Probability and Random Processes
Lecture 10

® Random processes
® Kolmogorov's extension theorem

® Random sequences and waveforms
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Random Objects

® A probability space (2, A, P) and a measurable space (FE,€)

® A measurable transformation X : (2, A) — (E,&), is a
random

variable if (E,€) = (R, B)

vector if (E,&) = (R™,B™)

sequence if (E,&) = (R*>°,B>)

object, in general
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More on Product Spaces

® (E,&) a measurable space and T' an arbitrary parameter set
e BT = { all mappings from T to E }

® A measurable rectangle {f € ET : f(t) € A; for all t € S}
where S is a finite subset S C T and A; € £ forallt € S

® For U = {all measurable rectangles }, let &7 = o (U)
e Fort € T, define m; : ET — E to be the evaluation map

m(f) = f(t), forany f € ET

® Then it holds that £ = o({m; : t € T'}) i.e., ET is the
smallest o-algebra such that all
e (BT, ET) - (B.E), teT

are measurable
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® For S C T define the restriction map g : ET — ES via

ms(f) = fls
® For a finite S C T and Ag € £°, a subset F € ET is a
measurable cylinder if it has the form F' = ng(AS), ie.

F={fecE":ms(f) € As, mr\s(f) € ETV} = Ag x BT\

® Then it holds that £/ = o({ all measurable cylinders })

® A measurable o-cylinder is a measurable cylinder where the
set S C T is possibly infinite but countable

® Then we also have £7" = {all measurable o-cylinders },

® even when T is uncountable, membership f € A € £T imposes
restrictions on the values f(t) only for countably many t's
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Random Processes

Given (2, A, P)
® Random process, definition 1: a collection {X; : t € T'} where
for each ¢, X; is a random object X; : (Q, A) — (E, &),

X;:Q—=E X l1:£—-A

for each ¢, Xy maps w into a value X;(w) € £

® Random process, definition 2: a random object
X:(Q A — (ET, T

X: Q- E' x1t.e7 54

X maps each w into a function X;(w) € ET
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Extension Results

® Based on definition 2, the process distribution px is the
distribution of the random object X, that is,

px(A) = P{w: X¢(w) € A}), Ae&l

® For a subset S C T, restricting the process to S means that
f(t) = Xi(w) is restricted to t € S, ws(f) = f|g, with
corresponding marginal distribution 1 x|g on (ES,£%)
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® Assume that (F, &, ;) are probability spaces for each ¢t € 5,
where S is a finite subset S C T, and let (E°,£°, 1°) be the
corresponding product measure space

® Even in the case of an uncountable T', (E®, &%, 1%) can be
extended to the full space (ET, T, ux), in the sense that
there exists a unique pux such that

px|s(A) = p°(4)

for all A € £° and any finite S C T

® Proof: The cylinder sets are a semialgebra that generates £7';
a finite product of probability measures is a pre-measure on the
cylinders; our previous extension result for product measure can
then be extended to a countable S; finally, the fact that £7 is the
class of o-cylinders can be used to extend to the full class £T
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® Remember from the definition of product measure, that
(ES,SS,,LLS) corresponds to a process with independent
values Xy(w), t € S

® Hence we now know how to construct memoryless processes,
even for an uncountable T, based on marginal distributions for
each finite S

® How about completely general px's?

® First result, uniqueness in the general case: for any ,ugp and

12 on (ET €T, if

,UJ%,)S{/U = Ngy)s(fm

for all finite S € T and A € £°, then ,ugp = ,ug?)

® That is, the finite-dimensional marginal distributions uniquely
determine the process distribution, if it exists
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Existence: Kolmogorov's Extension Theorem

® A marginal distribution px|g, for any finite S C T, is
consistent if i x|g implies pxy forall V. C S

® of no concern for product measure, i.e., memoryless
marginals. .. (why?)
® Extension Theorem: For a given process X from (€2, A) to
(ET,ET), assume that a consistent distribution px|s is
specified for any finite subset S C T. If (E, &) is standard,
then a unique process distribution px exists on (ET,£T) that
agrees with px g for all finite S CT°

e Additional structure is necessary; the result does not hold for
all possible (FE,€)
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Discrete-time Real-valued Random Process

® Given (2, A, P), let E =R, £ =B, and interpret T as “time"

e |f T"=7 or N, then X is a random sequence or a
discrete-time random process, that is { X, };c7 is a countable
collection of random variables

