assigned the weight 0. Hence, the weight assignment follows:

dB((x, s), (x′, s′)) =

{
0, if x = x′,∀s, s′ ∈ S, x = x′ ∈ Π
d(x, x′), if x 6= x′,∀s, s′ ∈ S, x = x′ ∈ Π

The accepting states of the BWTS are all states which include s3, i.e.:

FB = {(c1, s3), (c2, s3), (c3, s3), (r1, s3), (r2, s3),

(r3, s3), (r4, s3), (r5, s3), (r6, s3)}

The set of atomic propositions AP is the same set as before, i.e, AP = {ri, cj} where i = 1, .., 6 and
j = 1, 2, 3. Finally, the labelling function LB = L:

LB(x, s) = L(x)

The resulting BWTS is illustrated in figure 21. The transition system consists of many transitions,
resulting in a messy illustration. It is however clear that one part of the BWTS, namely the accepting
states, have less transitions and appear clearer. The reason for the messy result is that AP isn’t
fully utilized. Since only r2 and r6 are considered in the MITL formula, it would have been possible
to consider AP = {r2, r6} which would have resulted in a smaller, less messy BWTS. However, this
would have caused problems when constructing the WTS. The reason for this, is the walls. If the
partition was made differently, we would have been forced to include the walls in the MITL formula,
putting restraints on the robot which would forbid it to enter the areas wi, i.e. the areas covered by
wall. In the end, this problem would have been much harder to solve.

5.4 Designing the Control Signal

From here, we manually apply DFS to find an accepting run. That is, we explore each path from the
initial state and determine the word-prefixes which will lead to accepting states.

An example of a possible accepting run is:

q2 → q13 → q10 → q11 → q34... (52)

which can be determined by the MATLAB script, and can be seen in figure 21. The run corresponds
to applying the following control:

u9, u2, u14, u12... (53)

The maximum time required to satisfy the formula using the above control input is:

TF9 + TF2 + TF14 + TF12 = 0.0433 + 0.0903 + 0.0591 + 0.0882 = 0.2809t.u. (54)

Note, that the run is only accepting if:

TF9 = 0.0433 ≤ a1 and TF2 + TF14 + TF12 = 0.2376 ≤ a2

If this is not the case, the transitions won’t be possible. This is not illustrated in the figure due to some
simplifications where guards, invariants and constraints have been removed to improve readability of
the graph.

In MATLAB, Dijkstra’s algorithm was used to find the shortest path. The result was identical
to the manual DFS and can be viewed in it is entirety in the appendix, in section A.1.1. Applying
the resulting controller to the system results in the system-evolution illustrated by the quiver-plot in
figure 22

35

q1
(c1, s0)

q2
(c2, s0)

q3
(c3, s0)

q4
(r1, s0)

q5
(r3, s0)

q6
(r4, s0)

q13
(r2, s1)

q7
(r5, s0)

q8
(r6, s0)

q10
(c2, s1)

q16
(r5, s1)

q9
(c1, s1)

q11
(c3, s1)

q12
(r1, s1)

q14
(r3, s1)

q15
(r4, s1)

q17
(c1, s2)

q19
(c3, s2)

q20
(r1, s2)

q22
(r3, s2)

q23
(r4, s2)

q24
(r5, s2)

q18
(c2, s2)

q21
(r2, s2)

q25
(r6, s2)

q34
(r6, s3)

q28
(c3, s3)

q27
(c2, s3)

q26
(c1, s3)

q29
(r1, s3)

q30
(r2, s3)

q31
(r3, s3)

q32
(r4, s3)

q33
(r5, s3)

Figure 21: Sketch of the Büchi weighted transition system constructed as an au-
tomata product of the abstracted WTS and TBA. The states marked with dashed
circles are the initial states and the states marked with whole-drawn circles are ac-
cepting states. Guards, invariants and constraints have been removed to improve
readability.

36

(a) Part 1 (b) Part 2

Figure 22: Quiver plots of the system evolution for the closed-loop system of the
example in section 5, when the designed controller is applied.

6 Problem Definition 2

In the following sections, we consider the multi-agent case, where tasks includes both individual
specifications and global assignments which multiple agents are to perform together.

Given N agents governed by the dynamics in (55), synthesize a control input sequence such that
the closed-loop systems satisfies the global task specification MITL formula, φG, and N local task
specifications, φk. Where φG is over the atomic proposition set APG and consists of tasks which
the agents should achieve cooperatively, and φk is over the atomic proposition set APk, k ∈ I, and
consists of individual tasks. Following the theory presented in the previous sections, the problem
becomes; synthesize a sequence of individual timed runs r1, ..., rN such that (56) holds.

ẋi = Aixi +Biui, i ∈ I (55)

(rG � φG) ∧ (r1 � φ1 ∧ ... ∧ rN � φN) (56)

7 Solution Approach 2

The suggested solution follows the idea of [13]. Here, the methods regarding the abstraction of the
environment and the translation of the MITL formula have been added. These steps were assumed
to have been completed in the previous work. The solution approach is:

1. Abstract the dynamics of each agent into a WTS, by following the method presented in section
4.1.

2. Construct a TBA for each local MITL formula, following the method presented in section 4.2.

3. Construct a BWTS, i.e. a product automata, for all corresponding local WTSs and TBAs,
following the method presented in section 4.3. That is, one BWTS for each agent.

4. Construct a product BWTS from the individual BWTSs. The method is presented in section
7.1.

5. Construct a global TBA corresponding to the global MITL formula. The method is presented
in section 7.2.

6. Construct the global automata product from the product BWTS and the global TBA. The
method is presented in section 7.3.

7. Search for an accepting timed run rG in the global automata product, following the method
presented in section 4.4.

37

8. Project the accepting timed run rG onto the individual BWTSs to find the individual accepting
timed runs r1, .., rN . The method is presented in section 7.4.

9. Project the accepting runs r1, .., rN onto the corresponding WTS, in accordance with the method
presented in section 4.

10. Define the desired control input as the control sequence which yields the runs determined in the
previous step, in accordance with the method presented in section 4.

The idea behind the solution is as follows. It follows directly from the theory presented in section
4, that all accepting timed runs of the BWTSs constructed in step 3, corresponds to timed runs which
satisfies the local MITL formulas. Furthermore, it is straightforward that an accepting run of the
product BWTS will correspond to a run which satisfies all local MITL formulas. This is due to the
fact that the accepting runs of the product BWTS will be the set of combinations of the accepting
runs of each local BWTS. Finally, the global automata product will simply add the constraints of the
global TBA, leaving a BWTS which accepting runs corresponds to the runs which satisfies both the
local and the global MITL formulas. It then follows, that the desired control input for each agent is
the input that corresponds to the accepting run projected on the individual WTS. This is clear, since
the mentioned projection will correspond to the transitions which each individual agent must follow
in order to achieve the global accepting run. An example of the method in its entirety is presented
in section 8.

7.1 Product Büchi Weighted Transition System

The product Büchi weighted transition system (product BWTS), is defined as Definition 7.1.1 in [13].
We suggest a slightly different definition, given in Definition 7.1.2. The difference between the
definitions is the use of the variable b, which is not used in the latter definition. In the former
definition b is a measurement of how much time has passed since each agent performed its previous
transition. Hence, each state will hold information on the minimum time required for any transition
to occur. However, a consequence is that the number of states will grow significantly which yields a
higher computational cost. In the latter definition, b has therefore been removed. Instead of defining
the distance between states as the minimum time required for one agent to transition, and creating
new states accordingly, the number of states are set and the distance between the states is defined
as the maximum time required for all agents to transition in accordance with the given states. The
cost of simplifying the definition is the risk of an increased calculated time for some word-sequences.
This could in worst case scenario lead to false negative result, i.e. results indicating that there is no
solution even though there is. However, it can never yields false positive result, that is if a solution
is found it is always guaranteed to be correct. The issue is illustrated by Example 7.1.

Definition 7.1.1. Given N local BWTSs T p1 , ..., T
p
N , defined as in Definition 4.3.1, their product

BWTS TG = T p1 ⊗ ...⊗ T
p
N = (QG, Q

init
G ,→G, dG, FG, APG, LG) is defined as:

• QG ⊆ Q1 × ...×QN × TN × {1, ..., N},
• QinitG = Qinit1 × ...×QinitN × {0} × ...× {0} × {1}, where {0} × ...× {0} consists of N factors,

• qG →G q′G iff

– qG = (q1, ..., qN , b1, ..., bN , l) ∈ QG,

– q′G = (q′1, ..., q
′
N , b

′
1, ..., b

′
N , l
′) ∈ QG,

– ∃q′′k ∈ Qk s.t. qk k q
′′
k for some k ∈ I,

–

b′k =

0, if bk + dmin = dpk(qk, q

′′
k)

and q′k = q′′k
bk + dmin, if bk + dmin < dpk(qk, q

′′
k)

and q′k = qk

where dmin = min
k∈{1,..,N}

(dpk(qk, q
′′
k) − bk), i.e. the shortest time-distance required for one

agent to perform a transition.

