Infotheory for Statistics and Learning

Lecture 2

Random transformations [PW:2.4]

Distortion—rate and rate—distortion [PW:24,26],[CT10]
Bounds [PW:26],[CT:10]

lterative computation [PW:5.6],[CT:10.8]
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Random Transformation

Consider two measurable spaces (X, .A) and (), F), then a
stochastic kernel from X to ) is a mapping K (-|-) such that
1) For any fixed z € X', K(:|z) is a probability measure on (), F)

2) For any fixed F € F, K(F|-) : X — R is measurable

® For random variables X : Q@ - X =Rand Y : Q — )Y =R,
K defines a conditional distribution Py x—,

® Also known as: random transformation, transition probability
kernel, Markov kernel, channel
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Given Px on (R, B) and a kernel Py x—,(-) = K(:|x) we get

Pev(8) = [ { [ 1 e E}deX:x} aPx

on (R?, B?), for E € B2, and

PY<B):/{/BdPY|X:m}dPX

on (R,B) for B e B

Given Px and Py x—, we say Py x—, induces Py and Pxy,
notation:

P
X 5V or Py =PyxoPx

We also use Pyy = Py x x Px
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Distortion vs Information Rate
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Consider describing a RV X with another variable Y through the

transformation p
x 'y

with resulting average distortion E[d(X,Y)], for a given
d : R? — [0, 0], and subject to an information constraint

I(X;Y)<R
To get the optimal kernel, solve

D(R) = inf Eld(X.Y
(R) %W%WW%[(,H

® The distortion—rate function of X (Px)

® D(R) is convex and non-increasing

® D(R) is continuous on (R, ), Ry = inf{R: D(R) < oo}
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D(R) has an inverse R(D) = D71(R), which solves

R(D) = inf I(X,Y)
Py |x:E[d(X;Y)]<D
® The rate—distortion function of X (Px)

® R(D) is convex and non-increasing
® R(D) is continuous on (Dy,00), Dy = inf{D : R(D) < oo}
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Generalizes to X" = (X1,..., X,) and Y = (Y7,...,Y),):

Do(R) = f E[d(X:,Y;)]
(B) = o ;
R,(D) = inf I(X™yn")

Pyn|xn:3_; Eld(XY5)]<D

And when the limits exist,

Do(R) = lim ~Dp(R), Reo(D) = lim ~Ru(D)

n—oo N n—oo N
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Gaussian X

For {X;} zero-mean stationary Gaussian with ¢(k) = E[X; X, ]
and '
Dw) = 3 plh)e
k

and with d(z,y) = (z — y)?, we get (D, Roo(D)) = (dg, r9) where

1 T
dg = — min{f, ®(w) }dw
2 J_,
1 [T o
ro= - - max {0, log (Hw) } dw

for 0 < 6 < esssup ¢(w)
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For iid we get ®(w) = E[X?] = 02, esssup ®(w) = 02 and

[ .
dp = o B min{6, o }dw =
1 ™ 2 1 2
T = = _Wmax {O,log %} dw = Elog%
That is,
1 o? 9

For B[X;X;_1] = 0?p*, 0 < p < 1, we instead get
1—p

*(L=p) o

1
OOD:_1 )
Roo(D) = 5108 —F =1+,

and otherwise the parametric expression
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Testing for Optimality

Is P;|X optimal?
Let PP = Py ¢
If E[d(X,Y™)] < D and for any other Pxy with F[d(X,Y)] < D

o Px and find P ’Y via Px = X|Y o Py

dPx

Ep,, [log ] > I[(X;Y7")

then R(D) =I1(X;Y™)
Conversely, suppose I(X;Y™) = R(D), then if for any Pxy- and

for any Pxy that satisfies E[d(X,Y)] < D, we have Py < Py
and I(X;Y) < oo, then the inequality above holds
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Maximum h(X)

X abs. continuous with pdf f(z) and [ 2%f(x) o2
Let 1
_ —a?/(20?)
x) = e
g9(z) e
Then

