CONFIDENTIAL. Limited circulation. For review only.

Human-in-the-Loop Control Synthesis for Multi-Agent Systems under
Hard and Soft Metric Interval Temporal Logic Specifications™

Sofie Ahlberg! and Dimos V. Dimarogonas!

Abstract—1In this paper we present a control synthesis
framework for a multi-agent system under hard and soft con-
straints, which performs online re-planning to achieve collision
avoidance and execution of the optimal path with respect to
some human preference considering the type of the violation
of the soft constraints. The human preference is indicated by a
mixed initiative controller and the resulting change of trajectory
is used by an inverse reinforcement learning based algorithm
to improve the path which the affected agent tries to follow. A
case study is presented to validate the result.

I. INTRODUCTION

With the progress in the robotics and autonomous control
fields we see an increase in robotic presence in environments
populated by humans. This has increased the importance
of human robot interaction (HRI) and Human-in-the-Loop
planning and control. These include both physical interaction
and communication, where it is important to create systems
that are safe and receptive to human preference. To achieve
safety, we need system designs with guarantees, such as those
that can be achieved by formal methods, that aim at control
synthesis from high level temporal logic specifications [1],
[2], [3]. In this paper, we consider Metric Interval Temporal
Logic (MITL) [4],[5], which can be represented by a timed
automaton [6]. Our goal is to design a system that is safe,
but also adaptive towards human input and the environment.
To achieve this the standard control synthesis framework
[7] should be extended to handle the case when a desired
specification isn’t completely satisfiable.

Different approaches have been suggested for solving
this problem. In [8] a method for abstraction refinement
to find control policies which could not be found in a
sparser partitioning was suggested. In [9] a framework which
gives feedback on why the specification is not satisfiable
and how to modify it was presented. [10] instead treat the
environment as stochastic and designs the controller such
that the probability of satisfaction is maximized. Here, we
will use the metric hybrid distance which we introduced in
[11], to find the controller which minimizes the violation.
We will also consider specifications consisting of hard and
soft constraints, where the hard constraints must be satisfied.

To achieve adaptability towards the humans preference
the system must attain the knowledge of what the human

*This work was supported by the H2020 ERC Starting Grand BUCOPH-
SYS, the Swedish Foundation for Strategic Research, the Swedish Reasearch
Council and the Knut and Alice Wallenberg Foundation.

1Sofie Ahlberg and Dimos V. Dimarogonas are with the Division of De-
cision and Control Systems, School of Electrical Engineering and Computer
Science, KTH Royal Institute of Technology, Sweden sofa@kth.se,
dimos@kth.se

priorities and what consequences this should have on its
behaviour. This was discussed in [12], where a control policy
was created based on data of human decisions. In [13], a
model of human workload information was used to optimize
the systems behaviour to balance risk of stress due to full
backlogs against risk of low productivity due to empty
backlogs. Here, we will instead consider humans giving
input to the controllers directly through the so-called mixed-
initiative control [14]. The idea is to allow human input while
still keeping the guarantees of safety which we acquired from
the formal method-based synthesis. The same approach was
used in [15] but without the added time constraints inherent
to MITL. Here, the human preference is considered to be
limited to in what manner the soft constraints should be
violated, namely if time (deadlines) is higher prioritized than
performing non-desired actions (entering states which should
preferably be avoided) or vice versa. To convert the human
control input into the desired knowledge we will use an
inverse reinforcement learning (IRL)[16] approach.

This paper aims to blend the approach of [11] (Sec. IV)
with the concepts of mixed initiative control (Sec. VII),
inverse reinforcement learning (Sec. V) and re-planning al-
gorithms (Sec. VI), in order to design a decentralized control
synthesis framework for a multi-agent system which guaran-
tees the satisfaction of hard constraints while maximizing
the satisfaction of soft constraints with respect to human
preference, and ensuring collision avoidance. The problem
is formally stated in Section III, and the preliminaries and
notation used through out the paper are given in Section II.

II. PRELIMINARIES AND NOTATION
A. Abstraction of Dynamics

In this paper, we consider a multi-agent system where
each agent has controllable linear dynamics which can be
abstracted into a Weighted Transition System (WTS) where
the weights are the corresponding transition times.

Definition 1: A Weighted Transition System (WTS) is a
tuple 7 = (IL,I1;p;¢, =, AP, L,d) where II = {m; : i =
0,..., M} is a finite set of states, IT;,,;; C II is a set of initial
states, —C II x II is a transition relation; the expression
m; — T is used to express transition from 7; to 7, AP is a
finite set of atomic propositions, L : IT — 247 is an labelling
function and d :—— Ry is a positive weight assignment
map; the expression d(m;,) is used to express the weight
assigned to the transition m; — 7.

Definition 2: A timed run r' = (my,79)(71,71)... of a
WTS T is an infinite sequence where mo € IL;,;, m; € 11,
and Tj — Tj4+1 V] > 1s.t.

Manuscript 372 submitted to 2019 IEEE 15th International Conference on
Automation Science and Engineering (CASE). Received March 15, 2019.

CONFIDENTIAL. Limited circulation. For review only.

. 7'0:07 .
o Tjt1 =Tj +d(7rj77(-j+1)7 Vi > 1.