–

l′ =

{
l, if ql 6∈ Fl
((l + 1)modN), otherwise

38

• dG(qG, q
′
G) = dmin, if qG →G q′G,

• FG = {(q1, ..., qN , b1, ..., bN , N) ∈ QG s.t. qN ∈ FN ,

• APG =
N⋃
k=1

APk and

• LG(q1, .., qN , b1, ..., bN , l) =
N⋃
k=1

Lpk(qk)

Definition 7.1.2. Given N local BWTSs T p1 , ..., T
p
N , defined as in Definition 4.3.1, and MG =

Σ
k=1,..,N

|Xk| and CmaxG equal to the largest constant in all the BWTSs, the product BWTS TG =

T p1 ⊗ ...⊗ T
p
N = (QG, Q

init
G ,→G, dG, FG, APG, LG) is defined as:

• QG ⊆ Q1 × ...×QN
• QinitG = Qinit1 × ...×QinitN

• qG →G q′G iff

– qG = (q1, ..., qN , v1, ..., vMG) ∈ QG,

– q′G = (q′1, ..., q
′
N , v

′
1, ..., v

′
MG

) ∈ QG,

– ∃q′k ∈ Qk s.t. qk k q
′
k for some k ∈ I,

– For all i ∈ {1, ...,MG}

v′i =

0, if xi ∈ R
vi + dG(r, r′), if xi 6∈ R and

vi + dG(r, r′) ≤ CmaxG

∞ otherwise

• dG(qG, q
′
G) = dmax, if qG →G q′G, where dmax = max

i=1,..,N
(di)

• FG = {(q1, ..., qN , N) ∈ QG s.t. qN ∈ FN},

• APG =
N⋃
k=1

APk and

• LG(q1, .., qN) =
N⋃
k=1

Lpk(qk)

Example 7.1. Consider a transition (q → q′) in a product BWTS constructed from two agents. Let
the transition be (1, 1)→ (2, 2).

If the product BWTS was constructed according to Definition 7.1.1, the transition will be made
in several steps, assuming that the cost for each agents transition is not equal. Let’s assume that
the transition costs 1t.u. for agent 1 and 2t.u. for agent 2. The transition will then be defined as:
(1, 1, 0, 0) → (2, 1, 0, 1) → (2, 2, 1, 0). That is, after 1t.u. agent 1 has transitioned, while agent 2 is
only half way towards the transition, after 2t.u. agent 2 manage the transition as well while agent 1
is waiting. The total transition time is hence 2t.u.

Now, let’s assume that Definition 7.1.2 was used when constructing the product BWTS. The
transition will be defined as one step and the cost will be determined as the maximum of the times
each agent requires to transition. That is the transition will be: (1, 1) → (2, 2) and the transition
time will be: max(1, 2) = 2t.u.

Hence, considering only one transition the definitions give the same output. It is therefore clearly
advantageously to implement the second definition which yields less states. However, let’s now
consider a sequence of 2 transitions: (1, 1)→ (2, 2)→ (3, 3).

The result of the first transition is given above. Now, let’s assume that the individual cost for
the second transition is 2t.u. for agent 1 and 1t.u. for agent 2. The entire transition according to
Definition 7.1.1 is then: (1, 1, 0, 0) → (2, 1, 0, 1) → (2, 2, 1, 0) → (3, 3, 0, 0) yielding the total time of
3t.u. On the other hand according to Definition 7.1.2 the transition is (1, 1) → (2, 2) → (3, 3) with
the total time of max(1, 2) +max(2, 1) = 4t.u.

The reason is that the former definition allows for agent 1 to start moving towards the next state
directly while the latter waits for agent 2 to finish the first transition before moving on.

A simple example, describing the construction of product BWTS, is given in Example 7.2.

39

Example 7.2. Consider two agents with continuous linear dynamics, placed in an environment
divided into two parts; A and B, by the set of atomic proposition. Furthermore, consider that each
agent must satisfy the MITL formula (57), where X is equal to A for agent 1 and B for agent 2.

�≤1X (57)

Following the previous presented theory this yields two automata products with 6 states each.
Namely,

(1, A) (2, A) (3, A)

(1, B) (2, B) (3, B)

where 1 is the initial state, 2 is the accepted state and 3 is the non-accepting state of the TBA.
From here a BWTS product can be constructed. The BWTS product will consist of 6 × 6 =

36 states, if Definition 7.1.2 is applied. Namely, all possible combinations of the local states. (If
Definition 7.1.1 is applied, the number of states will be a minimum of 2× 6× 6 = 72states, i.e. the
combinations of local states and l = 1, 2. The number of states in this case would then increase
when the possibilities of b is considered.) Assuming that agent 1 starts in area A and agent 2 starts
in area B (the only starting positions which could yield an accepting run), the initial state will be
((1, A), (1, B)). Furthermore, the accepting states will be all combinations which corresponds to each
agent being in the TBA state 2, i.e. ((2, X1), (2, X2)).

A transition ((s1, X1), (s2, X2)) → ((s′1, X
′
1), (s′2, X

′
2)) exists if and only if, the local transitions

(si, Xi)→ (s′i, X
′
i) are defined for each agent. Furthermore, if the transition exists, the time cost for

the transition is given as

d(((s1, X1), (s2, X2)), ((s′1, X
′
1), (s′2, X

′
2))) = max(d1((s1, X1), (s′1, X

′
1)), d2((s2, X2), (s′2, X

′
2))).

The global set of atomic proposition is AP = {A1, A2, B1, B2} and the labelling is the combina-
tions of the local labelling, i.e. L((s1, A), (s2, B))) = {A1, B2} and so on.

Notable is that the number of states can be reduced in the case when Definition 7.1.1 was applied,
when considering the evolution of l. Since l = 1 for all states corresponding to the first agent not
being in a local accepting state, adding the fact that the local TBAs are constructed such that an
agent won’t leave a local accepting state when it has reached it, all states which fulfils this and has
l = 2 will be unreachable, and hence could be removed. This state reduction would result in 24
states being removed, yielding a total of 48 states. This reduction will have a great impact on the
computational demand, especially when the size of each local automata product- and the number of
agents are increased.

7.2 Translation of a Global MITL Formula into a Global Timed
Büchi Automaton

In this section, the translation of a global MITL formula into a global TBA is considered.
Firstly, let us consider what a global MITL formula is. The global MITL formula, should impose

tasks which requires multiple agents to participate. A simple example is φ1
G in (58), where φ1 and

φ2 are local MITL formulas which should be satisfied by agents 1 and 2. φ1
G states that the local

MITL formulas should both be satisfied at the same time. A concrete example of this is ’Agent 1
must be in room 1 at the same time as agent 2 is in room 4.’. The specification must be handled as
a global formula, since the local formulas only have the capacity to state them individually. That
is, the local formulas can state ’Agent 1 must be in room 1 at some time.’ and ’Agent 2 must be in
room 4 at some time.’, while the condition of the two statements occurring simultaneously can only
be expressed globally.

φ1
G = ♦(φ1 ∧ φ2) (58)

The advantage of allowing global specifications is the possibility for cooperative tasks. An example
of this is two robots picking up and carrying an object which is too heavy for one of them to carry
alone. The example is further discussed in Example 7.3. The construction of a global TBA from
a global MITL formula follows the same steps as the construction of the local TBA, presented in
section 4.2.

40

Example 7.3. The specification considering two robots which are to cooperate with carrying an
object from area A to area B, can be specified using global formula as ’Agent 1 and agent 2 must
reach area A before time T. They must then pick up the object and go to area B. At area B they must
put the object down.’ or

φ2
G = ♦<T (A1 ∧A2) ∧ ((A1 ∧A2)→ (PickUp1 ∧ PickUp2)) ∧

((PickUp1 ∧ PickUp2)→ (HoldOn1 ∧HoldOn2)U(B1 ∧B2)) ∧
(((B1 ∧B2) ∧ (HoldOn1 ∧HoldOn2))→ (PutDown1 ∧ PutDown2))

which directly translates to

• Agent 1 and agent 2 must both be in area 1 within time T, and

• agent 1 and agent 2 being in area 1 at the same time, implies that they must both pick up the
object at the same time, and

• both agents having picked up the object at the same time, implies that they must hold on to
the object until they have reached area B, and

• both agents being in area B and holding on to the object, implies that they must both put the
object down at the same time.

