Probability and Random Processes

Lecture 5

e Probability and random variables

e The law of large numbers
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Why Measure Theoretic Probability?

e Stronger limit theorems
o Conditional probability/expectation

e Proper theory for continuous and mixed random variables
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Probability Space

e A probability space is a measure space (£2,.4, P)
e the sample space 2 is the 'universe,’ i.e. the set of all possible
outcomes
e the event class A is a o-algebra of measurable sets called
events
e the probability measure is a measure on events in A with the
property P(2) =1
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Interpretation

e A random experiment generates an outcome w € ()

e Foreach A€ Aeitherwe Aorwé¢ A
e An event A in A occurs if w € A with probability P(A)

e since A is the o-algebra of measurable sets, we are ensured
that all 'reasonable’ combinations of events and sequences of
events are measurable, i.e., have probabilities
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With Probability One

e An event E € A occurs with probability one if P(E) =1
e almost everywhere, almost certainly, almost surely,. . .
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Independence
e F and F in A are independent if P(ENF) = P(E)P(F)

The events in a collection Aq,..., A, are

e pairwise independent if A; and A; are independent for i # j
e mutually independent if for any {iq,i2,...,ik} C {1,2,...,n}

P(A; NAi, NN A, ) = P(Ai ) P(As,) -+ P(Ag,)

An infinite collection is mutually independent if any finite
subset of events is mutually independent

'mutually’ = 'pairwise’ but not vice versa
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Eventually and Infinitely Often

o A probability space (£2,.4, P) and an infinite sequence of
events {A,}, define

liminf A,, = O (ﬁ Ak> , limsup A, = ﬁ (G Ak>
k=n k=n

e w € liminf A,, iff there is an N such that w € A,, for all
n > N, that is, the event lim inf A,, occurs eventually,

{A,, eventually}

e w € limsup A, iff for any N there is an n > N such that
w € A, that is, the event lim sup A,, occurs infinitely often

{A, i.0.}
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Borel-Cantelli

e The Borel-Cantelli lemma: A probability space (€2, .4, P) and
an infinite sequence of events {A,}

@ if)  P(A,) <oo, then
P({A, io})=0

@® if the events {A,,} are mutually independent and
>, P(Ay) = oo, then

P({A, io0}) =1
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Random Variables

e A probability space (€2, .4, P). A real-valued function X (w) on
) is called a random variable if it's measurable w.r.t. (2, 4)

e Recall: measurable = X~1(O) € A for any open O C R
<= X !(A) € Afor any A € B (the Borel sets)

e Notation:
e the event {w: X(w) € B} - 'X € B’
o P{XeAln{X eB})—»"P(Xe€A X eB), etc.
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Distributions

X is measurable = P(X € B) is well-defined for any B € B

The distribution of X is the function ux(B) = P(X € B),
for Be B

e i is a probability measure on (R, )

The probability distribution function of X is the real-valued
function

Fx(z) = P({w: X(w) < 2}) = (notation) = P(X < z)

Fx is (obviously) the distribution function of the finite measure px
on (R, B), i.e.
Fx(z) = px((—o0,2])
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Independence

e Two random variables X and Y are pairwise independent if

the events {X € A} and {Y € B} are independent for any A
and B in B

e A collection of random variables X1, ..., X,, is mutually
independent if the events {X; € B;} are mutually
independent for all B, € B
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Expectation

e For a random variable on (2, 4, P), the expectation of X is
defined as

ElX]= / X (w)dP(w)
Q
e For any Borel-measurable real-valued function g

Elg(X)] = / 9(x)dFx (z) = / 9(2)dpix ()

in particular

B[X] = / rdpix ()
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Variance

e The variance of X,
Var(X) = E[(X — E[X])’]
e Chebyshev's inequality: For any € > 0,

Var(X)
22

P(X - E[X]| z¢) <

e Kolmogorov's inequality: For mutually independent random
variables { X} }7_, with Var(X}) < oo, set S; =3 7_; Xy,
1 <j<mn, then forany e > 0

