Infotheory for Statistics and Learning Lecture 9

Minimax bounds¹

- From estimation to testing
- Packing and metric entropy
- Fano's method
- Yang-Barron method

¹based on notes by J. Duchi and Y. Wu and book by M. Wainwright Tobias Oechtering

Generalized Framework of Statistical Decision Problem

- \mathcal{P} denotes class of distributions defined on sample space \mathcal{X} .
- $\theta: \mathcal{P} \to \Theta$ denotes function that maps distribution P on $\theta(P)$
 - A generalized framework, since θ(P) might not uniquely determine P (i.e. θ(P₁) = θ(P₂) iff P₁ = P₂). Previously, θ parametrized the family of distributions P = {P_θ : θ ∈ Θ}.
- IID data: $x^n = (x_1, \ldots, x_n)$ are n iid observations $X_i \sim P$
- Estimator: measurable function $\hat{\theta} : \mathcal{X}^n \to \Theta$

Minimax risk: Let $\rho: \Theta \times \Theta \to \mathbb{R}_+$ be a metric and $\Phi: \mathbb{R}_+ \to \mathbb{R}_+$ a non-decreasing function (e.g. $\rho(\theta, \theta')) = |\theta - \theta'|$ and $\Phi(t) = t^2$). The minimax risk² $\mathfrak{M}_n(\theta(\mathcal{P}), \Phi \circ \rho)$ is defined as

$$\mathfrak{M}_{n}(\theta(\mathcal{P}), \Phi \circ \rho) = \inf_{\hat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E}_{P} \left[\Phi(\rho(\hat{\theta}(X^{n}), \theta(P))) \right]$$

²Notation $\theta(\mathcal{P})$ means we consider $\theta(P)$ for $P \in \mathcal{P}$; $\mathfrak{M}_n(\theta(\mathcal{P}), \Phi \circ \rho)$ corresponds to R^* previously and will be abbreviated with \mathfrak{M}_n . Tobias Occhtering

From estimation to testing

Key idea: *Reduce* estimation problem to testing problem which allows to lower bound estimation risk by testing error probability!

Construction of hypothesis testing problem:

- 1 Let $\{P_v\}_{v \in \mathcal{V}}$ denote finite set of distributions $P_v \in \mathcal{P}$ for all $v \in \mathcal{V}$ with finite index set \mathcal{V} .
 - Induced $\{\theta(P_v)\}_{v\in\mathcal{V}}$ parameter set is called a 2δ -packing if

$$\rho(\theta(P_v), \theta(P_{v'})) > 2\delta \qquad \forall v \neq v'$$

2 Assume RV V uniformly distributed over V that chooses P_v if V = v; samples xⁿ = (x₁,...,x_n) are then iid drawn X_i ~ P_v
 3 Let Ψ : Xⁿ → V denote an arbitrary but fixed test function to

guess v given x^n with error probability $\mathbb{P}[\Psi(X^n) \neq V]$.

Theorem

$$\mathfrak{M}_{n}(\theta(\mathcal{P}), \Phi \circ \rho) \ge \Phi(\delta) \inf_{\Psi} \mathbb{P}[\Psi(X^{n}) \neq V]$$
(1)

Proof

• For arbitrary but fixed P, θ and $\hat{\theta}$ we have

$$\mathbb{E}\left[\Phi(\rho(\hat{\theta},\theta))\right] \geq \mathbb{E}\left[\Phi(\delta)\,\mathbbm{1}\{\rho(\hat{\theta},\theta) \geq \delta\}\right] = \Phi(\delta)\,\mathbb{P}\left[\rho(\hat{\theta},\theta) \geq \delta\right]$$

• For testing fct $\Psi(\hat{\theta}) = \arg\min_{v\in\mathcal{V}}\{\rho(\hat{\theta},\theta_v)\}$ with $\theta_v=\theta(P_v)$