B. MITL Specification

MITL is used to express the considered specifications.
Definition 3: The syntax of MITL over a set of atomic
propositions AP is defined by the grammar

p:=Tlap[=[NV [PUqy ¢ (D

where ap € AP, a,b € [0,00] and ¢, ¢ are formulas
over AP. The operators are Negation (—), Conjunction

(A) and Until (U) respectively. Given a timed run 7t =
(mo,70)(71,7T1), ... of a WTS, the semantics of the satisfac-
tion relation is then defined as [5], [4]:

(r',4) = ap < L(7;) = ap (or ap € L(m;)), (2a)
(r',i) = —p & (r",0) ¥ ¢, (2b)
(r'yi) EdAY < (i) = dand (r')i) E v, (20)
(r',i) E U ¥ < 3j € [a,0], s.t. (r',5) E Y

and Vi < 7, (r,i) = ¢. (2d)

From this we can define the extended operators Eventually
Ola,p)® = TUjap)®) and Always (Og 519 = ~O[q,57)-
The operators Uy, ¢y and [J;, are bounded by the interval
I = [a, b], which indicates that the operator should be satis-
fied within [a, b]. If b # oo, this implies that the operator is
subject to some deadline. We will denote these as temporally
bounded operators. All operators that are not included in
the set of temporally bounded operators, are called non-
temporally bounded operators. The operator U; can be tem-
porally bounded (if a deadline is associated to the second part
of the formula) but contains a non-temporally bounded part.
When we use the term violating non-temporally bounded
operators, we refer to the non-temporally bounded part of an
operator being violated. An example of this is ¢ = AU<7 B,
indicating that A must hold until B holds, and that B must
hold within 7" time units. Here, the non-temporally bounded
operator is violated if = A becomes true before B has become
true, while the temporally bounded operator is violated if
time T is exceeded before B becomes true. A formula ¢
which contains a temporally bounded operator will be called
a temporally bounded formula. The same holds for non-
temporally bounded formulas. An MITL specification ¢ can
be written as ¢ = /\ie{m,_“’n} b = P1 NP2 N o N Gp
for some n > 0 and some subformulas ¢;. In this paper, the
notation subformulas ¢; of ¢, refers to the set of subformulas
which satisfies ¢ = A;c¢; 5,y @i for the largest possible
choice of n such that ¢; # ¢; Vi # j. For each subformula
@i, there are 3 possible temporal outcomes if ¢; is temporally
bounded: satisfaction, violation, or uncertainty.

Example 1: ¢; = QA is satisfied if A holds at some
t € I, violated if —A holds V ¢ € I, and uncertain if —A
holds for all ¢t < 7 where 7 € I is the current clock valuation.

If ¢; is non-temporally bounded there are only two pos-
sible temporal outcomes, depending on its properties:

Example 2: ¢; = Q9,004 is; satisfied if A holds at some
t € [0, 00|, and uncertain if =A holds for all ¢ < 7 where T
is the current clock valuation.

TABLE I: Operators categorized according to the temporally
bounded/non-temporally bounded notation and Definition 4.

b=o0
Non-temporally bounded, type II
Non-temporally bounded, type I
Non-temporally bounded, type I

Operator
Ula,b]
Ola,b]
U b]

Example 3: ¢; = U o)A is: violated if = A holds for
some t € [0,00], and uncertain if A holds for all ¢ < 7
where 7 is the current clock valuation.

To distinguish these non-temporally bounded formulas
from each other we introduce Type I and Type II notation:

Definition 4: A non-temporally bounded formula ¢ is
denoted as Type I if ¢ cannot be concluded to be violated at
any time (since it can be satisfied in the future), and as Type
11 if ¢ cannot be concluded to be satisfied at any time (since
it can be violated in the future). The resulting categorization
of operators is given in Table I.

b # oo
Temporally bounded
Temporally bounded
Temporally bounded

C. Hybrid Distance

The hybrid distance is a metric which shows the degree
of violation of a run with respect to a given MITL formula.
It was first introduced in [11] and will be used to find a least
violating run with respect to some soft constraints. A plan
can violate a MITL formula in two ways; i) by continuous
violation, i.e. exceeding deadlines, or ii) by discrete violation,
i.e. the violation of non-temporally bounded operators. We
quantify these violations with a metric with respect to time:

Definition 5: The hybrid distance d; is a satisfaction
metric with respect to a MITL formula ¢ and a timed
run vt = (m, 7o), (71, 71)s s (Tm, T), defined as: d, =
hd. + (1 — h)dg, where d. and d, are the continuous and
discrete distances between the run and the satisfaction of ¢,
such that d, = 37, Tf, and da = 32, T}, where
X is the set of clocks (given next in Definition 7), T} is the
time which the run violates the deadline expressed by clock 4,
Tjd = 0 if no non-temporally bounded operators are violated
by the action L(r;) and T} = 7; — 7;_; otherwise, and h €
[0,1] is the weight assigning constant which determines the
priority between continuous and discrete violations, where
h = 0.5 yields equal importance.

To be able to calculate d;, we define its derivative:

Definition 6: &y = (dc, dd), is a tuple, where d. €
{0,...,n.} and dg € {0,1}, and n, = |X| is the number
of time bounds associated with the MITL specification (or
number of clocks).

D. Timed Automaton with Hybrid Distance

In [11], we introduced an extension of the timed Biichi
automaton (TBA) [17] denoted Timed Automaton with
hybrid distance or TAhd for short. The TAhd was used
as a representation of a soft constraint given as a MITL
specification. The definition of the TAhd is given by:

Definition 7: [11] A Timed Automaton with
hybrid distance (TAhd) is a tuple Ap =
(S,SQ,AP,X7F,I)(,IH,E,H,E) where S = {SZ
i = 0,1,..m} is a finite set of locations, Sy C S is
the set of initial locations, 24F is the alphabet (i.e. set

Manuscript 372 submitted to 2019 IEEE 15th International Conference on
Automation Science and Engineering (CASE). Received March 15, 2019.