The global TBA corresponding to the formula is illustrated in figure 23.

s0 s1

s2

s3 s4

s5

t ≥ T

t < T ,
(A1 ∧A2)

(PickUp1 ∧ PickUp2)

(B1 ∧B2) ∧ (HoldOn1 ∧HoldOn2)

(PutDown1 ∧ PutDown2)

¬(PickUp1 ∧ PickUp2)

¬(HoldOn1 ∧HoldOn2)

¬(B1 ∧B2)
or

¬(PutDown1 ∧ PutDown2)

t < T ,
¬(A1 ∧A2)

>,>

(HoldOn1 ∧HoldOn2)
∧

¬(B1 ∧B2)

(HoldOn1 ∧HoldOn2)
∧

(B1 ∧B2)

>,>

Figure 23: The global TBA corresponding to the global MITL formula φ2G.

7.3 Global Automata Product

The global automata product is defined as Definition 7.3.1. The definition follows [13] directly.

41

Definition 7.3.1. Given a product BWTS TG = (QG, Q
init
G ,→G, dG, FG, APG, LG) and a global

TBA AG = (SG, S
init
G , XG, IG, EG,FG,LG), with MG = |XG| and CmaxG equal to the largest constant

in AG, their product T̂G = TG ⊗AG = (Q̂G, Q̂
init
G , G, d̂G, F̂G, APG, L̂G) is defined as:

• Q̂G ⊆ {(q, s) ∈ QG × SG s.t. LG(q) = LG(s)} × TMG∞ ,

• Q̂initG = QinitG × SinitG × {0} × ...× {0} × {1, 2}, where {0} × ...× {0} consists of MG factors,

• q G q′ iff

– q = (r, s, v1, ..., vMG , l) ∈ Q̂G,

– q′ = (r′, s′, v′1, ..., v
′
MG

, l′) ∈ Q̂G,

– r →G r′,

– ∃γ,R s.t. (s, γ,R, s′) ∈ EG, v1, ..., vMG � gamma, v′1, ..., v
′
MG
� IG(s′),

– For all i ∈ {1, ...,MG}

v′i =

0, if xi ∈ R
vi + dG(r, r′), if xi 6∈ R and

vi + dG(r, r′) ≤ CmaxG

∞ otherwise

–

l′ =

1, if l = 1 and r ∈ FG

or l = 2 and s ∈ FG
2, otherwise

• d̂G(q, q′) = dG(r, r′) if q G q′,

• F̂G = {(r, s, v1, ..., vMG , 1) ∈ Q̂G s.t. r ∈ FG} and

• L̂G(r, s, v1, ..., vMG) = LG(r).

Example 7.4. Consider the BWTS product constructed in Example 7.2 and some global TBA
consisting of three states; initial, accepting and non-accepting, and one clock. Assuming that the
state-reduced BWTS product is used, the global product will consist of 36× 3× 2 = 216states. The
product is defined the same way as the automata product with the added constraint on l. In this
case however, no state reduction can be made. This is due to the structure of l, namely that l can
be both 1 and 2 for the same state combination.

When the global product has been constructed, an accepting run is found using a search algorithm
such as DFS or Dijkstra, in the same manner as for the local product described in section 4.4.

7.4 Projection of a Global Accepting Timed Run onto Local Büchi
Weighted Transition Systems

When the accepting run has been found for the global product, projection is used to determine
which local paths this corresponds to for each agent. Based on the local paths, the controller can be
determined in the same manner as for problem 1 (see section 4.4).

The projection is performed in three steps; projection onto the BWTS product, projection onto
BWTSs and finally, projection onto WTSs. In each step one simply check which lower-level2 state
that corresponds to the higher-level3 state, and repeats this for the entire path. It follows from the
construction of the product, that only one lower-level state will correspond to each higher-level state.

2Here, lower-level refers to the BWTS product in the first step, the BWTSs in the second step and the WTSs in the
third step.

3Here higher-level refers to the global product in the first step, the BWTS product in the second step and the BWTSs
in the third step.

42

8 Implementation 2

In this section we present the result from some performed simulations. All simulations have been
performed following Definition 7.1.2 in section 7.1, rather than Definition 7.1.1. The reason for this
is the computational demand.

Let us first consider a simplified sub-problem of Problem 2, namely the case where there is no
global MITL specification. The problem then becomes to construct one automata product for each
agent and finding an accepting run in each product. Consider Example 8.1.

Example 8.1. Given 3 agents which follows the dynamics:

ẋi =

[
2 1
0 2

]
xi + ui

x(0)1 = (2, 3.5) x(0)2 = (4, 3.5) x(0)3 = (6, 3.5)

Find the controllers which satisfies the local MITL formulas:

φ1 = (cU<2.4r1) ∧ (♦<10�<1r5)

φ2 = (♦<2.1r2) ∧ (r2 → ♦<3.35r6)

φ3 = (♦2.4(r12 ∨ r10)) ∧ (♦<1r3)

where the state space is bounded by 1 ≤ x1 ≤ 11 and 1 ≤ x2 ≤ 6, the control signal is bounded by
−30 ≤ ui ≤ 30 for i = 1, 2, and the atomic proposition set is defined as:

r1 : 1 ≤ x1 ≤ 5 1 ≤ x2 ≤ 2

r2 : 7 ≤ x1 ≤ 11 1 ≤ x2 ≤ 2

r3 : 1 ≤ x1 ≤ 3 2 ≤ x2 ≤ 3

r4 : 3 ≤ x1 ≤ 5 2 ≤ x2 ≤ 3

r5 : 7 ≤ x1 ≤ 9 2 ≤ x2 ≤ 3

r6 : 9 ≤ x1 ≤ 11 2 ≤ x2 ≤ 3

r7 : 1 ≤ x1 ≤ 3 4 ≤ x2 ≤ 5

r8 : 3 ≤ x1 ≤ 5 4 ≤ x2 ≤ 5

r9 : 7 ≤ x1 ≤ 9 4 ≤ x2 ≤ 5

r10 : 9 ≤ x1 ≤ 11 4 ≤ x2 ≤ 5

r11 : 1 ≤ x1 ≤ 5 5 ≤ x2 ≤ 6

r12 : 7 ≤ x1 ≤ 11 5 ≤ x2 ≤ 6

and

c : X \ (r1 ∪ r2 ∪ r3 ∪ r4 ∪ r5 ∪ r6 ∪ r7 ∪ r8 ∪ r9 ∪ r10 ∪ r11 ∪ r12).

Simulating the problem in MATLAB yields three accepting runs (one per agent) which satisfies the
formulas. The runs are [3813121112131817...], [813121116111213182322] and [138323813141520].
The partitioned environment, complete with state numbering is illustrated by figure 24.

The results in its entirety can be viewed in section A.2.2 in the appendix.

43

Figure 24: Partition of each agents state space in accordance with the settings used
in this section. The circles with numbers 1 to 3 represents the initial states of each
agent.

Now, when the construction of multiple BWTSs is done, let’s move on to the full problem and
consider Example 8.2.

Example 8.2. Consider two agents placed in an environment consisting of 6 rooms and a hallway
(see figure 18). Each agent is tasked with the local MITL formula φL. Furthermore, the global MITL
formula φG must be satisfied.

φL = ♦0.06r2 ∧ r2 → ♦0.3r6 ’Eventually, within 0.06 time units, the
agent must be in room 2, and if the agent
enters room 2 it must then enter room 6
within 0.3 time units.’

φG = ♦10(a1 = r1 ∧ a2 = r2) ’Eventually, within 10 time units, agent 1
must be in room 1 and agent 2 must be in
room 2, at the same time.’

Implementing the problem in MATLAB gives the following result. First, the environment of
each agent is abstracted to a WTS, the local MITL formulas are manually translated into TBAs
and the automata product is constructed (see section 5 for details). Next, the product BWTS
must be constructed. Implementing Definition 7.1.2 in MATLAB, the result is a product BWTS
with (Q1 · Q2) = 1296 states. Due to the size of the system, it will not be presented in detail.
Secondly, a global TBA is constructed. The construction is performed manually and added to the
MATLAB scripts as input to the global product. The implementation of the global product follows
Definition 7.3.1 and yields a total of 2 · (QpBTWS × QgTBA) = 7776 states. Finally, implementing
the DFS-algorithm yields the accepting run: [321 3860 3563 4452 4811 4520 5383 5240] in the global
product. Which then can be projected to the global TBA and the product BWTS, resulting in
[1 2 2 2 2 2 2 2] and [161 310 162 606 786 640 1072 1000] respectively. Next, the path in the product
BTWS can be projected on the individual local products and finally onto each agents WTS, yielding
[2 3 2 5 6 5 8 7] and [5 6 5 8 8 7 7 7], for each agent. The result is visualized in figures 25, 26 and 27. The
distances between each transition are [0.04 0.077 0.059 0.04 0.077 0.053 0.067]. From this, it is clear
that the given path will satisfy the MITL formulas.