- if $\rho(\hat{\theta}, \theta_v) < \delta$, then $\Psi(\hat{\theta}) = v$ since Δ -ineq & 2δ -packing implies $\rho(\hat{\theta}, \theta_{v'}) \ge \rho(\theta_v, \theta_{v'}) \rho(\hat{\theta}, \theta_v) > 2\delta \delta = \delta, \forall v' \neq v$
- equivalently $\Psi(\hat{\theta}) \neq v$ implies $\rho(\hat{\theta}, \theta_v) \geq \rho$ so that we have $\mathbb{P}[\rho(\hat{\theta}, \theta_v) \geq \delta | V = v] \geq \mathbb{P}[\Psi(\hat{\theta}) \neq v | V = v]$

$$\begin{split} \sup_{P \in \mathcal{P}} \mathbb{E} \left[\Phi(\rho(\hat{\theta}, \theta(P))) \right] &\geq \frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}} \Phi(\delta) \mathbb{P} \left[\rho(\hat{\theta}, \theta_v) \geq \delta \middle| V = v \right] \\ &\geq \Phi(\delta) \frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}} \mathbb{P} \left[\Psi(\hat{\theta}) \neq v \middle| V = v \right] \geq \Phi(\delta) \inf_{\Psi} \mathbb{P} \left[\Psi(\hat{\theta}) \neq V \right] \end{split}$$

• Result follows taking the infimum over all estimators $\hat{ heta}$.

Remaining challenge and outlook

$$\mathfrak{M}_n(\theta(\mathcal{P}), \Phi \circ \rho) \ge \Phi(\delta) \inf_{\Psi} \mathbb{P}[\Psi(X^n) \neq V]$$

Remaining challenges for minimax lower bound:

- **1** Find a good 2δ -packing
 - larger δ results in larger factor $\Phi(\delta)$
- 2 Find a good lower bound on the error probability
 - packing with uniform error probability seems desirable

Outlook

- Packing: metric entropy and packing numbers
- Fano's method: $|\mathcal{V}| \geq 2$ and multiple hypothesis test
- Le Cam's method: $|\mathcal{V}| = 2$ and binary hypothesis test (lect 10)
- Assouad's method: $|\mathcal{V}| = 2^d$ and multiple binary hypothesis tests (lect 10)

Covering - Metric entropy

Q: How many balls of radius δ are needed to cover the space Θ ? Definition

The set $\{\theta_1, \ldots, \theta_N\}$ is a δ -cover of the non-empty set Θ with respect to metric ρ if for any point $\theta \in \Theta$ there exists a $v \in \{1, \ldots, N\}$ such that $\rho(\theta, \theta_v) \leq \delta$. The δ -covering number is

$$N(\delta, \Theta, \rho) = \inf\{N \in \mathbb{N} : \exists \ \delta \text{-cover}\{\theta_1, \dots, \theta_N\} \text{ of } \Theta\}.$$

Then the metric entropy of Θ is defined as $\log N(\delta, \theta, \rho)$.

Example: Unit cubes in \mathbb{R} : $N(\delta, [-1, 1], |\cdot|) \leq \frac{1}{\delta} + 1$

- Let Θ be interval $[-1,1] \subset \mathbb{R}$ and metric $\rho(\theta,\theta') = |\theta \theta'|$.
- Divide interval in $L = \lfloor \frac{1}{\delta} \rfloor + 1$ sub-intervals with center-points $\theta_i = -1 + 2(i-1)\delta$ for all $i = 1, \dots, L$ gives result.
- HW: $N(\delta, [-1, 1]^d, \|\cdot\|_{\infty}) \leq (\frac{1}{\delta} + 1)^d$ for unit cubes in \mathbb{R}^d .

Packing

Q: How many balls of radius δ can be disjointly placed in space Θ ?

Definition

The set $\{\theta_1, \ldots, \theta_M\}$ is a δ -packing of the non-empty set Θ with respect to metric ρ if for all distinct $v, v' \in \{1, 2, \ldots, M\}$ such that $\rho(\theta_v, \theta_{v'}) > \delta$. The δ -packing number is

$$M(\delta, \Theta, \rho) = \sup\{M \in \mathbb{N} : \exists \ \delta \text{-packing}\{\theta_1, \dots, \theta_M\} \text{ of } \Theta\}.$$

Lemma

$$M(2\delta,\Theta,\rho) \leq N(\delta,\Theta,\rho) \leq M(\delta,\Theta,\rho)$$

Proof: HW!