CONFIDENTIAL. Limited circulation. For review only.

of actions), where AP is the set of atomic propositions,
X ={z;:i=1,2,...,n.} is a finite set of clocks (n.. is the
number of clocks), ' C S is a set of accepting locations,
Ix : S — ®x is a map from location to clock constraints,
H = (d.,dg) is the hybrid distance, Iy : S — ®py is a
map from location to hybrid distance derivative (labelling
each location with some derivatives, dy and d.), where I
is such that Iy (s) = (dy,ds) where dy is the number of
temporally bounded operators violated in s, and dy = 0 if
no non-temporally bounded operators are violated in s and
dy = 1 otherwise, F C S x &x x 24F x § is a set of
edges, and £ : S — 247 is a labelling function mapping
each location to a set of actions.

The notation (s, g,a, s") € E is used to state that there exists
an edge from s to s’ under the action a € 247 where the
valuation of the clocks satisfy the guard g = Ix(s) C Px.
The expressions d°(s) and d%(s) are used to denote the
hybrid distance derivatives d, and dg assigned to s by Iy.

The clock constraints are defined as:

Definition 8: [17] A clock constraint ®, is a conjunctive
formula of the form x 1 a, where € {<,> <, >}, xis a
clock and a is some non-negative constant. Let ®x denote
the set of clock constraints over the set of clocks X.

Definition 9: An automata timed —run rY =
(80,70)s -y (Sm,Tm) of a TAhd, Ap, -corresponding
to the timed run r* = (m9,70), s (T, Tm) of a
WTS T, is a sequence where so € Sy, s; € S, and
(Sj,gj+1,aj+1,5j+1) c F V] > 1 such that i) Tj l: 9j»
j > 1, and ll) L(Wj) c £(S]‘), V]

It follows from Definitions 7 and 9, that the con-
tinuous violation for the automata timed run is d. =
> iz0,...m—14°(si)(Tit1 — 7)), and similarly, the dis-
crete violation for the automata timed run is dgy =
Yizo....m—1 @%(si)(Tiz1 — 7i), and hence the hybrid dis-
tance, dj,, as defined in Definition 5, is equivalently given

with respect to an automata timed run as
m—1

d(rly, h) = > (hd(s;) + (1= h)d"(s;))(Tis1—73) (3)
=0

E. Product Automaton

The product of a WTS and a TAhd was presented in [11]:

Definition 10: Given a weighted transition system T =
(11, I;05¢, 2, —, AP, L, d) and a timed automaton with hy-
brid distance Ay = (5,50, AP, X,F,Ix,Iy,E, H,L)
their Product Automaton (P) is defined as TP = T ®
Ag = (Q,QM" ~~ d, F, AP, LP 1% 17, X, H), where
Q C{(m,s) €elIxS: L(n) € L(s)}U{(m,s) € I;nit X So}
is the set of states, Q¥ = II,,;; x Sy is the set of initial
states, ~- is the set of transitions defined such that ¢ ~ ¢’ if
and only if i) ¢ = (7, s), ¢ = (7/,¢') € Q, ii) (m,7") €=,
and iii) 3 g,a, st. (s,g9,a,8') € E, d(q,q¢') = d(m, ")
if (¢,q') €~, is a positive weight assignment map, F =
{(m,8) € Q : s € F}, is the set of accepting states,
LP(q) = L(r) is an observation map, I%(¢) = Ix(s) is
a map of clock constraints, and I7,(¢) = Iy (s) is a map of
hybrid distance derivative constraints.

III. PROBLEM FORMULATION

The problem considered in this paper is to, for each agent
in a multi-agent system, i) find the plan which violates the
given soft constraint the least, for some human preference,
while satisfying the given hard constraint, ii) learn the
human preference concerning the type of violation of the
soft constraints based on human control input, and iii) avoid
collisions with other agents by re-planning when the next
target region is occupied. The input of each agent is assumed
to be bounded with |u;| < Upqq, Vi € {1,...,N}.

The hybrid distance (dy) is used as the measurement of
violation, where dj;, = 0 corresponds to complete satisfaction.
The human preference is indicated by the value of h. This
can be expressed as four sub-problems:

Problem 1: Initial plan: Given a WTS T and an MITL
specification ¢ = ¢"*™? A $*°F* find the timed run r* of T
that corresponds to the automata timed run 7%, that satisfies:
7y, = arg min, - dj (r*y,,,), where Ap is the TAhd that
corresponds to ¢ and h = 0.5. That is, find the control policy
which guarantees the satisfaction of ¢"*"?, and maximizes
the satisfaction of ¢°’, given the preference h.

Problem 2: Learning preference and updating plan:
Given a human control input u, update the estimation of h
such that the resulting trajectory (up until this point in time)
is optimal with respect to the hybrid distance. Given the
updated value of h, find a new plan 7%, (for the remainder
of the task) such that d, (%, h) is minimized by the corre-
sponding automata timed run 7 .- Assuming that the human
has a value of h in mind and acts accordingly, the updated
solution should thus satisfy dj, (7, h) < dn(7Y, . h).

Problem 3: Collision avoidance: Given the location of
all other agents in the system, find a new plan which doesn’t
include occupied states and otherwise follows the preferences
of the human, if the imminent part of the trajectory crosses
the location of another agent.

Problem 4: Safety: Design a control law such that the
input from the human (uy) can not cause the agent to violate
the hard constraint.