44

(a) Agent 1 (b) Agent 2

Figure 25: Illustration of the path of the agents.

(a) Part 1: 2→ 3→ 2 (b) Part 2: 2→ 5→ 6→ 5

(c) Part 3. 5→ 8→ 7

Figure 26: Illustration of the evolution of system 1 when the
computed controllers are applied.

45

(a) Part 1: 5→ 6→ 5 (b) Part 2: 5→ 8, stay in 8.

(c) Part 3: 8→ 7. Stay in 7 is not illustrated since
this would be a blank background.

Figure 27: Illustration of the evolution of system 2 when the
computed controllers are applied.

46

9 Discussion and Conclusion

The work presented in this thesis consists of two methods considering control synthesis for continuous
linear systems under MITL specifications. The first method considers single-agent systems while the
second, which is based on the former, considers multi-agent systems. The methods are supported by
theory as well as extended simulations performed in the MATLAB environment. It is clear from the
simulations that the methods yield the desired result. Each method guarantees that the returned
control design will be such that the closed-loop system will satisfy the MITL specifications. However,
due to the transition cost being calculated as the maximum time required and hence only including a
maximum limit, it is possible that there are solutions which the methods cannot find. This depends
on the position the agent has within a rectangle of the partition and is a result of the discretization
of the environment. In the multi-agent case, it can also be caused by assuming that the agents
make transitions together, i.e. when Definition 7.1.2 is implemented instead of Definition 7.1.1 in
the step of constructing the product BWTS. A suggested overall method is therefore to begin with
the simple methods - the methods presented here with the implementation of Definition 7.1.2, and
then continue with more advanced methods if the former does not give a result. The more advanced
methods would include implementing Definition 7.1.1 for the BWTS product as well as considering a
more complicated abstraction. For instance, the partition of the environment could be more refined,
allowing the transition costs to be more precise. Another option is to let a rectangle yield more than
one state. The transitions cost could then be set to depend on which facet the agent start at, i.e
from which direction the previous transition was made from. Each decision which yields a greater
number of states will also yield the range of times required to perform a transition (depending on
the position within a rectangle) to decrease and hence result in a decreased overestimate. This will
lower the risk for false negative result, but also cost more computationally.

This concerns the issue of state explosion. The computational time is fast increasing for the
enhancement of both environment and demand (number of states in the weighted transitions system
and timed Büchi automata), as well as for added number of agents. This might be fine when
considering deterministic systems, i.e. environment and specifications which does not change. It
does however, become a problem when considering systems which do change, demanding the control
synthesis to be updated during the run. For instance, if the agents should adapt to each other,
i.e. re-plan the route based on the position of the other agents. To implement the methods under
such circumstances, there would be a need to first develop a method to update the systems without
redoing all steps.

Another issue is that the method does not necessarily give the answer to whether a solution exists
or not. While the method guarantees that it will eventually find a solution, if there is one within the
range of the abstraction, it does not guarantee that it will be able to determine if there does not exist
a solution. If all runs of the final Büchi weighted transition system are finite, the search for a path
will end either when a solution is found or when there is no more path to investigate. However, if the
runs are infinite, the method will keep searching for a path for an infinite time if no solution exists,
unless some conditions are added to the path finder demanding it to stop when it is obvious that no
path exists. An example of such a condition is if the remaining states to search are all non-accepting,
i.e. states which corresponds to some MITL specification being violated.

10 Future Work

There is much room for further study of how control synthesis under MITL specifications can be
performed. Some obvious continuations are to study how the problems presented in section 9 can
be solved. That is, developing methods which can be implemented in real-time and refining the
abstraction to achieve more precise transition costs.

One study of interest would be to design controllers for multi-agent systems under the dynamics
presented in (59), i.e. systems where each individual agent takes the dynamics of the other agents
under consideration.

ẋi = f(xi, xj) (59)

47

Another possibility is to study how more complicated specifications can be implemented by in-
corporating scheduling. For instance creating the possibility of having a task pool which some agents
share, allowing any of them to perform a certain tasks. Also, the possibility of realising some tasks
upon the achievement of others, implementing collaborative tasks on a form such that one agent
performs the first part and another the second.

References

[1] Wongpinomsarn, Topcu, and Murray, “Receding horizon control for temporal logic specifi-
cations,” in 2010 International Conference on Hybrid Systems: Computational and Control
(HSCC).

[2] Kress-Gazit, Fainekos, and Pappas, “Where is waldo? sensor based temporal logic motion
planning,” mag, 2007.

[3] Kress-Gazit, Fainekos, and Pappas, “Translating structured english to robot controllers,” Ad-
vanced Robotics, 2008.

[4] Meng, Hybrid Control of Multi-robot Systems under Complex Temporal Tasks. PhD thesis, EES,
KTH Royal Institute of Technology, 2016.

[5] M. Kloetzer and C. Belta, “A fully automated framework for control of linear systems from
temporal logic specifications,” Automatic Control, IEEE Transactions on, vol. 53, no. 1, pp. 287–
297, 2008.

[6] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Synthesis of control protocols for autonomous
systems,” Unmanned Systems, vol. 1, no. 01, pp. 21–39, 2013.

[7] P. Bouyer, “From qualitative to quantitative analysis of timed systems,” Mémoire d’habilitation,
Université Paris, vol. 7, pp. 135–175, 2009.

[8] M. Guo, K. H. Johansson, and D. V. Dimarogonas, “Revising motion planning under linear tem-
poral logic specifications in partially known workspaces,” in Robotics and Automation (ICRA),
2013 IEEE International Conference on, pp. 5025–5032, IEEE, 2013.

[9] M. Guo, K. H. Johansson, and D. V. Dimarogonas, “Motion and action planning under ltl
specifications using navigation functions and action description language,” in Intelligent Robots
and Systems (IROS), 2013 IEEE/RSJ International Conference on, pp. 240–245, IEEE, 2013.

[10] Principles of model checking. MIT press, 2007.

[11] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic specifications for continuous-
time signals,” Theoretical Computer Science, vol. 410, no. 42, pp. 4262–4291, 2009.

[12] O. Maler and D. Nickovic, “Monitoring temporal properties of continuous signals,” in Formal
Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems, pp. 152–166, Springer,
2004.

[13] A. Nikou, J. Tumova, and D. V. Dimarogonas, “Cooperative task planning of multi-agent sys-
tems under timed temporal specifications,” CoRR, vol. abs/1509.09137, 2015.

[14] R. Alur, T. Feder, and T. A. Henzinger, “The benefits of relaxing punctuality,” Journal of the
ACM (JACM), vol. 43, no. 1, pp. 116–146, 1996.

[15] Alur and Dill, “A theory of timed automata,” Theoretical computer science, vol. 126, no. 2,
pp. 183–235, 1994.

[16] E. A. Gol and C. Belta, “Time-constrained temporal logic control of multi-affine systems,”
Nonlinear Analysis: Hybrid Systems, vol. 10, pp. 21–33, 2013.

[17] J. Fu and U. Topcu, “Computational methods for stochastic control with metric interval tem-
poral logic specifications,” CoRR, vol. abs/1503.07193, 2015.

[18] R. Alur, “Timed automata,” in Computer Aided Verification, pp. 8–22, Springer, 1999.

[19] V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A. Seshia, “Reactive synthesis from
signal temporal logic specifications,” in Proceedings of the 18th International Conference on
Hybrid Systems: Computation and Control, pp. 239–248, ACM, 2015.

[20] X. Jin, “Verification and validation of hybrid systems,” 2013.

48

[21] A. Donzé and O. Maler, Robust satisfaction of temporal logic over real-valued signals. Springer,
2010.

[22] A. Donzé, T. Ferrere, and O. Maler, “Efficient robust monitoring for stl,” in Computer Aided
Verification, pp. 264–279, Springer, 2013.

[23] Donzé, “On signal temporal logic,” 2014. Presentation slides.

[24] Tumova, “Control strategy synthesis under infeasible goals: A maximally-satisfying approach,”
2015. Presentation slides.

[25] O. Maler, D. Nickovic, and A. Pnueli, “From mitl to timed automata,” in Formal Modeling and
Analysis of Timed Systems, pp. 274–289, Springer, 2006.