• *Example:* Unit cubes in \mathbb{R} : $M(2\delta, [-1, 1], |\cdot|) \ge \lfloor \frac{1}{\delta} \rfloor$ since $|\theta_i - \theta_j| \ge 2\delta > \delta$ for all $i \ne j$ (θ_i defined as before).

Example: Covering of a parametric function family

• Consider function class $\mathcal{P} = \{f_{\theta} : [0,1] \to \mathbb{R} : \theta \in [0,1]\}$ with $f_{\theta}(x) = 1 - e^{-\theta x}$ and norm $||f - g||_{\infty} = \sup_{x \in [0,1]} |f(x) - g(x)|$.

$$1 + \left\lfloor \frac{1 - 1/e}{2\delta} \right\rfloor \le N(\delta, \mathcal{P}, \|\cdot\|_{\infty}) \le \frac{1}{2\delta} + 2$$

- Upper bound: Set T = [¹/_{2δ}] and θ_k = 2δk, for k = 0, 1, ..., T and θ_{T+1} = 1. Then {f_{θ0},..., f_{θT+1}} forms a δ-cover of P.
 For any f_θ ∈ P there exists θ_k such that |θ_k θ| ≤ δ ⇒ ||f_{θk} f_θ||∞ = max_{x∈[0,1]} |e^{-θ_kx} e^{-θx}| ≤ |θ_k θ| ≤ δ ⇒ N(δ, P, || · ||∞) ≤ T + 2 ≤ ¹/_{2δ} + 2
 Lower bound: Construct a packing as follows; set θ₀ = 0 and θ_k = -log(1 δk) for k as long as -log(1 δk) ≤ 1
 i.e., k ≤ T for ¹/_e = 1 δT. Note that T ≥ [^{1-1/e}/_δ].
 We have ||f_{θs} f_{θt}||∞ ≥ |f_{θs}(1) f_{θt}(1)| ≥ δ ∀s ≠ t
 - $\Rightarrow \ M(\delta, \mathcal{P}, \|\cdot\|_{\infty}) \ge \lfloor \frac{1-1/e}{\delta} \rfloor + 1 \text{ so that by the previous Lemma} \\ N(\delta, \mathcal{P}, \|\cdot\|_{\infty}) \ge M(2\delta, \mathcal{P}, \|\cdot\|_{\infty}) \ge \lfloor \frac{1-1/e}{2\delta} \rfloor + 1.$

Volume ratios and metric entropy

Obviously, the volume of the set Θ governs the metric entropy. This can be made more precise if the set Θ is a unit ℓ_q -ball:

$$\mathbb{B}_q^d = \{ x \in \mathbb{R}^d : \|x\|_q \le 1 \}$$

Lemma

$$\left(\frac{1}{\delta}\right)^d \, \leq \, N(\delta, \mathbb{B}^d_q, \|\cdot\|_q) \, \leq \, \left(1 + \frac{2}{\delta}\right)^d$$

 Thus, the metric entropy log N(δ, B^d_q, || · ||_q) scales linearly with the dimension d and logarithmically with 1/δ.

•
$$\left(\frac{1}{\delta}\right)^d \frac{\operatorname{vol}(\mathbb{B}_q^d)}{\operatorname{vol}(\mathbb{B}_p^d)} \leq N(\delta, \mathbb{B}_q^d, \|\cdot\|_p\} \leq \frac{\operatorname{vol}(\frac{2}{\delta}\mathbb{B}_q^d + \mathbb{B}_p^d)}{\operatorname{vol}(\mathbb{B}_p^d)}$$
 actually holds.

