
Probability and Random Processes
Lecture 7

• Conditional probability and expectation

• Decomposition of measures
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Conditional Probability

• A probability space (Ω,A, P )

• An event F ∈ A with P (F ) > 0; the σ-algebra generated by
F , G = σ({F}) = {∅, F, F c,Ω}

• Elementary conditional probability of E ∈ A given F

P (E|F ) =
P (E ∩ F )

P (F )

• The conditional probability of E ∈ A conditioned on G =
“the probability of E knowing which events in G occurred” =
“probability of E knowing whether F or F c occurred”

P (E|G) = P (E|F )χF (ω) + P (E|F c)χF c(ω)

a function : Ω → R
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• Note that P (E|G)
• is a random variable on (Ω,A, P );
• is G-measurable;

and that

P (G ∩ E) =

∫

G
P (E|G)dP, G ∈ G

• A basis for generalizing P (E|G) to conditioning on arbitrary
σ-algebras
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• Given (Ω,A, P ), E ∈ A and G ⊂ A, there exists a
nonnegative G-measurable function P (E|G) such that

P (G ∩ E) =

∫

G
P (E|G)dP, G ∈ G

Also, P (E|G) is unique P -a.e.

• Proof: Define µE(G) = P (G ∩ E) for any G ∈ G, then
µE ≪ P and

P (E|G) = dµE

dP

• The function P (E|G) is called the conditional probability of E
given G

• “the probability of E knowing which events in G occurred”
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• Again, for fixed G and E, the entity P (E|G) is a function
f(ω) = P (E|G)(ω) on Ω

• Alternatively, by instead fixing G and ω we get a set function

m(E) = P (E|G)(ω), E ∈ A

• If m(E) is a probability measure on (Ω,A) then P (E|G) is
said to be regular

• P (E|G) is in general not necessarily regular. . .

• If the space (Ω,A) is standard (more about this later in the
course), then m(E) is a probability measure
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Conditioning on a Random Variable

• Given (Ω,A, P ) and a random variable X, let σ(X) =
smallest F ⊂ A such that X is (still) measurable w.r.t. F =
the σ-algebra generated by X,

• σ(X) is exactly the class of events for which you can get to
know whether they occured or not by observing X

• The conditional probability of E ∈ A given X is defined as

P (E|X) = P (E|σ(X))
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Signed Measure

• Given a measurable space (Ω,A), a signed measure ν on A is
an extended real-valued function such that

• ν(∅) = 0
• for a sequence {Ai} of pairwise disjoint sets in A

ν

(⋃

i

Ai

)
=
∑

i

ν(Ai)

(i.e., simply a measure that doesn’t need to be positive)
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Radon–Nikodym for Signed Measures

• If µ is a σ-finite measure and ν a finite signed measure on
(Ω,A), and also ν ≪ µ, then there is an integrable
real-valued A-measurable function f on Ω such that

ν(A) =

∫

A
fdµ

for any A ∈ A. Furthermore, f is unique µ-a.e.

• The function f is the Radon–Nikodym derivative of ν w.r.t. µ,
notation f = dν

dµ
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Conditional Expectation

• Given (Ω,A, P ), a random variable Y (with E[|Y |] < ∞) and
G ⊂ A, there exists a G-measurable function E[Y |G] such that

∫

G
Y dP =

∫

G
E[Y |G]dP, G ∈ G

Also, the function E[Y |G] is unique P -a.e.

• Proof: Define µY (G) =
∫
G Y dP for any G ∈ G, then

µY ≪ P and

E[Y |G] = dµY

dP

• The function E[Y |G] is called the conditional expectation of
Y given G

• “the expectation of Y knowing which events in G occurred”
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• Note that with G = {∅,Ω} and G = Ω, we get

E[Y ] =

∫

Ω
Y dP =

∫

Ω
E[Y |G]dP ⇒ E[Y |{∅,Ω}] = E[Y ] P -a.e.

