Quantum

Lecture 2

e Dirac notation

e Hilbert space quantum mechanics
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Dirac Notation

A Hilbert space H, with inner product (-,-) = g(-, ")
Elements in H are denoted |x), kets

Elements in H* are denoted (x|, bras

(x| € H* iff

(z[(lz)) = g(ly). |2))

for some |y) € H for all |x) € H
= for |z) € H the corresponding bra is (z|(:) = g(z,-)

Hence the notation (x|y) (“bra(c)ket”) means both/either

mapping |y) to (z|(|y)) and/or
carrying out the inner product g(|x), |y)) = {|x), |y))
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Linear operators O act on kets, notation O(|z)) = O|x)

The outer product |z)(y| between |x) and |y) is the linear operator
L that solves L|z) = g(|y), [2))[z) = (y|2)|z)

For compact self-adjoint operators O we have

Olz) = ZMP@'(I@)

where {);} are the (distinct) eigenvalues and P, is the projection
onto
{lz) : Olz) = Aifz) }

That is, P;(|x)) = > (x|usj)|uij) over all orthonormal
eigenvectors |u;;) corresponding to the ith eigenvalue ),

Since (zuj)|uij) = [uiz)(uiz|(lx)) = |uij)(uijlz) (where
(uijlz) = (x|ui;) becase O is self-adjoint) we get

Pi=> " |uij){ui|
J
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Because the |u;;)’s form an orthonormal basis we can write
SWIED O IIHONEED e

to get

Olx) = E >\z‘§ aijluij)
i j
and

9(12), Ola) = (@lOla) = 5 A Zwlum =2 N2 layl?

Notation for tensor product, = ® y = |z)|y) = |ry) (more in Lec. 3)
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For operators O and T', we have the composition OT defined via
OT|z) = O(T'(|x)))

The Hilbert—=Schmidt inner product (O, T') between operators O and T is
obtained as (O, T) = Tr(O*T)

The commutator between O and T is [O,T] = OT —TO,
if (O, T] = 0 the operators O and T' commute

Similarly, the anti-commutator is {O, T} = OT + TO,
if {O,T} = 0 the operators O and T" anti-commute
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The Postulates of Hilbert Space Quantum Mechanics

Postulate 1: The state of any isolated quantum system is fully
characterized by a state vector |¢) in a Hilbert space H, the state
space

|1b1) and |¢2) in ‘H are considered to represent the same quantum
mechanical state if |¢)2) = «ai)1) for some a € C. We will implicitly
assume that |||¢)|| = 1 always
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Postulate 2: The time-evolution of any closed quantum system is
fully described by a unitary linear mapping. That is, if the state is
|1b1) at time t1, then the state at time t3 is [¢p2) = Ult1) where U
is unitary and depends only on (t1,t2)
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The evolution of the state |¢(t)) characterizing a closed quantum

system evolving in continuous time is described by the Schrodinger

equation

d|p(t))
dt

where h is Planck’s constant and where H is a fixed self-adjoint
operator known as the Hamiltonian

ih

= HI[y(1))

For continuous-time systems, the validity of the Schrodinger
equation can be verified to imply Postulate 2

Mikael Skoglund, Quantum Info 8/15



Postulate 3: An isolated quantum system can interact with the
outside world by measurement. Any measurement that can be
performed is characterized by a set of linear operators {M,, },
where the index n refers to different outcomes of the experiment

The measurement operators satisfy the completeness condition
> MiM, =1
n

where [ is the unity operator (I|z) = |x) for any |x) € H)
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If an isolated system is in state |¢)) immediately before
measurement, then the probability that result n is observed is

p(n) = (| Enlt))

where {E,,} are the POVM elements, E, = MM,
After observing result n, the new state is (p(n))~Y/2M,|¢)

The only way to obtain information about the state |1)) of a
quantum system is by measurement. Two states |¢)1) and [i)2) can
only be distinguished “with probability one” iff (¢1[12) =0
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Projective measurements: The special case of a projective
measurement is fully characterized by a compact linear self-adjoint
operator M, with eigen-decomposition

M = ZA,-PZ-

(where P; projects onto {|x) : M|z) = \j|x), (z|x) = 1})

The possible (real, numerical) outcomes of the measurement are
the eigenvalues {\;}, occurring with probabilities

p(i) = (Y| Pi]v)
Similarly, the expected outcome of the measurement is

(M) = ZW”" = (Y| M|y)
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Unobservable characterization

/* (| By |9)

Observable numerical outcome

The system is in state |¢)). The value of |¢)) can be unknown, or
known in the case where the system was prepared in this state
(or as |1hg) and then evolved to |¢) according to Schrodinger)

When measured, the state |¢)) collapses to an eigen-state/space of
the measurement, ) — P;[v)

There is no way the state can be observed without collapsing
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Uncertainty relation [Heisenberg/Robertson]:
For (projective) measurements A and B, let AA=A— (A)I,
AB = B — (B)I, then for a given state |¢)

(A4 (ABY) > 7|4, B)P
where ((AA)2) = (B](AA)21), (AB)?) = (0](AB)21)
and {[A, B]) = (][4, Bl|y)
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Qubits

Assume a quantum system is fully described by a two-dimensional
space H. The state |¢)) € H is then called a quantum bit or qubit

Given a projective measurement M on H with eigenvalues { g, A1}
and corresponding eigenvectors |0) and |1) we can write any state
as

[¥) = al0) + BI1)
and the measurement as M = X\|0){(0| + A1|1)(1|

The outcome of the measurement is either “|0)" with numerical
value Ao or “|1)" with value \;

Ao is measured with probability (1/]0)(0|¢) = |a/?
and A1 with probability (1|1)(1]¢) = |3|?
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Bloch sphere representation

0 : 0
1) = cos §|0> + €'Y sin §|1>

0
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