Proof of Lemma

• Lower bound: Let $\{v_1 \dots v_N\}$ be a δ -cover of \mathbb{B}^d_q , then

$$\operatorname{vol}(\mathbb{B}_q^d) \le \sum_{i=1}^N \operatorname{vol}(\delta \mathbb{B}_q^d + v_i) = N \operatorname{vol}(\delta \mathbb{B}_q^d) = N \operatorname{vol}(\mathbb{B}_q^d) \delta^d$$

• Upper bound: Let \mathcal{V} be $\delta/2$ -packing with maximal cardinality. Then $N(\delta, \mathbb{B}_q^d, \|\cdot\|_q^d) \ge M(\delta, \mathbb{B}_q^d, \|\cdot\|_q^d) = |\mathcal{V}|$. The balls $\{\frac{\delta}{2}\mathbb{B}_q^d + v_i\}_{i=1}^M$ are all disjoint and are contained in $\mathbb{B}_q^d + \frac{\delta}{2}\mathbb{B}_q^d$.

$$\sum_{i=1}^{M} \operatorname{vol}(\frac{\delta}{2} \mathbb{B}_{q}^{d} + v_{i}) = M\left(\frac{\delta}{2}\right)^{d} \operatorname{vol}(\mathbb{B}_{q}^{d})$$
$$\leq \operatorname{vol}\left(\mathbb{B}_{q}^{d} + \frac{\delta}{2} \mathbb{B}_{q}^{d}\right) = \left(1 + \frac{\delta}{2}\right)^{d} \operatorname{vol}(\mathbb{B}_{q}^{d})$$

• Divide both sides by $vol(\mathbb{B}_q^d)$ give the bounds.

Tobias Oechtering

Fano's method - Testing on packings with $|\mathcal{V}| > 2$

• Fano's inequality: For any Markov chain $V - X - \hat{V}$ we have

$$h_2(\mathbb{P}(V \neq \hat{V})) + \mathbb{P}(V \neq \hat{V})\log(|\mathcal{V}| - 1) \ge H(V|\hat{V})$$

• For V uniformly distributed Fano's ineq implies

$$\mathbb{P}(V \neq \hat{V}) \ge 1 - \frac{I(V; X) + \log 2}{\log(|\mathcal{V}|)}$$
(2)

since $h_2(\mathbb{P}(V \neq \hat{V})) \leq \log 2$, $\log(|\mathcal{V}| - 1) \leq \log(|\mathcal{V}|) = H(V)$, $H(V|\hat{V}) = H(V) - I(V;\hat{V})$ and $I(V;\hat{V}) \leq I(V;X)$ due to the data processing inequality.

Fano's method: Let {θ(P_v)}_{v∈V} be a 2δ-packing. Assume V is uniformly distributed over V and data X ~ P_v for V = v.

$$\mathfrak{M}(\theta(\mathcal{P}), \Phi \circ \rho) \ge \Phi(\delta) \inf_{\Psi} \mathbb{P}(\Psi(X) \neq V) \stackrel{(2)}{\ge} \Phi(\delta) \left[1 - \frac{I(V; X) + \log 2}{\log(|\mathcal{V}|)} \right]$$

Discussion on Fano's method

$$\mathfrak{M}(\theta(\mathcal{P}), \Phi \circ \rho) \ge \Phi(\delta) \left[1 - \frac{I(V; X) + \log 2}{\log(|\mathcal{V}|)} \right]$$

- With decreasing δ ,
 - $\Phi(\delta)$ decreases (lower bound becomes worse), and
 - the minimum between different P_v becomes smaller which makes the hypothesis testing more challenging (error prob increases). H(V|X) and $|\mathcal{V}|$ will increase so that $I(V;X)/\log(|\mathcal{V}|)$ decreases (lower bound becomes better).
- Mixture representation of mutual information I(V; X)
 - mixture distribution: $\bar{P} = \sum_{v} \pi(v) P_{v}$ (= P_{X} marginal)

$$I(V;X) = D(P_{XV}||P_XP_V) = \sum_v \pi(v)D(\underbrace{P_{X|V=v}}_{=P_v}||\underbrace{P_X}_{=\bar{P}})$$

