Probability and Random Processes
Lecture 9

- Extensions to measures
- Product measure

Cartesian Product

- For a finite number of sets A_1, \ldots, A_n

\[\times_{k=1}^n A_k = \{(a_1, \ldots, a_n) : a_k \in A_k, k = 1, \ldots, n\} \]

- notation A^n if $A_1 = \cdots = A_n$

- For an arbitrarily indexed collection of sets $\{A_t\}_{t \in T}$

\[\times_{t \in T} A_t = \{\text{functions } f \text{ from } T \text{ to } \bigcup_{t \in T} A_t : f(t) \in A_t, t \in T\} \]

- $A_t = A$ for all $t \in T$, then $A^T = \{\text{all functions from } T \text{ to } A\}$

- For a finite T the two definitions are equivalent (why?)
• For a set \(\Omega \), a collection \(C \) of subsets is a **semialgebra** if
 • \(A, B \in C \Rightarrow A \cap B \in C \)
 • if \(C \in C \) then there is a pairwise disjoint and finite sequence of sets in \(C \) whose union is \(C^c \)

• If \(C_1, \ldots, C_n \) are semialgebras on \(\Omega_1, \ldots, \Omega_n \) then
 \[
 \{ C \in \times_{k=1}^n C_k : C_k \in C_k, \, k = 1, \ldots, n \}
 \]
 is a semialgebra on \(\times_{k=1}^n \Omega_k \)

Extension

This is how we constructed the Lebesgue measure on \(\mathbb{R} \):

• For any \(A \subset \mathbb{R} \)
 \[
 \lambda^*(A) = \inf \left\{ \sum_n \ell(I_n) : \{I_n\} \text{ open intervals, } \bigcup_n I_n \supset A \right\}
 \]
 (where \(\ell = \text{“length of interval”} \))

• A set \(E \subset \mathbb{R} \) is Lebesgue measurable if for any \(W \subset \mathbb{R} \)
 \[
 \lambda^*(W) = \lambda^*(W \cap E) + \lambda^*(W \cap E^c)
 \]

• The Lebesgue measurable sets \(\mathcal{L} \) form a \(\sigma \)-algebra containing all intervals

• \(\lambda = \lambda^* \) restricted to \(\mathcal{L} \) is a measure on \(\mathcal{L} \), and \(\lambda(I) = \ell(I) \) for intervals
We started with a set function ℓ for intervals $I \subset \mathbb{R}$

- the intervals form a semialgebra

Then we extended ℓ to work for any set $A \subset \mathbb{R}$

- here we used outer measure for the extension

We found a σ-algebra of measurable sets,

- based on a criterion relating to the union of disjoint sets

Finally we restricted the extension to the σ-algebra \mathcal{L}, to arrive at a measure space $(\mathbb{R}, \mathcal{L}, \lambda)$

Given Ω and a semialgebra \mathcal{C} of subsets, assume we can find a set function m on sets from \mathcal{C}, such that

1. if $\emptyset \in \mathcal{C}$ then $m(\emptyset) = 0$
2. if $\{C_k\}_{k=1}^n$ is a finite sequence of pairwise disjoint sets from \mathcal{C} such that $\bigcup_{k=1}^n C_k \subset \mathcal{C}$, then
 \[m\left(\bigcup_{k=1}^n C_k\right) = \sum_{k=1}^n m(C_k) \]
3. if C, C_1, C_2, \ldots are in \mathcal{C} and $C \subset \bigcup_{n=1}^\infty C_n$, then
 \[m(C) \leq \sum_{n=1}^\infty m(C_n) \]

Call such a function m a pre-measure
• For a set Ω, a semialgebra C and a pre-measure m, define the set function \(\mu^* \) by

\[
\mu^*(A) = \inf \left\{ \sum_n m(C_n) : \{C_n\}_n \subset \mathcal{C}, \bigcup_n C_n \supset A \right\}
\]

Then \(\mu^* \) is called the outer measure induced by \(m \) and \(\mathcal{C} \)