[26] J. Worrell, “On the decidability and complexity of metric temporal logic over finite words,” in
Logical Methods in Computer Science, Citeseer, 2007.

[27] D. Ničković and N. Piterman, From MTL to deterministic timed automata. Springer, 2010.

[28] T. Brihaye, M. Estiévenart, and G. Geeraerts, “On mitl and alternating timed automata,” in
Formal Modeling and Analysis of Timed Systems, pp. 47–61, Springer, 2013.

[29] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM journal on computing, vol. 1,
no. 2, pp. 146–160, 1972.

[30] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische mathematik,
vol. 1, no. 1, pp. 269–271, 1959.

49

A MATLAB Result

The operators of the MITL formulas includes:

• Always, �, A

• Eventually, ♦, Ev

• Until, U , U

• Implies, →, Imp

• And, ∧, and

• Or, ∨, or

where all clock-constraints are illustrated within parentheses in the MATLAB print.

A.1 Problem 1

Single agent environment which follows the dynamics:

ẋ = Ax+Bu

The result below consists of figures illustrating the partition and text-files with prints summarizing
the result of the run. For each setup there are 4 results. These results represent the combinations
of the two parameters lin ass and u joint. The former parameter indicates whether the necessary
assumptions to calculate the simplified maximum time has been used, i.e. if it is assumed that ẋi
is not dependent on xj in the closed-loop system. The latter parameter determines which type of
control limit has been used;

√
u2

1 + u2
2 ≤ umax or umin ≤ ui ≤ umax. Which setting that are used is

documented in each text-file.

A.1.1 Final Result 1

Note: this is from the example used in section 5.

Result o f c o n t r o l s y n t h e s i s for s i n g l e agent motion planning with
↪→ cont inous l i n e a r dynamics and MITL s p e c i f i c a t i o n s .

−−−
The dynamics :
A=
2 1
0 2

B=
1 0
0 1

The s t a t e space :
1 <= x1 <= 5.500000 e+00
1 <= x2 <= 4

The l i m i t s on u :
(u1ˆ2+u2 ˆ2) ˆ(1/2) <= 20

The s i m p l i f i e d time c a l c u l a t i o n was used , assuming that dxj /dt i s not
↪→ dependent on x i (i ˜=j) in the c losed−loop system .

MITL formula :
Phi=Ev(<0.06) r2 and (r2 Imp Ev(<0.3) r6)
−−−
The s h o r t e s t path in T which s a t i s f i e s the MITL formula i s :

50

[5 6 5 8 7]
The correspond ing time i s : 3 .199671 e−01

The run i s achieved i f the c o n t r o l input i s g iven as :

u1 = −8.560020 e+00 x1 −1 x2+ 2.574008 e+01
u2 = 0 x1 −6.589765e−01 x2+ 1.834000 e+01
Unt i l area 6 i s reached

u1 = −1.089434 e+01 x1 −1 x2+ 3.507737 e+01
u2 = 0 x1 7.505733 e−01 x2+ −1.861479 e+01
Unt i l area 5 i s reached

u1 = 3.932173 e−13 x1 −1 x2+ 2.191428 e+01
u2 = 0 x1 −6.938211 e+00 x2+ 1.431463 e+01
Unt i l area 8 i s reached

u1 = −9.425780 e+00 x1 −1 x2+ 4.034179 e+01
u2 = 0 x1 9.813774 e−01 x2+ −1.671911 e+01
Unt i l area 7 i s reached

Which i s an accept ing s t a t e .

Result o f c o n t r o l s y n t h e s i s for s i n g l e agent motion planning with
↪→ cont inous l i n e a r dynamics and MITL s p e c i f i c a t i o n s .

−−−
The dynamics :
A=
2 1
0 2

B=
1 0
0 1

The s t a t e space :
1 <= x1 <= 5.500000 e+00
1 <= x2 <= 4

The l i m i t s on u :
(u1ˆ2+u2 ˆ2) ˆ(1/2) <= 20

The o r i g i n a l time c a l c u l a t i o n from Belta was used .

MITL formula :
Phi=Ev(<0.06) r2 and (r2 Imp Ev(<0.3) r6)
−−−
The s h o r t e s t path in T which s a t i s f i e s the MITL formula i s :
[5 6 5 8 7]

The correspond ing time i s : 3 .270362 e−01

The run i s achieved i f the c o n t r o l input i s g iven as :

u1 = −7.229555 e+00 x1 −6.556814e−01 x2+ 1.938526 e+01
u2 = −2.282441 e+00 x1 −2.132734e−01 x2+ 2.613265 e+01

51

Unt i l area 6 i s reached

u1 = −7.901101 e+00 x1 −6.483665e−01 x2+ 2.169787 e+01
u2 = 2.768587 e+00 x1 2.346271 e−01 x2+ −2.762535 e+01
Unt i l area 5 i s reached

u1 = −3.768535e−11 x1 −1.085726 e+00 x2+ 2.217145 e+01
u2 = −7.242839e−11 x1 −6.500053 e+00 x2+ 1.300014 e+01
Unt i l area 8 i s reached

u1 = −9.247252 e+00 x1 −6.291166e−01 x2+ 3.824724 e+01
u2 = 3.920116 e+00 x1 3.448485 e−01 x2+ −3.637016 e+01
Unt i l area 7 i s reached

Which i s an accept ing s t a t e .

Result o f c o n t r o l s y n t h e s i s for s i n g l e agent motion planning with
↪→ cont inous l i n e a r dynamics and MITL s p e c i f i c a t i o n s .

−−−
The dynamics :
A=
2 1
0 2

B=
1 0
0 1

The s t a t e space :
1 <= x1 <= 5.500000 e+00
1 <= x2 <= 4

The l i m i t s on u :
−20 <= u1 <= 20
−20 <= u2 <= 20

The s i m p l i f i e d time c a l c u l a t i o n was used , assuming that dxj /dt i s not
↪→ dependent on x i (i ˜=j) in the c losed−loop system .

MITL formula :
Phi=Ev(<0.06) r2 and (r2 Imp Ev(<0.3) r6)
−−−
The s h o r t e s t path in T which s a t i s f i e s the MITL formula i s :
[5 6 5 8 7]

The correspond ing time i s : 2 .365427 e−01

The run i s achieved i f the c o n t r o l input i s g iven as :

u1 = −1.751874 e+01 x1 −1 x2+ 5.497313 e+01
u2 = 0 x1 −1.306949e−08 x2+ 2.000000 e+01
Unt i l area 6 i s reached

u1 = −1.699706 e+01 x1 −1 x2+ 5.367559 e+01
u2 = 0 x1 −7.151945e−09 x2+ −2.000000 e+01
Unt i l area 5 i s reached

52

u1 = −1.075126e−09 x1 −1 x2+ 2.200000 e+01
u2 = 0 x1 −1.722593 e+01 x2+ 3.794565 e+01
Unt i l area 8 i s reached

u1 = −1.327690 e+01 x1 −1 x2+ 5.822073 e+01
u2 = 0 x1 −1.451835e−08 x2+ −2.000000 e+01
Unt i l area 7 i s reached

Which i s an accept ing s t a t e .

Result o f c o n t r o l s y n t h e s i s for s i n g l e agent motion planning with
↪→ cont inous l i n e a r dynamics and MITL s p e c i f i c a t i o n s .

−−−
The dynamics :
A=
2 1
0 2

B=
1 0
0 1

The s t a t e space :
1 <= x1 <= 5.500000 e+00
1 <= x2 <= 4

The l i m i t s on u :
−20 <= u1 <= 20
−20 <= u2 <= 20

The o r i g i n a l time c a l c u l a t i o n from Belta was used .

MITL formula :
Phi=Ev(<0.06) r2 and (r2 Imp Ev(<0.3) r6)
−−−
The s h o r t e s t path in T which s a t i s f i e s the MITL formula i s :
[5 6 5 8 7]

The correspond ing time i s : 2 .365427 e−01

The run i s achieved i f the c o n t r o l input i s g iven as :

u1 = −1.260795 e+01 x1 6.492620 e+00 x2+ 1.847703 e+01
u2 = −1.898477e−10 x1 −1.979031e−10 x2+ 2.000000 e+01
Unt i l area 6 i s reached

u1 = −1.184939 e+01 x1 5.406586 e+00 x2+ 1.241583 e+01
u2 = −7.852220e−11 x1 −7.127313e−11 x2+ −2.000000 e+01
Unt i l area 5 i s reached

u1 = −2.174903e−10 x1 −2.876976e−10 x2+ 2.000000 e+01
u2 = 6.308873 e+00 x1 −1.963221 e+01 x2+ 2.558871 e+01
Unt i l area 8 i s reached

u1 = −8.135684 e+00 x1 4.841103 e+00 x2+ 1.540933 e+01

53

u2 = 3.868424 e−07 x1 7.822381 e−07 x2+ −2.000000 e+01
Unt i l area 7 i s reached

Which i s an accept ing s t a t e .