Local Fano method (aka generalized³ Fano method)

- V is uniformly distributed, i.e. $\pi(v) = \frac{1}{|\mathcal{V}|}$
- Since $-\log(\cdot)$ is convex, Jensen's inequality implies

$$I(V;X) = \frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}} D(P_v ||\bar{P}) \le \frac{1}{|\mathcal{V}|^2} \sum_{v,v' \in \mathcal{V}} D(P_v ||P_{v'})$$

• Local packing is a 2δ -packing $\{P_v\}_{v\in\mathcal{V}}$, i.e. we have $\rho(\theta(P_v), \theta(P_{v'})) \geq 2\delta$ for all $v \neq v'$, that additionally satisfies

$$D(P_v||P_{v'}) \leq \kappa^2 \delta^2 \quad \forall v, v' \in \mathcal{V} \quad \text{for some } \kappa > 0.$$

• Local Fano method. Find a local packing which additionally satisfies $\log |\mathcal{V}| \ge 2(\kappa^2 \delta^2 + \log 2)$, then

$$\mathfrak{M}(\theta(\mathcal{P}), \Phi \circ \rho) \geq \frac{1}{2} \Phi(\delta)$$

• Remaining difficulty is to construct such a packing.

³Commonly used name is misleading since approach is based on a weak bound on the mutual information and not a generalization. Tobias Oechtering 13/18

Yang-Barron method

- What to do if we cannot construct a concrete local packing?
 - Idea: Upper bound I(V; X) that holds for any packing!

Lemma (Yang-Barron method)

Let $N_{KL}(\epsilon, \mathcal{P})$ denote the ϵ -covering of \mathcal{P} using the square-root of the KL-divergence as metric (while it is not a metric), then

$$I(V;X) \le \inf_{\epsilon>0} \left(\epsilon^2 + \log N_{KL}(\epsilon, \mathcal{P})\right)$$

Bound can be then used in Fano's method given a suitable δ .

- Aim $\frac{I(V;X) + \log(2)}{\log |\mathcal{V}|} \leq \frac{1}{2}$ and $\log |\mathcal{V}| \leq \log M(2\delta, \Theta(\mathcal{P}), \rho)$ results in condition to be satisfied for a choice of (ϵ, δ) : $\log M(2\delta, \Theta(\mathcal{P}), \rho) \geq 2(\epsilon^2 + \log N_{KL}(\epsilon, \mathcal{P}) + \log 2).$
- Practical approach: First choose ϵ_n such that $\epsilon_n \geq N_{KL}(\epsilon_n, \mathcal{P})$, then choose largest $\delta_n > 0$ such that $\log M(2\delta, \Theta(\mathcal{P}), \rho) \geq 4\epsilon_n^2 + 2\log 2$.

Proof Yang-Barron method

• We have
$$ar{P} = rac{1}{|\mathcal{V}|} \sum_v \ P_v$$
, then for any $P \in \mathcal{P}$ we have⁴

$$I(V;X) = \frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}} D(P_v ||\bar{P}) \le \frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}} D(P_v ||P) \le \max_{v \in \mathcal{V}} D(P_v ||P)$$

• Let $\{P_{\kappa_1}, \ldots, P_{\kappa_N}\}$ be an ϵ -covering of \mathcal{P} using $\sqrt{D(\cdot || \cdot)}$, i.e. for each P_v there exists P_{κ_n} such that $D(P_v || P_{\kappa_n}) \leq \epsilon^2$.

• Set
$$P = \frac{1}{N} \sum_{i=1}^{N} P_{\kappa_i}$$
, then

$$D(P_v||P) = E_{P_v} \left[\log \frac{\mathrm{d}P_v}{\frac{1}{N} \sum_{i=1}^N \mathrm{d}P_{\kappa_i}} \right] \le E_{P_v} \left[\log \frac{\mathrm{d}P_v}{\frac{1}{N} \mathrm{d}P_{\kappa_n}} \right] \le D(P_v||P_{\kappa_n}) + \log N \le \epsilon^2 + \log N$$

• The result follows since the previous holds for all $v \in \mathcal{V}$ and $\epsilon > 0$.

