
Quantum
Lecture 2

• Dirac notation

• Hilbert space quantum mechanics
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Dirac Notation

A Hilbert space H, with inner product 〈· , ·〉 = g(· , ·)
Elements in H are denoted |x〉, kets

Elements in H∗ are denoted 〈x|, bras

〈x| ∈ H∗ iff
〈x|(|x〉) = g(|y〉, |x〉)

for some |y〉 ∈ H for all |x〉 ∈ H
⇒ for |z〉 ∈ H the corresponding bra is 〈z|(·) = g(z, ·)

Hence the notation 〈x|y〉 (“bra(c)ket”) means both/either
mapping |y〉 to 〈x|(|y〉) and/or

carrying out the inner product g(|x〉, |y〉) = 〈|x〉, |y〉〉
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Linear operators O act on kets, notation O(|x〉) = O|x〉
The outer product |x〉〈y| between |x〉 and |y〉 is the linear operator
L that solves L|z〉 = g(|y〉, |z〉)|x〉 = 〈y|z〉|x〉
For compact self-adjoint operators O we have

O|x〉 =
∑

i

λiPi(|x〉)

where {λi} are the (distinct) eigenvalues and Pi is the projection
onto {|x〉 : O|x〉 = λi|x〉}
That is, Pi(|x〉) =

∑
j〈x|uij〉|uij〉 over all orthonormal

eigenvectors |uij〉 corresponding to the ith eigenvalue λi

Since 〈x|uij〉|uij〉 = |uij〉〈uij |(|x〉) = |uij〉〈uij |x〉 (where
〈uij |x〉 = 〈x|uij〉 becase O is self-adjoint) we get

Pi =
∑

j

|uij〉〈uij |

Mikael Skoglund, Quantum Info 3/15

Because the |uij〉’s form an orthonormal basis we can write

O(·) =
∑

i

λiPi(·) =
∑

i

λi
∑

j

|uij〉〈uij |(·), |x〉 =
∑

ij

aij |uij〉

to get

O|x〉 =
∑

i

λi
∑

j

aij |uij〉

and

g(|x〉, O|x〉) = 〈x|O|x〉 =
∑

i

λi
∑

j

|〈x|uij〉|2 =
∑

i

λi
∑

j

|aij |2

Notation for tensor product, x⊗ y = |x〉|y〉 = |xy〉 (more in Lec. 3)
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For operators O and T , we have the composition OT defined via
OT |x〉 = O(T (|x〉))
The Hilbert–Schmidt inner product (O, T ) between operators O and T is
obtained as (O, T ) = Tr(O∗T )

The commutator between O and T is [O, T ] = OT − TO,
if [O, T ] = 0 the operators O and T commute

Similarly, the anti-commutator is {O, T} = OT + TO,
if {O, T} = 0 the operators O and T anti-commute
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The Postulates of Hilbert Space Quantum Mechanics

Postulate 1: The state of any isolated quantum system is fully
characterized by a state vector |ψ〉 in a Hilbert space H, the state
space

|ψ1〉 and |ψ2〉 in H are considered to represent the same quantum

mechanical state if |ψ2〉 = α|ψ1〉 for some α ∈ C. We will implicitly

assume that ‖|ψ〉‖ = 1 always
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Postulate 2: The time-evolution of any closed quantum system is
fully described by a unitary linear mapping. That is, if the state is
|ψ1〉 at time t1, then the state at time t2 is |ψ2〉 = U |ψ1〉 where U
is unitary and depends only on (t1, t2)

Mikael Skoglund, Quantum Info 7/15

The evolution of the state |ψ(t)〉 characterizing a closed quantum
system evolving in continuous time is described by the Schrödinger
equation

i~
d|ψ(t)〉
dt

= H|ψ(t)〉

where ~ is Planck’s constant and where H is a fixed self-adjoint
operator known as the Hamiltonian

For continuous-time systems, the validity of the Schrödinger
equation can be verified to imply Postulate 2
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Postulate 3: An isolated quantum system can interact with the
outside world by measurement. Any measurement that can be
performed is characterized by a set of linear operators {Mn},
where the index n refers to different outcomes of the experiment

The measurement operators satisfy the completeness condition

∑

n

M∗
nMn = I

where I is the unity operator (I|x〉 = |x〉 for any |x〉 ∈ H)
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If an isolated system is in state |ψ〉 immediately before
measurement, then the probability that result n is observed is

p(n) = 〈ψ|En|ψ〉

where {En} are the POVM elements, En = M∗
nMn

After observing result n, the new state is (p(n))−1/2Mn|ψ〉
The only way to obtain information about the state |ψ〉 of a
quantum system is by measurement. Two states |ψ1〉 and |ψ2〉 can
only be distinguished “with probability one” iff 〈ψ1|ψ2〉 = 0
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Projective measurements: The special case of a projective
measurement is fully characterized by a compact linear self-adjoint
operator M , with eigen-decomposition

M =
∑

i

λiPi

(where Pi projects onto {|x〉 : M |x〉 = λi|x〉, 〈x|x〉 = 1})
The possible (real, numerical) outcomes of the measurement are
the eigenvalues {λi}, occurring with probabilities

p(i) = 〈ψ|Pi|ψ〉

Similarly, the expected outcome of the measurement is

〈M〉 =
∑

i

p(i)λi = 〈ψ|M |ψ〉
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λi

〈ψ|Pi|ψ〉
H

Unobservable characterization

Observable numerical outcome

M

|ψ〉

The system is in state |ψ〉. The value of |ψ〉 can be unknown, or
known in the case where the system was prepared in this state
(or as |ψ0〉 and then evolved to |ψ〉 according to Schrödinger)

When measured, the state |ψ〉 collapses to an eigen-state/space of
the measurement, |ψ〉 → Pi|ψ〉
There is no way the state can be observed without collapsing
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Uncertainty relation [Heisenberg/Robertson]:
For (projective) measurements A and B, let ∆A = A− 〈A〉I,
∆B = B − 〈B〉I, then for a given state |ψ〉

〈(∆A)2〉〈(∆B)2〉 ≥ 1

4
|〈[A,B]〉|2

where 〈(∆A)2〉 = 〈ψ|(∆A)2|ψ〉, 〈(∆B)2〉 = 〈ψ|(∆B)2|ψ〉
and 〈[A,B]〉 = 〈ψ|[A,B]|ψ〉
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Qubits

Assume a quantum system is fully described by a two-dimensional
space H. The state |ψ〉 ∈ H is then called a quantum bit or qubit

Given a projective measurement M on H with eigenvalues {λ0, λ1}
and corresponding eigenvectors |0〉 and |1〉 we can write any state
as

|ψ〉 = α|0〉+ β|1〉
and the measurement as M = λ0|0〉〈0|+ λ1|1〉〈1|
The outcome of the measurement is either “|0〉” with numerical
value λ0 or “|1〉” with value λ1

λ0 is measured with probability 〈ψ|0〉〈0|ψ〉 = |α|2

and λ1 with probability 〈ψ|1〉〈1|ψ〉 = |β|2
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Bloch sphere representation

|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉
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