A.1.2 Final Result 2

Result o f c o n t r o l s y n t h e s i s for s i n g l e agent motion planning with
↪→ cont inous l i n e a r dynamics and MITL s p e c i f i c a t i o n s .

−−−
The dynamics :
A=
2 1
0 2

B=
1 0
0 1

The s t a t e space :
1 <= x1 <= 5.500000 e+00
1 <= x2 <= 4

The l i m i t s on u :
(u1ˆ2+u2 ˆ2) ˆ(1/2) <= 20

The s i m p l i f i e d time c a l c u l a t i o n was used , assuming that dxj /dt i s not
↪→ dependent on x i (i ˜=j) in the c losed−loop system .

MITL formula :
Phi=(c U(<2.4) r1 and Ev(<10) A(<1) r5)
−−−
The s h o r t e s t path in T which s a t i s f i e s the MITL formula i s :
[5 2 3 2 5 4 . . .]

The correspond ing time i s : 1 .389159 e+00

The run i s achieved i f the c o n t r o l input i s g iven as :

u1 = 2.023490 e−13 x1 −1 x2+ −1.891428 e+01
u2 = 0 x1 −7.649799 e+00 x2+ 1.644940 e+01
Unt i l area 2 i s reached

u1 = −5.470065 e+00 x1 −1 x2+ 8.175159 e+00
u2 = 0 x1 1.482530 e−10 x2+ 1.922888 e+01
Unt i l area 3 i s reached

u1 = −5.469934 e+00 x1 −1 x2+ 8.174825 e+00
u2 = 0 x1 −1.016143e−11 x2+ −1.922888 e+01
Unt i l area 2 i s reached

u1 = −1.342923e−11 x1 −1 x2+ 1.891428 e+01
u2 = 0 x1 −9.989368 e+00 x2+ 2.346810 e+01
Unt i l area 5 i s reached

54

u1 = −6.232853 e+00 x1 −1 x2+ 1.643141 e+01
u2 = 0 x1 −2.515901e−09 x2+ −1.810387 e+01
Unt i l area 4 i s reached

u1 = −2 x1 −1 x2+ 0
u2 = 0 x1 −2 x2+ 0
For 1.001000 e+00 s , to stay in area 4

Which i s an accept ing s t a t e .

Result o f c o n t r o l s y n t h e s i s for s i n g l e agent motion planning with
↪→ cont inous l i n e a r dynamics and MITL s p e c i f i c a t i o n s .

−−−
The dynamics :
A=
2 1
0 2

B=
1 0
0 1

The s t a t e space :
1 <= x1 <= 5.500000 e+00
1 <= x2 <= 4

The l i m i t s on u :
(u1ˆ2+u2 ˆ2) ˆ(1/2) <= 20

The o r i g i n a l time c a l c u l a t i o n from Belta was used .

MITL formula :
Phi=(c U(<2.4) r1 and Ev(<10) A(<1) r5)
−−−
The s h o r t e s t path in T which s a t i s f i e s the MITL formula i s :
[5 2 3 2 5 4 . . .]

The correspond ing time i s : 1 .445580 e+00

The run i s achieved i f the c o n t r o l input i s g iven as :

u1 = −6.423305e−12 x1 1.085721 e+00 x2+ −2.217144 e+01
u2 = 2.494063 e−11 x1 −6.500011 e+00 x2+ 1.300003 e+01
Unt i l area 2 i s reached

u1 = −5.245005 e+00 x1 −6.325703e−01 x2+ 6.510216 e+00
u2 = −1.166076 e+00 x1 −1.470215e−01 x2+ 2.146012 e+01
Unt i l area 3 i s reached

u1 = −5.996781 e+00 x1 −5.050259e−01 x2+ 7.512051 e+00
u2 = 1.511505 e+00 x1 1.330303 e−01 x2+ −2.191059 e+01
Unt i l area 2 i s reached

u1 = 2.176370 e−11 x1 −1.085726 e+00 x2+ 2.217145 e+01
u2 = 2.053960 e−10 x1 −6.500052 e+00 x2+ 1.300014 e+01
Unt i l area 5 i s reached

55

u1 = −7.280561 e+00 x1 −5.791493e−01 x2+ 1.935969 e+01
u2 = 2.299706 e+00 x1 1.873735 e−01 x2+ −2.612401 e+01
Unt i l area 4 i s reached

u1 = −2 x1 −1 x2+ 0
u2 = 0 x1 −2 x2+ 0
For 1.001000 e+00 s , to stay in area 4

Which i s an accept ing s t a t e .

Result o f c o n t r o l s y n t h e s i s for s i n g l e agent motion planning with
↪→ cont inous l i n e a r dynamics and MITL s p e c i f i c a t i o n s .

−−−
The dynamics :
A=
2 1
0 2

B=
1 0
0 1

The s t a t e space :
1 <= x1 <= 5.500000 e+00
1 <= x2 <= 4

The l i m i t s on u :
−20 <= u1 <= 20
−20 <= u2 <= 20

The s i m p l i f i e d time c a l c u l a t i o n was used , assuming that dxj /dt i s not
↪→ dependent on x i (i ˜=j) in the c losed−loop system .

MITL formula :
Phi=(c U(<2.4) r1 and Ev(<10) A(<1) r5)
−−−
The s h o r t e s t path in T which s a t i s f i e s the MITL formula i s :
[5 2 3 2 5 4 . . .]

The correspond ing time i s : 1 .387595 e+00

The run i s achieved i f the c o n t r o l input i s g iven as :

u1 = −7.089858e−09 x1 −1 x2+ −1.700000 e+01
u2 = 0 x1 −1.055826 e+01 x2+ 2.009523 e+01
Unt i l area 2 i s reached

u1 = −1.654162 e+01 x1 −1 x2+ 2.728151 e+01
u2 = 0 x1 −5.165307e−09 x2+ 2.000000 e+01
Unt i l area 3 i s reached

u1 = −1.614615 e+01 x1 −1 x2+ 2.541595 e+01
u2 = 0 x1 2.873038 e−08 x2+ −2.000000 e+01
Unt i l area 2 i s reached

u1 = 4.294845 e−12 x1 −1 x2+ 2.200000 e+01
u2 = 0 x1 −1.649390 e+01 x2+ 3.585565 e+01

56

Unt i l area 5 i s reached

u1 = −1.810497 e+01 x1 −1 x2+ 5.712905 e+01
u2 = 0 x1 1.345392 e−08 x2+ −2.000000 e+01
Unt i l area 4 i s reached

u1 = −2 x1 −1 x2+ 0
u2 = 0 x1 −2 x2+ 0
For 1.001000 e+00 s , to stay in area 4

Which i s an accept ing s t a t e .

Result o f c o n t r o l s y n t h e s i s for s i n g l e agent motion planning with
↪→ cont inous l i n e a r dynamics and MITL s p e c i f i c a t i o n s .

−−−
The dynamics :
A=
2 1
0 2

B=
1 0
0 1

The s t a t e space :
1 <= x1 <= 5.500000 e+00
1 <= x2 <= 4

The l i m i t s on u :
−20 <= u1 <= 20
−20 <= u2 <= 20

The o r i g i n a l time c a l c u l a t i o n from Belta was used .

MITL formula :
Phi=(c U(<2.4) r1 and Ev(<10) A(<1) r5)
−−−
The s h o r t e s t path in T which s a t i s f i e s the MITL formula i s :
[5 2 3 2 5 4 . . .]

The correspond ing time i s : 1 .387595 e+00

The run i s achieved i f the c o n t r o l input i s g iven as :

u1 = 1.313801 e−08 x1 −9.151899e−10 x2+ −2.000000 e+01
u2 = 5.333733 e+00 x1 −2.191814 e+01 x2+ 3.361528 e+01
Unt i l area 2 i s reached

u1 = −1.623397 e+01 x1 6.820327 e+00 x2+ 7.885062 e+00
u2 = −8.180731e−08 x1 −1.171047e−07 x2+ 2.000000 e+01
Unt i l area 3 i s reached

u1 = −1.896748 e+01 x1 6.687401 e+00 x2+ 9.057378 e+00
u2 = 3.249737 e−10 x1 9.126561 e−10 x2+ −2.000000 e+01
Unt i l area 2 i s reached

u1 = −1.210176e−08 x1 2.311528 e−09 x2+ 2.000000 e+01

57

u2 = 1.235554 e+00 x1 −1.053272 e+01 x2+ 1.905264 e+01
Unt i l area 5 i s reached

u1 = −1.147894 e+01 x1 4.529017 e+00 x2+ 2.017605 e+01
u2 = 1.750129 e−08 x1 7.616488 e−09 x2+ −2.000000 e+01
Unt i l area 4 i s reached

u1 = −2 x1 −1 x2+ 0
u2 = 0 x1 −2 x2+ 0
For 1.001000 e+00 s , to stay in area 4

Which i s an accept ing s t a t e .

