
Infotheory for Statistics and Learning
Lecture 2

• Random transformations [PW:2.4]

• Distortion–rate and rate–distortion [PW:24,26],[CT10]

• Bounds [PW:26],[CT:10]

• Iterative computation [PW:5.6],[CT:10.8]
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Random Transformation

Consider two measurable spaces (X ,A) and (Y,F), then a
stochastic kernel from X to Y is a mapping K(·|·) such that

1) For any fixed x ∈ X , K(·|x) is a probability measure on (Y,F)

2) For any fixed F ∈ F , K(F |·) : X → R is measurable

• For random variables X : Ω→ X = R and Y : Ω→ Y = R,
K defines a conditional distribution PY |X=x

• Also known as: random transformation, transition probability
kernel, Markov kernel, channel
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Given PX on (R,B) and a kernel PY |X=x(·) = K(·|x) we get

PXY (E) =

∫ {∫
1{(x, y) ∈ E}dPY |X=x

}
dPX

on (R2,B2), for E ∈ B2, and

PY (B) =

∫ {∫

B
dPY |X=x

}
dPX

on (R,B) for B ∈ B
Given PX and PY |X=x we say PY |X=x induces PY and PXY ,
notation:

X
PY |X→ Y or PY = PY |X ◦ PX

We also use PXY = PY |X × PX
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Distortion vs Information Rate

Consider describing a RV X with another variable Y through the
transformation

X
PY |X→ Y

with resulting average distortion E[d(X,Y )], for a given
d : R2 → [0,∞], and subject to an information constraint

I(X;Y ) ≤ R

To get the optimal kernel, solve

D(R) = inf
PY |X :I(X;Y )≤R

E[d(X,Y )]

• The distortion–rate function of X (PX)

• D(R) is convex and non-increasing

• D(R) is continuous on (R0,∞), R0 = inf{R : D(R) <∞}
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D(R) has an inverse R(D) = D−1(R), which solves

R(D) = inf
PY |X :E[d(X;Y )]≤D

I(X,Y )

• The rate–distortion function of X (PX)

• R(D) is convex and non-increasing

• R(D) is continuous on (D0,∞), D0 = inf{D : R(D) <∞}
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Generalizes to Xn = (X1, . . . , Xn) and Y n = (Y1, . . . , Yn):

Dn(R) = inf
PY n|Xn :I(Xn;Y n)≤R

n∑

i=1

E[d(Xi, Yi)]

Rn(D) = inf
PY n|Xn :

∑
i E[d(Xi;Yi)]≤D

I(Xn;Y n)

And when the limits exist,

D∞(R) = lim
n→∞

1

n
Dn(R), R∞(D) = lim

n→∞
1

n
Rn(D)
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Gaussian X

For {Xi} zero-mean stationary Gaussian with φ(k) = E[XiXi−k]
and

Φ(ω) =
∑

k

φ(k)e−jkω

and with d(x, y) = (x− y)2, we get (D,R∞(D)) = (dθ, rθ) where

dθ =
1

2π

∫ π

−π
min{θ,Φ(ω)}dω

rθ =
1

4π

∫ π

−π
max

{
0, log

Φ(ω)

θ

}
dω

for 0 ≤ θ ≤ ess sup Φ(ω)
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For iid we get Φ(ω) = E[X2
i ] = σ2, ess sup Φ(ω) = σ2 and

dθ =
1

2π

∫ π

−π
min{θ, σ2}dω = θ

rθ =
1

4π

∫ π

−π
max

{
0, log

σ2

θ

}
dω =

1

2
log

σ2

θ

That is,

R∞(D) = R(D) =
1

2
log

σ2

D
, 0 ≤ D ≤ σ2

For E[XiXi−k] = σ2ρk, 0 < ρ < 1, we instead get

R∞(D) =
1

2
log

σ2(1− ρ2)
D

, D ≤ 1− ρ
1 + ρ

and otherwise the parametric expression
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Testing for Optimality

Is P ∗Y |X optimal?

Let P ∗Y = P ∗Y |X ◦ PX and find P ∗X|Y via PX = P ∗X|Y ◦ P ∗Y
If E[d(X,Y ∗)] ≤ D and for any other PXY with E[d(X,Y )] ≤ D

EPXY

[
log

dPX|Y ∗

dPX

]
≥ I(X;Y ∗)

then R(D) = I(X;Y ∗)

Conversely, suppose I(X;Y ∗) = R(D), then if for any PX|Y ∗ and
for any PXY that satisfies E[d(X,Y )] ≤ D, we have PY � P ∗Y
and I(X;Y ) <∞, then the inequality above holds
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Maximum h(X)

X abs. continuous with pdf f(x) and
∫
x2f(x)dx = σ2

Let

g(x) =
1√

2πσ2
e−x

2/(2σ2)

Then

0 ≤
∫
f(x) ln

f(x)

g(x)
dx =

1

2
ln 2πσ2 +

1

2σ2

∫
x2f(x)dx− h(X)