® (E,&) is standard

= Any set of distributions for all random vectors that can be
formed by restricting to S = {t1,%2,...,t,} can be extended
to a unique process distribution
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Continuous-time Real-valued Random Process

e Given (2, A, P), let E =R, £ =B, and interpret T as “time"

e If T =R orR", then X is a random waveform or a
continuous-time random process, that is {X;}:c7 is an
uncountable collection of random variables

® (E,&) is standard, so consistent finite-dimensional marginals
can be extended to a unique process distribution on (ET,&T)
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Finite-energy Waveforms

® |ntroduce the Ly norm

Il = ( / |g<t>|2dt) "

and let Lo = { Lebesgue measurable f such that ||f|* < oo}
® Equipped with the inner product

%QZ/mﬁ

L5 is then a separable Hilbert space (with || f|| = ((f, f)'/?)

® With topology T determined by the metric p(f,g) = ||f — 9|l
the space A = (L2, 7T) is Polish and (L2,0(.A)) is standard

® The resulting space (L2,0(.A)) is a model for random
finite-energy waveforms
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Continuous Waveforms

® For a closed interval T' C R, let
C(T) = { all continuous functions f: T — R}

® For g, f € C(T), define the metric

p(f9) = sup{|f(t) —g(t)| : t €T}

e With topology 7 determined by p, A= (C(T),T) is Polish
and (C(T),0(A)) is standard

® The resulting space (C(T'),c(.A)) is a model for continuous
waveforms on T

Mikael Skoglund, Probability and random processes 13/18

Gaussian Processes

® let T =R, RT, ZorN

® For any finite S C T, of size n, let E° = R™ and £° the
corresponding Borel sets

® Define 11x|g on (E®,£%) to be the finite Borel measure with

density
fn(z") = L exp (—1(1’" — m”)V_l(:E" — m”)’)
' Vv 2m) (V] 2 "

with respect to n-dimensional Lebesgue measure, where V,, is
a positive-definite n x n matrix and m"™ € R"”
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Discrete time

® For T'=7 or N, the distributions specified by (m", V,,) for all
finite n uniquely determine a Gaussian sequence {X;} with
process distribution px

® ux is uniquely specified by knowing
m(t) = E[Xi, V(K1) = E[(Xy —m(k))(X; —m(l))]

forall t,k,l €T
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Continuous time

® For T'=R or RT, the distributions specified by (m',V},) for
all finite n uniquely determine a Gaussian waveform {X;}
with process distribution ux, specified by

m(t) = E[Xi], V(s,u) = E[(Xs —m(s))(Xu —m(u))]

forall t,s,ueT

® Here we need

/ Vit £)dt < 0o

to get finite-energy waveforms (with probability one)
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Brownian Motion

e Given (2, A, P) and C(T') = the class of continuous
waveforms on T' = [0, 7| for 7 > 0

® There is a probability space (C(T), &, ux) such that
® For X; € C(T), Xo(w) =0 for all w € Q
® Forevery 0 <s<t<7, Y(ts) =X — X ~N(0,t —s).
Also Y(t,s) and X, are independent for all 0 < u < s
° £T = o(A) on slide 13
® Lx IS unique

® 1 x = the Wiener measure (usually for T'= [0, 00))

® Consequently, X; is a Gaussian waveform with m(¢) = 0 and
V(s,u) = min(s,u), and X;(w) is continuous on [0, 7] for all

w e N
® The realizations X; are non-differentiable Lebesgue a.e., for
all w € €,

® the derivative “%Xt” is Gaussian “white noise”
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* Starting from a Gaussian process on (R°,3°), S ¢ T = [0, 7]
and finite, with m(¢) = 0 and V(s,u) = min(s, u) for ¢,s,u
in S, and then using the extension theorem cannot work,
because C(T) is not in

BT = o({ measurable rectangles with sides in 3 })

e Given (ET,&T 1) and G Cc ET (but possibly G ¢ £7)

® Forany E C ET let p*(E) =inf{u(E"): EC E', E' € ET}

o If u*(G) =1 then (G,G,u*) withG={GNE:Ec&T}isa
process with all sample paths in G

® For G =C(T), ET =RT, &7 = BT and (RT, BT, )
Gaussian with m(t) = 0 and V (¢,s) = min(t, s), we have
1*(G) =1 and the resulting space (G, G, 1*) is Brownian
motion, with ©* = the Wiener measure
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