A.2 Problem 2

Multi agent environment, where each agent follows the dynamics:

ẋ = Ax+Bu

Only local MITL formulas are considered in this section.
The results below consists of figures illustrating the partition and text-files with prints summa-

rizing the result of the runs.
In this section, only the settings u joint=0 and lin ass=0 are considered, i.e. all simulations are

performed using the separate control limit. umin ≤ ui ≤ umax, i = 1, 2 and the full time calculation,
allowing u s.t. there is a cross-dependence in the closed-loop system.

A.2.1 Final Result 1 - Sub-problem

Result o f c o n t r o l s y n t h e s i s for mult i agent motion planning with
↪→ cont inous l i n e a r dynamics and l o c a l MITL s p e c i f i c a t i o n s .

−−−
The dynamics :
A=
2 1
0 2

B=
1 0
0 1

The s t a t e space :
1 <= x1 <= 11
1 <= x2 <= 6

The l i m i t s on u :
−30 <= u1 <= 30
−30 <= u2 <= 30

The o r i g i n a l time c a l c u l a t i o n from Belta was used .

MITL formula agent 1 :
Phi=(c U(<2.4) r1 and Ev(<10) A(<1) r5)
−−−

MITL formula agent 2 :
Phi=Ev(<2.1) r2 and (r2 Imp Ev(<3.35) r6)

58

−−−
The s h o r t e s t path in T which s a t i s f i e s the MITL formula i s :
[3 8 13 12 11 6 11 12 13 18 17 . . .]

The correspond ing time i s : 1 .511308 e+000

The run i s achieved i f the c o n t r o l input i s g iven as :

u1 = 6.640591 e−016 x1 −2.664535e−015 x2+ 3.000000 e+001
u2 = −1.706810e−001 x1 −3.341362 e+000 x2+ 5.036129 e+000
Unt i l area 8 i s reached

u1 = −4.905764e−016 x1 −1.776357e−015 x2+ 3.000000 e+001
u2 = −3.519371e−002 x1 −3.070387 e+000 x2+ 3.887131 e+000
Unt i l area 13 i s reached

u1 = −3.368460 e+000 x1 6.483049 e−001 x2+ 2.485997 e+000
u2 = −1.655697e−015 x1 −6.217249e−015 x2+ −3.000000 e+001
Unt i l area 12 i s reached

u1 = −2.563724 e+000 x1 −9.993112e−001 x2+ 3.317241 e+000
u2 = 3.552714 e−015 x1 9.629329 e−016 x2+ −3.000000 e+001
Unt i l area 11 i s reached

u1 = −6.661338e−016 x1 −3.836790e−015 x2+ −3.000000 e+001
u2 = 9.680720 e−002 x1 −3.466333 e+000 x2+ 1.588743 e+000
Unt i l area 6 i s reached

u1 = −8.881784e−016 x1 5.275748 e−015 x2+ 3.000000 e+001
u2 = 1.696705 e−001 x1 −3.693998 e+000 x2+ 1.684986 e+000
Unt i l area 11 i s reached

u1 = −3.005742 e+000 x1 −6.730883e−001 x2+ 5.886371 e+000
u2 = 4.440892 e−016 x1 6.579239 e−016 x2+ 3.000000 e+001
Unt i l area 12 i s reached

u1 = −3.132946 e+000 x1 −1.000000 e+000 x2+ 6.164730 e+000
u2 = 5.773160 e−015 x1 −6.177135e−016 x2+ 3.000000 e+001
Unt i l area 13 i s reached

u1 = 2.220446 e−016 x1 8.881784 e−015 x2+ 3.000000 e+001
u2 = 6.253635 e−001 x1 −4.479410 e+000 x2+ 4.811413 e+000
Unt i l area 18 i s reached

u1 = −2.536892 e+000 x1 −1.013296 e+000 x2+ 4.368068 e+000
u2 = −1.332268e−015 x1 1.352729 e−016 x2+ −3.000000 e+001
Unt i l area 17 i s reached

u1 = −2 x1 −1 x2+ 0
u2 = 0 x1 −2 x2+ 0
For 1.001000 e+000 s , to stay in area 17

Which i s an accept ing s t a t e .
−−−

The s h o r t e s t path in T which s a t i s f i e s the MITL formula i s :
[8 13 12 11 16 11 12 13 18 23 22]

59

The correspond ing time i s : 5 .348376 e−001

The run i s achieved i f the c o n t r o l input i s g iven as :

u1 = −4.905764e−016 x1 −1.776357e−015 x2+ 3.000000 e+001
u2 = −3.519371e−002 x1 −3.070387 e+000 x2+ 3.887131 e+000
Unt i l area 13 i s reached

u1 = −3.368460 e+000 x1 6.483049 e−001 x2+ 2.485997 e+000
u2 = −1.655697e−015 x1 −6.217249e−015 x2+ −3.000000 e+001
Unt i l area 12 i s reached

u1 = −2.563724 e+000 x1 −9.993112e−001 x2+ 3.317241 e+000
u2 = 3.552714 e−015 x1 9.629329 e−016 x2+ −3.000000 e+001
Unt i l area 11 i s reached

u1 = 1.776357 e−015 x1 5.077374 e−015 x2+ 3.000000 e+001
u2 = 2.374236 e−001 x1 −4.358283 e+000 x2+ 1.671165 e+000
Unt i l area 16 i s reached

u1 = −8.881784e−016 x1 −4.133854e−015 x2+ −3.000000 e+001
u2 = 8.044358 e−002 x1 −3.538918 e+000 x2+ 1.588321 e+000
Unt i l area 11 i s reached

u1 = −3.005742 e+000 x1 −6.730883e−001 x2+ 5.886371 e+000
u2 = 4.440892 e−016 x1 6.579239 e−016 x2+ 3.000000 e+001
Unt i l area 12 i s reached

u1 = −3.132946 e+000 x1 −1.000000 e+000 x2+ 6.164730 e+000
u2 = 5.773160 e−015 x1 −6.177135e−016 x2+ 3.000000 e+001
Unt i l area 13 i s reached

u1 = 2.220446 e−016 x1 8.881784 e−015 x2+ 3.000000 e+001
u2 = 6.253635 e−001 x1 −4.479410 e+000 x2+ 4.811413 e+000
Unt i l area 18 i s reached

u1 = −4.440892e−016 x1 1.483869 e−014 x2+ 3.000000 e+001
u2 = 8.143873 e−001 x1 −5.541133 e+000 x2+ 5.422689 e+000
Unt i l area 23 i s reached

u1 = −2.558031 e+000 x1 −1.086697 e+000 x2+ 5.869065 e+000
u2 = −2.220446e−015 x1 −4.397248e−015 x2+ −3.000000 e+001
Unt i l area 22 i s reached

Which i s an accept ing s t a t e .
−−−

A.2.2 Final Result 2 - Sub-problem

Result o f c o n t r o l s y n t h e s i s for mult i agent motion planning with
↪→ cont inous l i n e a r dynamics and l o c a l MITL s p e c i f i c a t i o n s .

−−−
The dynamics :
A=

60

2 1
0 2

B=
1 0
0 1

The s t a t e space :
1 <= x1 <= 11
1 <= x2 <= 6

The l i m i t s on u :
−30 <= u1 <= 30
−30 <= u2 <= 30

The o r i g i n a l time c a l c u l a t i o n from Belta was used .

MITL formula agent 1 :
Phi=(c U(<2.4) r1 and Ev(<10) A(<1) r5)
−−−

MITL formula agent 2 :
Phi=Ev(<2.1) r2 and (r2 Imp Ev(<3.35) r6)
−−−

MITL formula agent 3 :
Phi=(Ev(<2.4) (r12 or r10)) and (Ev(<1) r3)
−−−
The s h o r t e s t path in T which s a t i s f i e s the MITL formula i s :
[3 8 13 12 11 6 11 12 13 18 17 . . .]