Thus

h(X) ≤ 1

2
ln 2πeσ2 [nats]

with = iff f(x) = g(x)
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Entropy Bound on MMSE

For abs. continuous (X,Y ) with pdf f(x, y), let

∆(y) = E[(X−x̂(Y ))2|Y = y], x̂(y) = E[X|Y = y], ∆ = E[∆(Y )]

and set

g(x|y) =
1√

2π∆(y)
exp

(
− 1

2∆(y)
(x− x̂(y))2

)

We have

0 ≤
∫
f(x|y) ln

f(x|y)

g(x|y)
dx

=

∫
f(x|y) ln f(x|y)dx−

∫
f(x|y) ln g(x|y)dx
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And thus,

h(X|Y = y) ≤ 1

2
ln 2π∆(y) +

1

2∆(y)

∫
(x− x̂(y))2f(x|y)dx

=
1

2
ln 2πe∆(y)

Consequently,

h(X|Y ) ≤ 1

2
E[ln 2πe∆(Y )] ≤ 1

2
ln 2πeE[∆(Y )] =

1

2
ln 2πe∆

with = iff f(x|y) = g(x|y)

That is

E[(X − x̂(Y ))2] ≥ 1

2πe
e2h(X|Y )

(with h(X|Y ) in nats) with = iff (X,Y ) are jointly Gaussian
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For n > 1 dimensions:

For PX on (Rn,Bn), X = (X1, . . . , Xn), with E[XTX] = R

h(X) ≤ 1

2
log(2πe)n|R| = n

2
log 2πe+

1

2
Tr logR

(|R| = determinant, Tr = trace) with = only for X Gaussian

And for PXY on (Rn × Rm,Bn × Bm)

|E[(X − x̂(Y ))T (X − x̂(Y ))]| ≥ 1

(2πe)n
22h(X|Y )

with = iff (X,Y ) are jointly Gaussian and n = m
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Bounds on R(D)
For X abs. continuous with pdf f(x) and

∫
x2f(x)dx = σ2

Define PY |X by Y = α2X + αW where W ∼ N (0, D) and
independent of X, and

α =

√
σ2 −D
σ2

, D ≤ σ2

Then E[Y 2] = σ2 −D, E[(X − Y )2] = D and

I(X;Y ) = h(Y )− h(Y |X) ≤ 1

2
log 2πe(σ2 −D)− 1

2
log 2πeα2D

=
1

2
log

σ2

D

Thus with d(x, y) = (x− y)2,

R(D) ≤ 1

2
log

σ2

D

for any X with E[X2] = σ2 and = only for Gaussian
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Consider PY |X , with pdf f(y|x), such that E[(X − Y )2] ≤ D
For PY = PY |X ◦ PX we have PX = PX|Y ◦ PY where PX|Y has
pdf f(x|y) and PY has pdf f(y). Set

g(x) =
1√

2πσ2
e−x

2/(2σ2), h(x|y) =
1√

2πD
e−(x−y)

2/(2D)

Then

I(X;Y ) +D(f(x)‖g(x))

=

∫ {∫
f(x|y) ln

f(x|y)

h(x|y)
dx

}
f(y)dy +

∫∫
f(x, y) ln

h(x|y)

g(x)
dxdy

≥
∫∫

f(x, y) ln

√
σ2 exp(−(x− y)2/(2D))√
D exp(−x2/(2σ2))

dxdy ≥ 1

2
ln
σ2

D
[nats]
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Thus for X abs. continuous with pdf f(x) and
∫
x2f(x)dx = σ2

1

2
log

σ2

D
−D(f(x)‖g(x)) ≤ R(D) ≤ 1

2
log

σ2

D

with = only for f(x) = g(x)

The lower bound is tight for small D, i.e.

lim
D→0

R(D)
1
2 log σ2

D −D(f(x)‖g(x))
= 1
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Iterative Computation of R(D)

For (R,B, PX) we get PY = PY |X ◦ PX for a given PY |X and we
can find PY |X for a given PY

Note that the R(D)-problem is convex, thus we can minimize

∫ {∫
log

dPY |X=x

dPY
dPY |X=x

}
dPX + λE[d(X,Y )]

over PY |X , λ > 0, but complicated since PY depends on PY |X

Consider instead minimizing

∫ {∫
log

dPY |X=x

dQY
dPY |X=x

}
dPX + λE[d(X,Y )]

for fixed QY and then over QY for fixed PY |X
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Abs. continuous: PX → f(x), PY |X → f(y|x) and QY → q(y)

For fixed q(y) the optimal f(y|x) is

f(y|x) =
q(y)e−λd(x,y)∫
q(y)e−λd(x,y)dy

and for fixed f(y|x) the optimal q(y) is

q(y) =

∫
f(x)f(y|x)dx

Pick an initial q(y) and solve for f(y|x)

Solve for a new q(y); Solve for a new f(y|x); Iterate

• Has a unique stationary point generating the optimal f(y|x)

• Obvious modification to discrete variables
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