IV. OFFLINE SYNTHESIS OF INITIAL PLAN

The solution to Problem 1 is performed offline and follows
the outline we suggested in [11]. It is inspired by the
standard 3 steps procedure for single agent control synthesis;
1) expressing the temporal logic specification as an automa-
ton, ii) constructing the product of the automaton and the
transition system, and iii) implementing graph search to find
the shortest path. The suggested control synthesis framework
is de-centralized and for each agent the planning follows the
steps:

1) Construct a Timed Automaton with Hybrid Distance

(T Ahd) which represents the MITL specification.
2) Construct a Product Automaton as the product of the
TAhd and a WT'S representing the system dynamics.
3) Find the least violating path, i.e, the shortest path with
respect to the hybrid distance, dj, and for h = 0.5.
The difference between the solution suggested here and the
solution presented in [11] appears in step 1, where we now

Manuscript 372 submitted to 2019 IEEE 15th International Conference on
Automation Science and Engineering (CASE). Received March 15, 2019.

CONFIDENTIAL. Limited circulation. For review only.

consider hard constraints as well as soft which alters the
construction of the TAhd. The details are given in below.

A. Constructing a Timed Automata with Hybrid Distance for
hard and soft constraints

In this section we consider the construction of a TAhd
when both soft and hard constraints are given. The construc-
tion follows the same method which we used in [11] where
only soft constraints where given, with a modification to the
construction of edges.

We start by describing the construction of locations. To
do so we introduce the evaluation sets ¢:

Definition 11: A evaluation set ; of a subformula ¢;
contains the possible evaluations of the subformula:

{oyme, oy, 37}

{oyme, 7'}

{¢§L’ILC7 (ZS;_JZO}
Next we introduce subformula evaluations):

Definition 12: A subformula evaluation 1) of a formula ¢
is one possible outcome of the formula, i.e. a conjunction of
elements of the evaluation sets: 1) = /\, ¢5'%¢, $5tate € ;.
We will use ¥ to denote the set of all subformula evaluations
1) of a formula ¢, i.e. all possible outcomes of ¢ at any time.

We can now construct the location set S = {s; : i =
1,...,|¥[}. Then Sy = s; where v; = A, #}"°, and F =
s where Ur = Nicp &5 A N\je; 03¢, where I NJ =
1,..,|¥| and J contains the indexes of all ¢; which are
non-temporally bounded type II (i.e. cannot be evaluated as
satisfied). The set of clocks X must include at least one
clock for each temporally bounded ¢;, two if there is both
a lower and an upper bound. [x is easily constructed such
that s — ®x € Ix if ¢?%° ¢ 1 where ¢; is temporally
bounded by ®x. The hybrid distance derivative mapping
I (s) = (d1,ds) is constructed such that d; is equal to the
number of clock constraints associated with the subformulas
@Y% € 1), and dy = 1 if any non-temporally bounded
subformula ¢?%° € 1) and d2 = 0 otherwise. To construct the
edges we first introduce some new definitions and notation:

Definition 13: The distance set of two subformula evalu-
ations 1 and ¢ is defined as |¢) — o] = {¢; : p3tate’ #
pstate}. That is, it consists of all subformulas ¢; which are
evaluated differently in the subformula evaluations.
We use (1, g,a) — 1’ to denote that all subformulas ¢; €
|tp — 4| are i) uncertain in v and ii) it holds that ¢; is
re-evaluated to ¢'%%¢" € 4 if action a occurs at time ¢
satisfying guard g.

The edges can now be constructed in 4 steps;

if ¢; is temporally bounded
if ¢; is non-temporally bounded, type I
otherwise

i) Construct all edges corresponding to progress (the edges
a TBA would have) such that: (s,g,a,s') € E if
(¥,9,a) = .

ii) Construct edges which correspond to non-temporally
bounded soft constraint/s no longer being violated such
that: (s, g,a,s’) € E if

o Vo € [— |, ¢; € $*°/t and is non-temporally
bounded, and ¢V € 1,

e (s”,9,a,s") € E for some s where [ty — /| =
[— "]
or
o Vo € [— |, ¢; € $*°/* and is non-temporally
bounded, and ¢¥% € v
o (s',9,d',5) € E, where o’ = 247 \a.

iii) Construct edges which correspond to temporally-
bounded soft constraint/s no longer being violated such
that: (s,g,a,s’) € E if

o J¢; € [— 1’|, such that ¢; € ¢°°F* is temporally
bounded, and ¢?Y®° € 1, ¢ € ', pun¢ € ",

o where (s”,¢,a,5') € E, and (s”,g,a,s) € E,

e and g = ¢'\Px,, where X; is the set of clocks
associated with ¢; s.t. p¥"¢ € 1’ and ¢?%° € 1),

o and 7 ¢; € |¢p — 9’| such that ¢; € ¢4

iv) Construct self-loops such that (s, g,a,s) € E if 3 (g, a)
st. g C g, aCa where (s',¢9,d,s) € E for some s’
and (s,g,a,s”) ¢ E for any s”.

B. Finding an Initial Plan

The initial plan is now found by constructing the product
automaton of the TAhd and the WTS following definition
10 and applying the modified Dijkstra Algorithm 1. Here
we have added some further modifications by adding the
inputs; initial time and current violation metrics. These inputs
are used to set the distance metrics of the initial state and
are all zero-valued in the previous version of the algorithm
presented in [11]. By allowing non-zero values the same
algorithm can be used to re-plan when the mission has began
and the time from start as well as violations are no longer
zero when the graph search begins.

In [11] we showed that a solution to the algorithm is
always found under the assumption that the temporally
bounded part of the MITL formula is feasible on the given
WTS when deadlines are disregarded. This result is however
based on the fact that the TAhd was constructed to represent
a soft constraint alone and does no longer apply when hard
constraints are applied as well. The result can however be
relaxed by adding the assumption that the hard constraint
is feasible and does not contradict any eventually or until
operators of the soft constraints when deadlines of the soft
constraint are disregarded.