The correspond ing time i s : 1 .511308 e+00

The run i s achieved i f the c o n t r o l input i s g iven as :

u1 = −1.552440e−08 x1 −7.811712e−08 x2+ 3.000000 e+01
u2 = 1.441441 e+00 x1 −4.939352 e+01 x2+ 1.705973 e+02
Unt i l area 8 i s reached

u1 = −6.621163e−09 x1 −7.075095e−08 x2+ 3.000000 e+01
u2 = 8.003788 e+00 x1 −2.617927 e+01 x2+ 5.217158 e+01
Unt i l area 13 i s reached

u1 = −1.293190 e+01 x1 1.050930 e+01 x2+ 2.948725 e+01
u2 = −3.803326e−12 x1 −4.572753e−12 x2+ −3.000000 e+01
Unt i l area 12 i s reached

u1 = −1.214231 e+01 x1 5.589080 e+00 x2+ 4.574371 e+01
u2 = −3.339402e−08 x1 −2.764427e−07 x2+ −3.000000 e+01
Unt i l area 11 i s reached

u1 = 6.416204 e−08 x1 −3.765347e−08 x2+ −3.000000 e+01
u2 = 6.400864 e+00 x1 −4.510022 e+01 x2+ 2.901603 e+01
Unt i l area 6 i s reached

u1 = −1.013888e−10 x1 −4.641073e−10 x2+ 3.000000 e+01

61

u2 = 9.534638 e+00 x1 −3.707867 e+01 x2+ 1.752058 e+01
Unt i l area 11 i s reached

u1 = −1.628175 e+01 x1 3.510940 e+00 x2+ 8.205440 e+01
u2 = 6.886928 e−09 x1 −3.950589e−09 x2+ 3.000000 e+01
Unt i l area 12 i s reached

u1 = −8.503144 e+00 x1 5.444868 e+00 x2+ 2.337304 e+01
u2 = 3.604479 e−09 x1 2.998415 e−09 x2+ 3.000000 e+01
Unt i l area 13 i s reached

u1 = −9.469764e−08 x1 −1.283220e−07 x2+ 3.000000 e+01
u2 = 9.978030 e+00 x1 −2.904599 e+01 x2+ 3.679800 e+01
Unt i l area 18 i s reached

u1 = −3.183032 e+00 x1 −4.727966e−01 x2+ 7.592006 e+00
u2 = 1.286954 e−10 x1 −1.340543e−10 x2+ −3.000000 e+01
Unt i l area 17 i s reached

u1 = −2 x1 −1 x2+ 0
u2 = 0 x1 −2 x2+ 0
For 1.001000 e+00 s , to stay in area 17

Which i s an accept ing s t a t e .
−−−

The s h o r t e s t path in T which s a t i s f i e s the MITL formula i s :
[8 13 12 11 16 11 12 13 18 23 22]

The correspond ing time i s : 5 .348376 e−01

The run i s achieved i f the c o n t r o l input i s g iven as :

u1 = −6.621163e−09 x1 −7.075095e−08 x2+ 3.000000 e+01
u2 = 8.003788 e+00 x1 −2.617927 e+01 x2+ 5.217158 e+01
Unt i l area 13 i s reached

u1 = −1.293190 e+01 x1 1.050930 e+01 x2+ 2.948725 e+01
u2 = −3.803326e−12 x1 −4.572753e−12 x2+ −3.000000 e+01
Unt i l area 12 i s reached

u1 = −1.214231 e+01 x1 5.589080 e+00 x2+ 4.574371 e+01
u2 = −3.339402e−08 x1 −2.764427e−07 x2+ −3.000000 e+01
Unt i l area 11 i s reached

u1 = −1.505153e−07 x1 −2.457128e−07 x2+ 3.000000 e+01
u2 = 7.331081 e+00 x1 −4.420762 e+01 x2+ 2.218106 e+01
Unt i l area 16 i s reached

u1 = 2.206800 e−08 x1 1.357898 e−08 x2+ −3.000000 e+01
u2 = 6.160808 e+00 x1 −4.448092 e+01 x2+ 1.723151 e+01
Unt i l area 11 i s reached

u1 = −1.628175 e+01 x1 3.510940 e+00 x2+ 8.205440 e+01
u2 = 6.886928 e−09 x1 −3.950589e−09 x2+ 3.000000 e+01
Unt i l area 12 i s reached

62

u1 = −8.503144 e+00 x1 5.444868 e+00 x2+ 2.337304 e+01
u2 = 3.604479 e−09 x1 2.998415 e−09 x2+ 3.000000 e+01
Unt i l area 13 i s reached

u1 = −9.469764e−08 x1 −1.283220e−07 x2+ 3.000000 e+01
u2 = 9.978030 e+00 x1 −2.904599 e+01 x2+ 3.679800 e+01
Unt i l area 18 i s reached

u1 = −1.572827e−10 x1 −1.897981e−10 x2+ 2.999999 e+01
u2 = 6.582995 e+00 x1 −2.893825 e+01 x2+ 4.599290 e+01
Unt i l area 23 i s reached

u1 = −4.743308 e+00 x1 3.453228 e+00 x2+ 1.184958 e+01
u2 = 2.013922 e−08 x1 7.151107 e−10 x2+ −3.000000 e+01
Unt i l area 22 i s reached

Which i s an accept ing s t a t e .
−−−

The s h o r t e s t path in T which s a t i s f i e s the MITL formula i s :
[13 8 3 2 3 8 13 14 15 20]

The correspond ing time i s : 5 .256829 e−01

The run i s achieved i f the c o n t r o l input i s g iven as :

u1 = 4.423518 e−08 x1 4.312273 e−08 x2+ −3.000000 e+01
u2 = 9.898713 e+00 x1 −2.561697 e+01 x2+ 2.338056 e+01
Unt i l area 8 i s reached

u1 = −8.963128e−11 x1 2.185480 e−10 x2+ −3.000000 e+01
u2 = 5.992553 e+00 x1 −1.600432 e+01 x2+ 2.498311 e+01
Unt i l area 3 i s reached

u1 = −1.887466 e+01 x1 9.248873 e+00 x2+ 6.894093 e+00
u2 = −2.976941e−08 x1 −1.171149e−08 x2+ −3.000000 e+01
Unt i l area 2 i s reached

u1 = −1.727069 e+01 x1 8.390582 e+00 x2+ 9.026890 e+00
u2 = −6.595942e−10 x1 9.008105 e−10 x2+ 3.000000 e+01
Unt i l area 3 i s reached

u1 = −1.552440e−08 x1 −7.811712e−08 x2+ 3.000000 e+01
u2 = 1.441441 e+00 x1 −4.939352 e+01 x2+ 1.705973 e+02
Unt i l area 8 i s reached

u1 = −6.621163e−09 x1 −7.075095e−08 x2+ 3.000000 e+01
u2 = 8.003788 e+00 x1 −2.617927 e+01 x2+ 5.217158 e+01
Unt i l area 13 i s reached

u1 = −1.136391 e+01 x1 9.328376 e+00 x2+ 2.288467 e+01
u2 = 1.318471 e−11 x1 1.685881 e−11 x2+ 2.999999 e+01
Unt i l area 14 i s reached

u1 = −1.077632 e+01 x1 9.664062 e+00 x2+ 7.210303 e+00
u2 = 5.600617 e−11 x1 1.505471 e−12 x2+ 2.999999 e+01

63

Unt i l area 15 i s reached

u1 = −2.250643e−11 x1 −1.220964e−10 x2+ 3.000000 e+01
u2 = 5.444230 e+00 x1 −2.187355 e+01 x2+ 7.693138 e+01
Unt i l area 20 i s reached

Which i s an accept ing s t a t e .
−−−

A.2.3 Final Result 3 - Full Problem

When simulating the full multi-agent problem, the smaller environment illustrated in figure 18 was
used.

The path in the global product i s : [321 3860 3563 4452 4811 4520 5383
↪→ 5240]

The correspond ing path in the global TBA i s : [1 2 2 2 2 2 2 2]
The correspond ing path in the BWTS product i s : [161 310 162 606 786

↪→ 640 1072 1000]
The correspond ing path in each l o c a l product i s : [(5 17) (9 22) (5 18)

↪→ (17 30) (22 30) (18 28) (30 28) (28 28)]
The correspond ing path in each l o c a l environment i s : [(2 5) (3 6) (2

↪→ 5) (5 8) (6 8) (5 7) (8 7) (7 7)]
The t o t a l time needed i s 4 .125309 e−01
The time needed for r e s p e c t i v e t r a n s i t i o n i s : [4 .002136 e−02 7.707535 e

↪→ −02 5.889152 e−02 4.002135 e−02 7.707534 e−02 5.268026 e−02 6.676570 e
↪→ −02]

64

TRITA TRITA-EE 2016:075

ISSN 1653-5146

www.kth.se