• A set \(E \subset \Omega \) is \(\mu^* \)-measurable if

\[
\mu^*(W) = \mu^*(W \cap E) + \mu^*(W \cap E^c)
\]

for all \(W \in \Omega \). Let \(\mathcal{A} \) denote the class of \(\mu^* \)-measurable sets

• \(\mathcal{A} \supset \mathcal{C} \) and \(\mathcal{A} \) is a \(\sigma \)-algebra

• \(\mu = \mu^*_\mathcal{A} \) is a measure on \(\mathcal{A} \)

The Extension Theorem

1. Given a set \(\Omega \), a semialgebra \(\mathcal{C} \) of subsets and a pre-measure \(m \) on \(\mathcal{C} \). Let \(\mu^* \) be the outer measure induced by \(m \) and \(\mathcal{C} \) and \(\mathcal{A} \) the corresponding collection of \(\mu^* \)-measurable sets, then

• \(\mathcal{A} \supset \mathcal{C} \) and \(\mathcal{A} \) is a \(\sigma \)-algebra

• \(\mu = \mu^*_\mathcal{A} \) is a measure on \(\mathcal{A} \)

• \(\mu|_\mathcal{C} = m \)

Also, the resulting measure space \((\Omega, \mathcal{A}, \mu) \) is complete

2. Let \(\mathcal{E} = \sigma(\mathcal{C}) \subset \mathcal{A} \). If there exists a sequence of sets \(\{C_n\} \) in \(\mathcal{C} \) such that

• \(\bigcup_n C_n = \Omega \), and

• \(m(C_n) < \infty \)

then the extension \(\mu^*_\mathcal{E} \) is unique,

• that is, if \(\nu \) is another measure on \(\mathcal{E} \) such that \(\nu(C) = \mu^*_\mathcal{E}(C) \) for all \(C \in \mathcal{C} \) then \(\nu = \mu^*_\mathcal{E} \) also on \(\mathcal{E} \)
• Note that $E \subset A$ in general, and μ^*_E may not be complete

• In fact, (Ω, A, μ^*_A) is the completion of (Ω, E, μ^*_E),
 - on \mathbb{R}, μ^*_A corresponds to Lebesgue measure and μ^*_E to Borel measure

• Also compare the condition in 2. to the definition of σ-finite measure:
 - Given (Ω, A) a measure μ is σ-finite if there is a sequence $\{A_i\}, A_i \in A$, such that $\cup_i A_i = \Omega$ and $\mu(A_i) < \infty$

• If the condition in 2. is fulfilled for m, then μ^*_A is the unique complete and σ-finite measure on A that extends m

Extension in Standard Spaces

• Consider a (metrizable) topological space Ω and assume that C is an algebra of subsets (i.e., also a semialgebra)
 - Algebra: closed under set complement and finite unions

• An algebra C has the countable extension property [Gray], if for every function m on C such that $m(\Omega) = 1$ and
 - for any finite sequence $\{C_k\}_{k=1}^n$ of pairwise disjoint sets from C we get
 $$m\left(\bigcup_{k=1}^n C_k\right) = \sum_{k=1}^n m(C_k)$$
 then this holds also for $n = \infty$
• Any algebra on Ω is said to be \textit{standard} (according to Gray) if it has the countable extension property

• A measurable space (Ω, \mathcal{A}) is standard if $\mathcal{A} = \sigma(\mathcal{C})$ for a standard \mathcal{C} on Ω

• If $\mathcal{E} = (\Omega, \mathcal{T})$ is \textit{Polish}, then $(\Omega, \sigma(\mathcal{E}))$ is standard

• Note that if $\mathcal{E} = (\Omega, \mathcal{T})$ is Polish, then $(\Omega, \sigma(\mathcal{E}))$ is also “standard Borel” \Rightarrow for Polish spaces the two definitions of “standard” are equivalent
 • again, we take the $(\Omega, \sigma(\mathcal{E}))$ from Polish space as our default standard space