⁴Reminder, \bar{P} is minimizer of $\min_{P \in \mathcal{P}} \frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}} D(P_v || P)$. Tobias Oechtering

15/18

Reminder

Theorem

$$I(X;Y) = \min_{Q} D(P_{Y|X}||Q|P_X)$$

Proof:

$$I(X;Y) = D(P_{Y|X}||P_Y|P_X) = E \log \frac{P_{Y|X}}{Q} \frac{Q}{P_Y}$$

= $D(P_{Y|X}||Q|P_X) - D(P_Y||Q) \le D(P_{Y|X}||Q|P_X)$

since $D(P_Y||Q) \ge 0.$

Non-parametric problem: Density estimation

- Given $X_1, \ldots, X_n \stackrel{iid}{\sim} p_{\theta} \in \mathcal{P}$ for some $\theta \in \Theta$ and estimate $\hat{p} = \hat{p}(\cdot | x_1, \ldots, x_n)$
- Consider KL divergence $D(p_{\theta}||\hat{p})$ as loss fct and average risk

$$E_{p_{\theta}}D(p_{\theta}||\hat{p}) = \int D(p_{\theta}||\hat{p}(\cdot|X^{n} = x^{n}))p_{\theta}^{\otimes n}(\mathrm{d}x^{n})$$

• An upper bound for minimax risk:

Theorem (Yang-Barron)

$$\inf_{\hat{p}} \sup_{\theta \in \Theta} E_{p_{\theta}} D(p_{\theta} || \hat{p}) \le \inf_{\epsilon > 0} \frac{1}{n} \log N_{KL}(\epsilon, \mathcal{P}) + \epsilon$$

Proof

- Choose estimator $\hat{p}(\cdot|x^n) = \frac{1}{n} \sum_{i=1}^n p_{X_i|X^{i-1}}(\cdot|x^{i-1})$ with $p_{X_i|X^{i-1}}(x_i|x^{i-1}) = \frac{\int \prod_{j=1}^i p_{\kappa}(x_j)\pi(d\kappa)}{\int \prod_{j=1}^{i-1} p_{\kappa}(x_j)\pi(d\kappa)}.$
- Note, prior π(κ) is used for the definition of the estimator only.
 Due to convexity (a), chain rule of KL divergence (b) we have

$$E_{p_{\theta}}D(p_{\theta}\|\hat{p}) = E_{p_{\theta}}D\left(p_{\theta}\|\frac{1}{n}\sum_{i=1}^{n}p_{X_{i}|X^{i-1}}\right)$$

$$\stackrel{(a)}{\leq} \frac{1}{n}\sum_{i=1}^{n}E_{p_{\theta}}D(p_{\theta}\|p_{X_{i}|X_{i-1}}) \stackrel{(b)}{=} \frac{1}{n}E_{p_{\theta}}D(p_{\theta}^{\otimes n}\|p_{X^{n}})$$

• Fix $\epsilon > 0$, let $\{p_{\kappa_1}, \dots p_{\kappa_N}\}$ be an optimal ϵ -covering of \mathcal{P}

$$E_{p_{\theta}}D(p_{\theta}^{\otimes n} \| p_{X^{n}}) \leq E_{p_{\theta}}D\left(p_{\theta}^{\otimes n} \| \frac{1}{N} \sum_{i=1}^{N} p_{\kappa_{i}}^{\otimes n}\right) = E\log\left[\frac{p_{\theta}^{\otimes n}}{\frac{1}{N} \sum_{i=1}^{N} p_{\kappa_{i}}^{\otimes n}}\right]$$

$$\leq E \log \left[\frac{p_{\theta}^{\otimes n}}{\frac{1}{N} p_{\kappa_k}^{\otimes n}} \right] \leq \log N + n\epsilon \text{ since } \exists k : D(p_{\theta} \| p_{\kappa_k}) \leq \epsilon \qquad \Box$$