V. LEARNING HUMAN PREFERENCE

In this section we consider Problem 2, i.e. learning the
preferred value of h based on human control input wuyp,.
The method is an inverse reinforcement learning (IRL) [16]
approach and the estimated value of A is iteratively improved
when new knowledge is given in the form of human input
(i.e. when uy, # 0) under the assumption that the human is
trying to help the system (i.e. uy, is chosen such that dj, is
optimized for the true value of h). That is,

Cost(ris*, h*) = min Cost(rp, h*)
Tp

4)

where 75" is the timed run of P which the human would
guide the agent through (and the optimal run w.r.t. dj, given

Manuscript 372 submitted to 2019 IEEE 15th International Conference on
Automation Science and Engineering (CASE). Received March 15, 2019.

CONFIDENTIAL. Limited circulation. For review only.

Algorithm 1: dijkstraHD() Dijkstra Algorithm with
Hybrid Distance as cost function

Data: P, h, 7o, d°,dY, d)
Result: 77" dy,, d., dg
Q =set of states; qy =initial state; SearchSet = qq;
d(q,q") =weight of transition q ~ ¢ in P;
if qd = qo then
| dist(q) = 70, dn(q) = dj. dc(q) = df. da(q) = dy;
else
| dist(q) = dn(q) = de(q) = da(q) = o0
end
for ¢ € Q do
| pred(a) =
end
while no path found do
Pick q € SearchSet s.t. ¢ = argmin(dp(q));
if ¢ € F' then path found
else
find all ¢’ s.t. g~ q';
for every ¢’ do
A" = (hde(g) + (1 =)da(9))d(a¢');
if di,(¢') > dn(q) + d;*" then
update dist(q'), dp(q'), dc(q'), da(q)
and pred(q') and add q' to SearchSet;
Remove q from SearchSet,
end

end

end

end

while ¢ # ¢¢ do

use pred(q) to iteratively form the path back to go;

min

— Thd

end

h = h*), and Cost(rt,,h) = dn(proj(rts, Am),h) where
proj(rt,, Ay) is the projection of the timed run of the
product automaton P onto the TAhd Ay as defined below.
We also define the projection onto the WTS T for later use.

Definition 14: The projections of a timed run of a product
automaton 7% = (71, $1) (72, $2), ..., (T, Sm) onto a TAhd
A and a WTS T are defined as:

proj(rs, Ap) = s1,52, ..., Sm, and %)
proj(r's, T) = 71, T2, oy T (6)
To determine the %k estimate of h we suggest solving
k
hy = arg mian(C’ost(r’;’,h, h) — Cost(ris',h)) (7)
helo,1] ;5

() = z ifx<O0
PP)=1 o ifz>0

rfg,h = argmin Cost(rh, h) (9)

rteR?,

®)

where rj;i, t = 1,..,k are the previously suggested paths

(i.e. rtlgl is the initial plan and the outcome of Section 1V),
,0

R% = {Tﬁ; =dq1,42,---9m : 7‘33/ = qlanv"'7QZ;l S m} and

7’550 is the timed run of P which has been followed from

start up until the time of the human input. That is, RY is the
set of timed runs of P which can be followed given the up-
to-date trajectory. The function p(z) is used to ensure that
Cost(ri;h’“,hk) < Cost(rls', hy) for i = 1,..., k, removing
any solutions hj, for which a previously suggested run would
be better than the optimal run given the initial trajectory.
No loss of correct solutions occurs due to assumption (4).
The solution to (7) is the A which maximizes how much dj,
decreases due to the human input.

The optimal timed run w.r.t. hybrid distance and hy, is then

tk+1 (10)

rp T = argmin Cost(rl, hy).
rf, €Rp

That is, the timed run rﬁ;h calculated in (9) for h = hy,.
The new path to follow is then found by the projection
of rﬁ;kﬂ onto the WTS, i.e, TZ];H = proj(rﬁ;kH,AH).
The solution to (7) and (10) can be found by implementing
Algorithm 2.

Algorithm 2: irl4h(): Finds hy, "™ and ri{ffl

Data: d.(r) and dg(rl) for rl =3’ for i =1,...,k
and rf, = 7"330, P
Result: Ay, rtI;kH, ii’;“
& =design parameter for the step size of the optimization;
update Q™"*, 79, d2, d and dJ;
for h =10,6,26,...,1 do
dijkstraHD() — ri" and hy (Alg 1);
Cost(rs" h) = ha;
for:=1,....,k do
Cost(rs' h) = hd.(r") + (1 — h)da(rs");
p(i) = p(Cost(ri®" h) — Cost(r', h));
(where p is defined as (8));
end

end

hi = argmin Y p(i);

dijkstraHD() — """ and hq (Alg 1);
G =proj(r8™, An);

VI. RE-PLANNING FOR COLLISION AVOIDANCE

In this section we describe the solution to Problem 3.
We will assume that the agents can share their current
position with each other. This could be done either by
shared knowledge or visual detection. Each agent monitors
its imminent trajectory by determining if another agent is
located within the next region w € II in its planned path.
If an agent discovers that its upcoming state is occupied it
must stop and re-plan. The re-planing is done in two steps;
i) update the product automaton according to the present
conditions, and ii) perform Algorithm 1 on the updated
product automaton (using the latest estimate of h according
to Section V). The concept of the re-planning is as follows;
mark all states ¢ € @ which correspond to the occupied
region m € II as occupied by setting the weight of all
outgoing edges to infinity (hence making it deadlock states),
update qq to the current state (i.e. make the current state the
state which we try to find a path from), and set the start

Manuscript 372 submitted to 2019 IEEE 15th International Conference on
Automation Science and Engineering (CASE). Received March 15, 2019.