Var(S
P <maX|Sj — E[S;]| > 6) < #
J g
(n = 1 = Chebyshev)
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The Law of Large Numbers

o A sequence {X,,} is iid if the random variables X,, all have
the same distribution and are mutually independent

e For any iid sequence {X,,} with u = F[X,,] < 0o, the event

occurs with probability one

e Toward the end of the course, we will generalize this result to
stationary and ergodic random processes. . .
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e Sp,=n"1>" X, — u with probability one = S,, — p in
probability, i.e.,

lim P({[S, —p| =€}) =0

n—0o0

for each ¢ > 0
e in general 'in probability’ does not imply 'with probability one’
(convergence in measure does not imply convergence a.e.)

Mikael Skoglund, Probability and random processes 15/21

The Law of Large Numbers: Proof

e Lemma 1: For a nonnegative random variable X

iP(in) < E[X] SiP(XZn)

n=1 n=0

e Lemma 2: For mutually independent random variables { X}
with Y~ Var(X,) < oo it holds that ) (X,, — E[X,])
converges with probability one

e Lemma 3 (Kronecker's Lemma): Given a sequence {a,} with
0<a; <ag <--- and lima, = oo, and another sequence
{zk} such that lim ), x), exists, then
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e Assume without loss of generality (why?) that p = 0

e Llemmal =

S P(X| 2 0) = 3 P(X1| 2 ) <
n=1 n=1

o Let E = {|Xi| > k i.0.}, Borel-Cantelli = P(E) =0 = we

can concentrate on w € E°¢

o Let Yy, = Xy X{x,|<n}; If w € E€ then there is an N such

that Y, (w) = X,,(w) for n > N, thus for w € E°

lim ;E :éi: X =0 < lim J; :éf::)fg =0

n—oo N n—oo 1

e Note that F[Y,] > p=0asn — oo
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e Letting Z,, = n~1Y,, it can be shown that
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> o2 Var(Z,) < oo (requires some work). Hence, according

to Lemma 2 the limit

Z = lim (égk — l?[é?k])
exists with probability one.
e Furthermore, by Lemma 3
1 1
= (Ve = BIYA]) =~ > k(Z — E[Z]) — 0
k=1 k=1
where also 1 X
— _EE[)/k] — 0
n
k=1

since _ED[)/k] — l?[;ka] :::_EE[;Xfl] =0
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Proof of Lemma 2

o Assume w.o. loss of generality that E[X,,] =0, set S,, = > 7, Xk
e For E,, € A with £y C Ey C --- it holds that

P (Lnj En) = lim P(E,)
Therefore, for any m >0
P (U{|Sm+k — Sm| > 5}> = nli_)ng()P <U {[Sm+r — Sm| 2 5}>
k=1 k=1

— i _ >
lim P 1r<n]?X |Smak — S| 5)

n— oo
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e Let Yy = X,,4 and
k
Tk: :Z}/j :Sm—}—k:_Sma

then Kolmogorov's inequality implies

P ( max [Ty — E[Tx]| > 8) =
1<k<n

P S 5 1> c) < YarlSmin = Sm N Var(X},)
11313%—’( | Stk — | >¢e) < 22 kzﬂ ar(Xy)
e Hence

o0 1 o0
P(U{|Sm+k—5m|>5}> §—2 Z Var(Xy)
k=1 k=m-+1
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e Since ) Var(X,) < oo, we get for any ¢ > 0

Jim P (U{Sm+k — S| > e}) =0

k=1
e Now, let = {w:{S,(w)} does not converge}. Then w € F iff

{Sy(w)} is not a Cauchy sequence = for any n there is a k and an
r such that |S,, 1% — Sn| > r~1. Hence, equivalently,

W CIEEED)

e For [y, D Fy D F5---, P(NF)) =1lim P(F}), hence for any r > 0

(A=) = (A (A Wser023)))

= i P (m (U{wﬂk—sa > 1) ) < Jim, P (U{'S”““‘S"' - 1}>

=1 k k
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