(noting that the definition is verified also for G = ∅)
• If G1 ⊂ G2 ⊂ A then

E[E[Y |G1]|G2] = E[E[Y |G2]|G1] = E[Y |G1] P -a.e.

so in particular, for any G ⊂ A,

E[E[Y |G]] = E[E[Y |G]|{∅,Ω}] = E[Y |{∅,Ω}] = E[Y ] P -a.e.

• If Z is (already) G-measurable, then

E[ZY |G] = ZE[Y |G] P -a.e.
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Conditional Expectation vs. Probability

• The entity E[Y |G] is a function g(ω) = E[Y |G](ω)
• If (Ω,A) is standard, then P (E|G) is regular
⇒ m(E) = P (E|G)(ω) is a probability measure on (Ω,A) for
fixed ω and G. Furthermore, in this case

E[Y |G] =
∫

Y (u)dm(u) =

∫
Y (u)dP (u|G)

• This interpretation for conditional expectation does not hold
in general (for non-standard (Ω,A))
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Projections and Atoms

Conditional expectation as a projection

• Given (Ω,A, P ) assume G ⊂ A and let M = { G-measurable
functions }

• For an A-measurable Y , let g(ω) = E[Y |G](ω), then

E[(Y − g)2] ≤ E[(Y − g′)2] for all g′ ∈ M

• If Y is already in M, then g(ω) = Y (ω) P -a.e.

Conditioning on a random variable

• For two random variables X and Y , E[Y |X] = E[Y |σ(X)]

• If E|Y | < ∞ then there is a Borel-measurable f : R → R
such that E[Y |X] = f(X(ω)) P -a.e.

• Thus E[Y |X](ω) is constant on the sets {ω : X(ω) = x}
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Atoms

• A ∈ A is an atom of A if the only set in A which is a proper
subset of A is ∅

• If there is a countable {Ai} such that A = σ({Ai}) then A is
separable

• (Ω,A) standard ⇒ A separable [more about “standard” later]

• A separable ⇒ every A ∈ A is a union of atoms

• If f is A-measurable, then f is constant on the atoms of A
• If A is separable and G ⊂ A, then the atoms of G are bigger

• If G is an atom of G ⊂ A and P (G) > 0, then

E[Y |G](ω) = 1

P (G)

∫

G
Y dP, for ω ∈ G

“smoothing over atoms”
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Mutually Singular Measures

• Given (Ω,A), two measures µ1 and µ2 are mutually singular,
notation µ1 ⊥ µ2, if there is a set E ∈ A such that
µ1(E

c) = 0 and µ2(E) = 0.

• Lebesgue decomposition: Given a σ-finite measure space
(Ω,A, µ) and an additional σ-finite measure ν on A, there
exist measures ν1 and ν2 on A such that ν1 ≪ µ, ν2 ⊥ µ and
ν = ν1 + ν2. This representation is unique.
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Continuous and Discrete Measures

• For a measure space (Ω,A, µ) such that {x} ∈ A for all
x ∈ Ω:

• x ∈ Ω is an atom of µ if µ({x}) > 0
• µ is continuous if it has no atoms
• µ is discrete if there is a countable K ⊂ Ω such that

µ(Kc) = 0

• Let (Ω,A, µ) be a σ-finite measure space and ν an additional
σ-finite measure on A. Assume that {x} ∈ A for all x ∈ Ω.
Then there exist measures νac, νsc and νd such that

• νac ≪ µ, νsc ⊥ µ an νd ⊥ µ
• νsc is continuous and νd is discrete
• ν = νac + νsc + νd, uniquely
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Decomposition on the Real Line

• Let ν be a finite measure on (R,B), then ν can be
decomposed uniquely as ν = νac + νsc + νd where

• νac is absolutely continuous w.r.t. Lebesgue measure
• νsc is continuous and singular w.r.t Lebesgue measure
• νd is discrete

• Furthermore, if Fν is the distribution function of ν, then

ν({x}) = Fν(x)− lim
x′→x−

Fν(x
′)

That is, if there are atoms, they are the points of discontinuity
of Fν
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