\textbf{Extension and Completion in Standard Spaces}

• For (Ω, \mathcal{T}) Polish and (Ω, \mathcal{A}) the corresponding standard (Borel) space, there is always an algebra \mathcal{C} on Ω with the countable extension property, and such that $\mathcal{A} = \sigma(\mathcal{C})$

• Thus, for any normalized and finitely additive m on \mathcal{C}
 1. m can always be extended to a measure on (Ω, \mathcal{A})
 2. the extension is unique

• Let $(\Omega, \mathcal{A}, \rho)$ be the corresponding extension ($\rho(\Omega) = 1$)

• Also let $(\Omega, \bar{\mathcal{A}}, \bar{\rho})$ be the completion. Then $(\Omega, \bar{\mathcal{A}}, \bar{\rho})$ is \textit{equivalent with probability one} to $([0,1], \mathcal{L}, \lambda)$
Product Measure Spaces

• For an arbitrary (possibly infinite/uncountable) set T, let (Ω_t, A_t) be measurable spaces indexed by $t \in T$
• A measurable rectangle $= \text{any set } O \subset \times_{t \in T} \Omega_t \text{ of the form}$
 $$O = \{ f \in \times_{t \in T} \Omega_t : f(t) \in A_t \text{ for all } t \in S \}$$
 where S is a finite subset $S \subset T$ and $A_t \in A_t$ for all $t \in S$
• Given T and $(\Omega_t, A_t), t \in T$, the smallest σ-algebra containing all measurable rectangles is called the resulting product σ-algebra
 • Example: $T = \mathbb{N}$, $\Omega_t = \mathbb{R}$, $A_t = B$ give the infinite-dimensional Borel space $(\mathbb{R}^\infty, B^\infty)$

• For a finite set I, of size n, assume that (Ω_i, A_i, μ_i) are measure spaces indexed by $i \in I$
• Let $U = \{ \text{all measurable rectangles} \}$ corresponding to $(\Omega_i, A_i), i \in I$
• Let $\Omega = \times_i \Omega_i$ and $A = \sigma(U)$
• Define the product pre-measure m by
 $$m(A) = \prod_{i} \mu_i(A_i)$$
 for any $A_i \in A_i, i \in I$, and $A = \times_i A_i \in U$
The measurable rectangles \mathcal{U} form a semialgebra

The product pre-measure m is a pre-measure on \mathcal{U}

1. Given $(\Omega_i, \mathcal{A}_i, \mu_i), \ i = 1, \ldots, n$, let m be the corresponding product pre-measure. Then m can be extended from \mathcal{U} to a σ-algebra containing $\mathcal{A} = \sigma(\mathcal{U})$. The resulting measure m^* is complete.

2. If each of the $(\Omega_i, \mathcal{A}_i, \mu_i)$’s is σ-finite then the restriction $m^*_|A$ is unique.
 - Proof: $(\Omega_i, \mathcal{A}_i, \mu_i)$ σ-finite \Rightarrow condition 2. on slide 8. fulfilled

If the $(\Omega_i, \mathcal{A}_i, \mu_i)$’s are σ-finite, then the unique measure $\mu = m^*_|A$ on (Ω, \mathcal{A}) is called product measure and $(\Omega, \mathcal{A}, \mu)$ is the product measure space corresponding to $(\Omega_i, \mathcal{A}_i, \mu_i), \ i = 1, \ldots, n$

n-dimensional Lebesgue Measure

- Let $(\Omega_i, \mathcal{A}_i, \mu_i) = (\mathbb{R}, \mathcal{L}, \lambda)$ (Lebesgue measure on \mathbb{R}) for $i = 1, \ldots, n$. Note that $(\mathbb{R}, \mathcal{L}, \lambda)$ is σ-finite (why?). Let μ denote the corresponding product measure on \mathbb{R}^n
 - Per definition, the 'n-dimensional Lebesgue measure' μ
 constructed like this, based on 2. (on slide 16), is unique but not complete
 - Using instead the construction in 1. as the definition, we get a complete version corresponding to the completion of μ
- The completion $\bar{\mu}$ of the n-product of Lebesgue measure is called n-dimensional Lebesgue measure