CONFIDENTIAL. Limited circulation. For review only.

time to the current time. The result is that Algorithm 1 will
attempt to find a path from the current state, which does not
include the occupied state, to an accepting state. With the
suggested approach, the progress already made is saved and
the actual time of the previous movement is considered.

In the event that no path under the new restrictions can
be found, we suggest that the agent waits until the other
agent moves, leaving the previously occupied state free. To
avoid a deadlock in the system (which could occur if two
agents waits for each other to move indefinitely) we suggest
a maximum wait-time after which the agent attempts to find
a temporary path for which it moves out of the way (allowing
the other agent to pass). This is done by temporary updating
the product automaton such that every state which i) does
not correspond to the violation of the hard constraint, and
ii) does not correspond to the current state of the WTS, are
marked as accepted. This temporary task (moving out of the
way) can then be solved as long as the hard constraint doesn’t
forbid all other transitions. To minimize the computation we
only consider the neighbouring regions. If any of them is safe
in the sense that the corresponding transition in the product
automaton lead to a state from which an accepting state can
be reached this will be the shortest re-routing, and if they
are not, then there is no solution to the temporary task.

We denote the set of forbidden states (states which cannot
reach the accepting states) as Q7. Q7 can be determined
indirectly by first finding Q;l = Q\Qr (the set of states
which an accepting state can be reached from). Q;l is found
iteratively by: ¢ € Q7' if ¢ ~ ¢/ and ¢’ € Q7', where
initially Q;l = JF. We can now apply the collision avoidance
algorithm described in Algorithm 3, where we have made use
of second part of Definition 14.

Remark 1: Assuming that the transition times of the WTS
are over-approximations it is possible that a re-planned path
has a lower hybrid distance than an initial path. The reason
for this is that the already performed progress required less
time than estimated. In this case the re-planning will have a
start time which is lower than the estimated progress time at
the corresponding state used by the offline algorithm. Based
on this, one could argue that it would be better if each agent
re-planned multiple times online regardless of whether an
imminent state is occupied. The downside of this is loss of
performance time (due to standing still while re-planning).

Remark 2: Further improvement of the re-planning could
be done by finding a way to update the product automaton
such that the occupied state is disregarded only in the near
future (since the agent in the state would, most likely,
eventually move).

VII. RESTRICTIONS ON HUMAN CONTROL INPUT

We will now consider Problem 4, i.e, how to avoid
violation of ¢"%"¢ when the human control input is non-zero.
As in [15] we will use a mixed-initiative controller [14]:

(1)

for each transition (mg,m,) €—, where u, is the control
input from the system designed to follow the plan which

u = uy(x, s, mq) + k(z, Mug(t)

Algorithm 3: collAv() Collision Avoidance of agent 4

Data: Position of agents: x = z1, zo, ..., Tj, current
discrete plan p. = gc, gct1, s Ggoal (gc :=current
state), data for dijsktraHD()

Result: New discrete plan p = qc, g, 1,

while no path found do

for j=1:F%kdo

if ©; € w41 where mep1 = proj(get1,T) then

‘ Occupied = True;
end

/
- Qgoal

end
if Occupied == True then
update 7o, d2, dY, df) and Q";
set d(q,q") = oo Vq if proj(q',T) = Tey1;
dijkstraHD() (alg 1);
if a path was found then
| break;
else
wait for t = AT,
set Twait = Twast + AT,
check if 7.4 is free again;
end
end
if Tyaiz > T,%7 then
update 7p;
set ¢ € F if proj(q,T) = m where
e Hneighboors» and q ¢ QT;
dijkstraHD() (alg 1);
break;

end
end

was conceived in Section IV-VI, and wuy, is the human input.
The problem then becomes to design x such that ¢"*"? is
never violated. To solve the problem we follow the same
idea as in [15], namely to design x such that:

1 it is zero if the agent is on the limit of entering an area
which would violate ¢"*"¢,

ii it is one if the agent is outside of said limit with a given
safety margin,

iii it is in the interval [0,1] if the agent is outside of the
limit but inside of the safety margin, and

iv in the area in between the limit and the safety margin
it decreases when nearing the limit and increases when
nearing the safety margin.

This was achieved in [15] by choosing:

P(dt - ds)
(de — ds) + p(e +ds — dt)

where d; is the minimum distance between the agent and any
region within O, p(s) = e~/* for > 0 and p(s) = 0 for
s <0,ds >0 and € > 0 are design parameters for safety,
and O, contains all regions 7 € II which corresponds to a
violating state ¢ € Q.

Unlike [15], here we must also consider the time con-
straints of ¢"*"¢. Assuming that ¢"*"? has temporally

k(x, Op) = 5 (12)

Manuscript 372 submitted to 2019 IEEE 15th International Conference on
Automation Science and Engineering (CASE). Received March 15, 2019.

CONFIDENTIAL. Limited circulation. For review only.

bounded operators almost all states 7 € II of the WTS
will correspond to the violation of ¢"%"® for some time ¢
(i.e. belong to O;). Hence, if we apply the solution in [15]
directly we will be quite conservative, setting x = 0 in almost
all states. As a result, the learning algorithm wouldn’t have
enough data and the human wouldn’t have enough impact.

