Quantum Information Theory Spring semester, 2017

Assignment 6 Assigned: Friday, April 28, 2017 Due: Friday, May 5, 2017

M. Skoglund

Problem 6.1: Define the quantum entropy of a state ρ and the (quantum) mutual information between two states ρ_A and ρ_B

Problem 6.2: For two states ρ and σ , define the *trace distance* $V(\rho, \sigma)$ and their *fidelity* $F(\rho, \sigma)$. Also relate the possible values for V to the range of values for F

Problem 6.3: Derive an expression for the entropy of a classical-quantum state on the form

$$\sum p(x)|e(x)\rangle\langle e(x)|\otimes\sigma(x)$$

Problem 6.4: For the trace distance $V(\cdot, \cdot)$, prove that

$$V(\rho,\sigma) \le V(\rho,\theta) + V(\theta,\sigma)$$

and that

$$V(\rho_1 \otimes \rho_2, \sigma_1 \otimes \sigma_2) \le V(\rho_1, \sigma_2) + V(\rho_2, \sigma_2)$$

Problem 6.5: For the fidelity $F(\cdot, \cdot)$, prove that

$$F(\rho_1 \otimes \rho_2, \sigma_1 \otimes \sigma_2) = F(\rho_1, \sigma_1)F(\rho_2, \sigma_2)$$

Problem 6.6: The *coherent information* of $\rho_{AB} \in \mathcal{A} \otimes \mathcal{B}$ is defined as

$$Q(\rho_A)\rho_B) = -S(\rho_{AB}|\rho_B) = S(\rho_B) - S(\rho_{AB})$$

with $\rho_B = \text{Tr}_{\mathcal{A}}\rho_{AB}$. Assume the dimensions of \mathcal{A} and \mathcal{B} are both $d < \infty$, and let $\{|e_i\rangle\}$ and $\{|f_i\rangle\}$ be a basis for \mathcal{A} and \mathcal{B} , respectively. Consider the maximally entangled state $\rho_{\max} = |\psi\rangle\langle\psi|$ with

$$|\psi\rangle = \frac{1}{\sqrt{d}} \sum_{i=1}^{d} |e_i\rangle |f_i\rangle$$

Interpret "maximum entanglement" as "maximum confusion about sub-systems" by looking at $\text{Tr}_{\mathcal{A}}\rho_{\text{max}}$ and/or $\text{Tr}_{\mathcal{B}}\rho_{\text{max}}$. Interpret $Q(\rho_A)\rho_B$ as a measure of degree of entanglement by comparing its maximum possible value to its value for $\rho_{AB} = \rho_{\text{max}}$ and $\rho_{AB} = \rho_A \otimes \rho_B$. Also compute $Q(\rho_A)\rho_B$ for the state

$$ho_{AB} = rac{1}{d} \sum_{i=1}^{d} |e_i\rangle \langle e_i| \otimes |f_i\rangle \langle f_i|$$

Problem 6.7: Prove that $S(\rho_A; \rho_B) = S(\rho_{AB} \| \rho_A \otimes \rho_B)$, that is, mutual information $S(\rho_A; \rho_B)$ measures distance between a possibly entangled state ρ_{AB} where \mathcal{A} and \mathcal{B} are correlated and the non-entangled state $\rho_A \otimes \rho_B$, where \mathcal{A} and \mathcal{B} are independent.