0§/f(a:)ln%dm— ;1n27m +212/ f(z)dx — h(X)
Thus

h(X) < =1n27mec? [nats]

l\DIH

with = iff f(x) = g(x)
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Entropy Bound on MMSE

For abs. continuous (X, Y) with pdf f(x,y), let

Aly) = BI(X-2(Y))*IY =y], i(y) = EX]Y =y], A= E[A(Y)]

and set
T|Y) = ! exp | — L z— z(y))?
o(oly) = s exp (- 0
We have
£(ly)
03/7“W”“mﬂw¢”
:/f@@hquMmi/ﬂﬂwmmﬂwm
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And thus,
MXWEWDS%hﬂme+5£G)/@—£@D%QWMx

1
=35 In 2weA(y)
Consequently,
h(X|Y) <

Elln 2reA(Y)] < = In2re E[A(Y)] = % In2meA

N | —
N —

with = iff f(z]y) = g(z|y)
That is

Bl(X — #(Y))] > - e2hXIY)
2me

(with h(X|Y) in nats) with = iff (X,Y) are jointly Gaussian
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For n > 1 dimensions:

For Py on (R, B"), X = (X1,...,Xy), with E[XTX] =R

1
h(X) < = log(2me)"|R| = log27re—|—§TrlogR

N | —

(|R| = determinant, Tr = trace) with = only for X Gaussian
And for Pxy on (R" x R™, B" x B™)

E[(X — (V)X —2(Y))]| > @g%mm

with = iff (X,Y") are jointly Gaussian and n = m
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Bounds on R(D)
For X abs. continuous with pdf f(z) and [ 2?f(z)dx = o

Define Py |y by Y = o?X + oW where W ~ N(0, D) and
independent of X, and
o2 —D

D§02
o2

o =

Y

Then E[Y?] =02 — D, E[(X = Y)% = D and

1 1
[(X;Y) = h(Y) = h(Y]X) < ; log ome(o? — D) — 5 log 2mea D
B 11 o?
—2%D
Thus with d(z,y) = (z — y)?,
1 o2
D) < =log —
R(D) < 5 log —

for any X with E[X?] = 02 and = only for Gaussian
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Consider Py|x, with pdf f(y|x), such that E[(X —Y)?*] < D

For Py = Py|x o Px we have Px = Px|y o Py where Pxy has
pdf f(x|y) and Py has pdf f(y). Set

1 2 2 1 2
I A L I _ (z—y)?/(2D)
xTr) = € , a = €
g(x) — (xly) P

Then

10X67) + Do)
= [ stvmgigyiey st [ e

[ st Vo exp(—( —y/@D) L) o

VD oxp(—22/(202) > 21n5 [nats]
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Thus for X abs. continuous with pdf f(x) and fx2f o2

1 2 1 2

Slog = — D(f(2)llg(x)) < R(D) < 5 log —

with = only for f(x) = g(z)
The lower bound is tight for small D, i.e.

lim R(D) =1

D=0 Llog % — D(f(x)|lg(x))
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lterative Computation of R(D)

For (R, B, Px) we get Py = Py|x o Px for a given Py x and we
can find Py |x for a given Py

Note that the R(D)-problem is convex, thus we can minimize

dPy|x—y
log —dPY|X:a: dPx + )\E[d(X, Y)]
dPy

over Py x, A > 0, but complicated since Py depends on Py |x

Consider instead minimizing

/ /bgﬁzﬂﬂj dPx + \E[d(X.Y
g iQy V|X=x x + AE[d(X,Y)]

for fixed )y and then over Qy for fixed Py x
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Abs. continuous: Px — f(z), Py|x — f(y|z) and Qy — q(y)

For fixed q(y) the optimal f(y|x) is
q(y)e MY
Jaly)eA@v)dy

and for fixed f(y|x) the optimal ¢(y) is

/f f(y|z)dz

Pick an initial ¢(y) and solve for f(y|z)

flylz) =

Solve for a new ¢(y); Solve for a new f(y|x); Iterate

® Has a unique stationary point generating the optimal f(y|x)

® Obvious modification to discrete variables
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