To solve this problem we use the set () (containing
all states which cannot reach an accepting state) which we
constructed in the previous section, and construct a new
set Q. = {(q,t) : ¢ € Qr,t = min(x € I¥(q))}
containing all states corresponding to the violation of ¢"?"¢
paired with the corresponding violated deadline (i.e. the
minimum time required to enter the state). We then redefine:
di = ming yeqr dist(z,(q,t)) where dist(z,(q,t)) =
|z — proj(q,T)| if to + d(mo,proj(q,T)) > t and
dist(x,proj(q,T)) = oo otherwise, where ¢ and 7 are the
time and state of the WTS at the time of calculation. That
is, dist(x, (q,t)) is the distance between the current location
and the region corresponding to g if the deadline is violated
(and the transition would lead to the violation of ¢"*"?), and
oo otherwise. The resulting d; is then the minimum distance
to a violating state, and hence equation (12) can be applied
without the aforementioned issue.

VIII. CASE STUDY

A simulation with two agents, each following the dynam-
ics in eq. (13), has been performed. Agent 1 is partially
controlled by a human user, i.e. u; follows eq. (11), while
agent 2 is fully autonomous (see eq. (14)).

. 1 1 1 0 .
xTr; = |:0 2:| T; + |:0 1:| Ui, Z—1,2 (13)
uy = u?‘(£7 Tsy 779) =+ R(JZ? H)uh(t) (14)
Ug = Uy (T, T4, my) (15)

Agent 1 is tasked with visiting areas c¢ and d, while
agent 2 is tasked with visiting areas e and f, both with
soft deadlines. Both agents should also try to avoid areas
marked b while they are strictly forbidden to enter area a.
The resulting MITL specifications are ¢; = ¢ferd /\qf)iof b=
(O-a) A (O=bA Oy e AO<y,d) and g = ¢herd A 307" =
(0-a) A (-0 A O<ize A O<y, f). The assumption 1 > to
and ¢35 > t4 has been made to minimize the number of
edges of the resulting TAhd’s. The assumption can be made
without loss of generality since the labels ¢, d, e and f
can be chosen such that the assumption holds. The control
input from the system, i.e. u,, is determined following the
method we suggested in [18], where for each transition in
the WTS a controller is found such that: i) the velocity
of the agent is positive in the direction of the transition
for every x in the start region, and ii) the velocity of the
agent is negative in the direction of any other edge on the
given edge. That is, the controllers are designed to steer the
agent towards the desired edge, while stopping the agent
from exiting the starting region through any other edge.
The transition times of the WTS’s were also determined
following [18] and are the maximum times required for each

TABLE II: Values of the violation distances: d., dg and dj, for agent 1
and agent 2 in the case study. The table shows the estimated values used
when constructing the initial and final plans and the real values calculated
from the resulting trajectories when the plans had been followed. For agent
1 we have used h = 1 (the learnt human preference), and for agent 2,
h = 0.5 (the initial setting) was used.

Initial Plan/Trajectory Final Plan/Trajectory
Estimates | Real Values | Estimates | Real Values

de 0.0418 0.0405 0 0

Ag. 1 | dg 0.0418 0.0405 0.1137 0.1037
dp, 0.0418 0.0405 0 0

de 0.9351 0.7573 1.6571 1.2795

Ag. 2 | dg4 0.0719 0.0664 0.0759 0.0668

dp, 0.7099 0.4118 0.8665 0.6731

transition to be guaranteed. It follows that the transitions may
actually be faster. Since the violation distances used during
planning consider the transition times it also follows that
they are worst case estimates, and that they may be smaller in
implementation when the planned paths are followed. During
the online re-planning when the system learns the value of h
the real violation distances are considered for the trajectories
which have been followed while the estimates are used for
the planning of the future path.

The workspace and the initial plans for each agent is
illustrated in Figure la. During the online run the human
user has a chance to apply control input every 0.015 time
steps. Figure 1b illustrates one possible outcome. Here, the
human decided to apply the control input uj, = (0, —Umaz)
during time [0.09,0.135] (step 6-9), at which point agent
1 was steered into region 5 instead of region 3. At this
point the agent applied the Algorithm 2 to determine that
the optimal h was 1, and re-planned accordingly. The next
interesting event occurred at step 15 (or time= 0.225) where
agent 1 and 2 blocked each other by being in the others goal
region. This was solved by the agents applying the collision
avoidance algorithm (Alg. 3), resulting in agent 2 moving out
of the way (into region 13) and agent 1 waiting until region
10 was free. At step 21 (time= 0.315) agent 2 was once
again blocked by agent 1, which hadn’t left region 10 yet.
Agent 2 once again applied Algorithm 3, resulting in agent
2 waiting until region 10 was free. The estimated values of
the violation distances which where used for planning as well
as the real violation distances from following the plans are
given in Table II. As expected the real distances are a bit
smaller than the estimates (due to the fact that the agents
move faster than estimated by the abstraction). Comparing
the initial plans with the final plans, the hybrid distance is
decreased for agent 1 while it is increased for agent 2. The
improvement of agent 1 is due to the path being planned
with the correct value of h. The negative change for agent
2 is caused by the collision avoidance forcing the agent to
take a longer route.

IX. CONCLUSIONS AND FUTURE WORK

We have presented a decentralized control synthesis frame-
work for a multi-agent system under hard and soft constraints
given as MITL specifications. The framework uses mixed
initiative control to allow a human-in-the-loop to affect the

Manuscript 372 submitted to 2019 IEEE 15th International Conference on
Automation Science and Engineering (CASE). Received March 15, 2019.

CONFIDENTIAL. Limited circulation. For review only.

Initial planned trajectories

35]

25 [0]| 5[b] 11/[8] 14 [0]

710

1511 [€] 0 [0] 13 [O]

Final trajectories

-
]

1
1 2 2 a 3 R

(a) Initial plans of the 2 agents with dynamics according to (13),
tasked with the MITL specifications ¢; and ¢, where 17 = 0.5,
to = 0.9, t3 = 0.01 and t4 = 0.03. For the initial planning both
agents use h = 0.5. Agent 1 follows the orange trajectory and agent
2 follows the magenta trajectory. Agent 1 starts in region 1 and agent
2 starts in region 15.

1

4 2 el A = 3

(b) Final trajectories of agent 1 and 2, where human input has been
given to agent 1 to change the transition 6 — 3 to 6 — 5, indicating
that keeping deadlines is more important than avoiding b, i.e. h = 1.
Collision avoidance has been applied by both agents at step 15, and
again by agent 2 at step 21.

Fig. 1: Initial planned and final trajectories of the agents in the case study. Each number/star along the trajectories indicates one iteration where the
human had a chance to change her control input, the time step in between is 0.015 time units. The tasks are to avoid the red areas and preferably avoid
the yellow areas, while agent 1 should visit the green areas and agent 2 should visit the blue areas.

trajectories of the agents while keeping the guarantees of
satisfaction for the hard constraints. The human input is used
in an IRL approach to learn the value of a weight assigning
constant which indicates the human preference considering
the manner of violation of the soft constraints. A collision
avoidance algorithm is used to ensure safety. The result
is a control policy which guarantees satisfaction of hard
constraints and maximizes the satisfaction of soft constraints
with respect to human preference, while avoiding collisions.

Future work includes determining under which conditions
agents should re-plan to optimize performance time, deter-
mining how the step size of h in the learning algorithm can
be optimized, and implementing the framework on a robotic

platform.
REFERENCES

[1] C. Belta, B. Yordanov, and E. A. Gol, Formal methods for discrete-
time dynamical systems. Springer, 2017, vol. 89.

[2] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-
based reactive mission and motion planning,” IEEE Transactions on
Robotics, vol. 25, no. 6, pp. 13701381, Dec 2009.

[3] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas,
“Temporal logic motion planning for dynamic robots,” Automatica,
vol. 45, no. 2, pp. 343 — 352, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S000510980800455X

[4] J. Ouaknine and J. Worrell, “On the decidability of metric temporal
logic,” in Logic in Computer Science, 2005. LICS 2005. Proceedings.
20th Annual IEEE Symposium on. 1EEE, 2005, pp. 188-197.

[5] D. Souza and P. Prabhakar, “On the expressiveness of mtl in the point-
wise and continuous semantics,” International Journal on Software
Tools for Technology Transfer, vol. 9, no. 1, pp. 1-4, 2007.

[6] D. Nickovi¢ and N. Piterman, “From mtl to deterministic timed
automata,” in International Conference on Formal Modeling and
Analysis of Timed Systems. Springer, 2010, pp. 152-167.

[71 E. A. Gol and C. Belta, “Time-constrained temporal logic control of
multi-affine systems,” Nonlinear Analysis: Hybrid Systems, vol. 10,
pp. 21-33, 2013.

[8] P-J. Meyer and D. V. Dimarogonas, “Compositional abstraction re-
finement for control synthesis,” Nonlinear Analysis: Hybrid Systems,
2017, to appear.

[9] G. E. Fainekos, “Revising temporal logic specifications for motion
planning,” in Robotics and Automation (ICRA), 2011 IEEE Interna-
tional Conference on. IEEE, 2011, pp. 40-45.

[10] J. Fu and U. Topcu, “Computational methods for stochastic control
with metric interval temporal logic specifications,” in 2015 54th IEEE
Conference on Decision and Control (CDC). IEEE, 2015, pp. 7440-
7447.

[11] S. Andersson and D. V. Dimarogonas, “Human in the Loop Least
Violating Robot Control Synthesis under Metric Interval Temporal
Logic Specifications,” European Control Conference (ECC) 2018,
2018.

[12] S. Carr, N. Jansen, R. Wimmer, J. Fu, and U. Topcu, “Human-in-the-
loop synthesis for partially observable markov decision processes,”
in 2018 Annual American Control Conference (ACC), June 2018, pp.
762-769.

[13] R. Schlossman, M. Kim, U. Topcu, and L. Sentis, “Toward achieving
formal guarantees for human-aware controllers in human-robot inter-
actions,” arXiv preprint arXiv:1903.01350, 2019.

[14] W. Li, D. Sadigh, S. S. Sastry, and S. A. Seshia, “Synthesis for
human-in-the-loop control systems,” in Tools and Algorithms for the
Construction and Analysis of Systems, E. Abrahdam and K. Havelund,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 470-
484.

[15] M. Guo, S. Andersson, and D. V. Dimarogonas, ‘“Human-in-the-
loop mixed-initiative control under temporal tasks,” in 20/8 IEEE
International Conference on Robotics and Automation (ICRA). 1EEE,
2018, pp. 6395-6400.

[16] A.Y.Ng, S. J. Russell, er al., “Algorithms for inverse reinforcement
learning.” in Icml, 2000, pp. 663—670.

[17] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical
computer science, vol. 126, no. 2, pp. 183-235, 1994.

[18] S. Andersson, A. Nikou, and D. V. Dimarogonas, “Control Synthe-
sis for Multi-Agent Systems under Metric Interval Temporal Logic
Specifications,” 20th World Congress of the International Federation
of Automatic Control (IFAC WC 2017), 2017.

Manuscript 372 submitted to 2019 IEEE 15th International Conference on
Automation Science and Engineering (CASE). Received March 15, 2019.

