Infotheory for Statistics and Learning
 Lecture 8

- Selected recap
- Basics statistical decision theory [PW, Chap. 28]
- Variational representation of f-divergence [PW, Sect. 7.13]
- Statistical (lower) bounds [PW, Chap. 29]
- Hammersley-Chapman-Robbins bound
- Cramér-Rao bound
- Fisher information

Framework of Statistical Decision Problem

Statistical experiment: Nature picks distribution with parameter θ from the set of probability distributions defined on a common probability space $(\mathcal{X}, \mathcal{F})$

$$
\mathcal{P}=\left\{P_{\theta}: \theta \in \Theta\right\}
$$

- Data $X \sim P_{\theta}$ is observed
- can be a random variable, vector, process etc. depending on \mathcal{X}

Estimator: We want to estimate $T(\theta)$ which is defined on \mathcal{Y}, which can be a θ itself, a relevant aspect or a function of θ.

- Decision rule: Compute $\hat{T} \in \hat{\mathcal{Y}}$ based on observed data X

$$
\hat{T}: \mathcal{X} \rightarrow \hat{\mathcal{Y}}
$$

- randomized estimator $\hat{T}=\hat{T}(X, U)$, external RV U or $P_{\hat{T} \mid X}$

Choice of estimator depends on different factors including estimator properties, but mostly on the performance objective.

- Loss function:

$$
l: \mathcal{Y} \times \hat{\mathcal{Y}} \rightarrow \mathbb{R}, \quad T \times \hat{T} \mapsto l(T, \hat{T})
$$

- example: $T(\theta)=\theta$ and $l(\theta, \hat{\theta})=\|\theta-\hat{\theta}\|_{2}^{2}$
- Risk of estimator \hat{T} at θ :

$$
R_{\theta}=E_{\theta}[l(T, \hat{T})]=\int l(T(\theta), \hat{t}) P_{\hat{T} \mid X}(\hat{t} \mid x) P_{\theta}(x) d(x, \hat{t})
$$

- $P_{\hat{T} \mid X}(\hat{t} \mid x)$ denotes the likelihood of \hat{t} after observing x
- log-likelihood function $\log P_{\hat{T} \mid X}(\hat{t} \mid x)$ is sometimes numerically beneficial, e.g, when x denotes a vector of iid observations
- converses correspond to lower bounds on the optimal loss/risk (achievable results/implementations are upper bounds)

Maximum Likelihood Estimator

- Maximum Likelihood (ML) estimator. Maximize the likelihood (fct) over parameter θ so that the observed data x is most likely
- e.g. $T(\theta)=\theta$

$$
\hat{T}(x)=\arg \max _{\theta \in \Theta} P_{\theta}(x)
$$

- Gaussian Location Model (Additive Gaussian Noise)
- $\mathcal{P}=\left\{\mathcal{N}\left(\theta, \sigma^{2}\right): \theta \in \mathbb{R}\right\}$
- $X_{i}=\theta+Z_{i}$ with $Z_{i} \stackrel{i i d}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)$
- likelihood (fct) after observing x_{1}, \ldots, x_{n} :

$$
\begin{aligned}
& P_{\theta}\left(x_{1}^{n}\right)=\prod_{i=1}^{n} P_{\theta}\left(x_{i}\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(x_{i}-\theta\right)^{2}}{2 \sigma^{2}}\right)= \\
& \frac{1}{\left(\sqrt{2 \pi \sigma^{2}}\right)^{n}} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\theta\right)^{2}\right)
\end{aligned}
$$

- Note that $P_{\theta}\left(x_{1}^{n}\right)$ is maximized if we minimize $\sum_{i=1}^{n}\left(x_{i}-\theta\right)^{2}$ $0=\frac{d}{d \theta} \sum_{i=1}^{n}\left(x_{i}-\theta\right)^{2}=\sum_{i=1}^{n}-2\left(x_{i}-\theta\right)$ so that the minimizer is $\theta=\frac{1}{n} \sum_{i=1}^{n} x_{i}$
$\Rightarrow \mathrm{ML}$ estimate $\hat{T}\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} x_{i}$

Fundamental limit - "Best estimator"

Performance is measured by the risk

$$
R_{\theta}(\hat{\theta})=E_{\theta}[l(\theta, \hat{\theta})]
$$

Approaches to identify a best estimator

- Naïve method: Search for estimator $\hat{\theta}$ that is better than all other estimator θ^{\prime} for all $\theta \in \Theta$, i.e. $R_{\theta}(\hat{\theta}) \leq R_{\theta}\left(\theta^{\prime}\right) \forall \theta^{\prime} \forall \theta$.
- often there does not exists one $\hat{\theta}$ that is uniformly the best

Standard approaches that reduce the candidate set

- Method 1: Limit the class of competitors of $\hat{\theta}$
- e.g. restricting to unbiased estimators or invariant estimators
- Method 2: Bayes (Bayesian) approach - average analysis
- Method 3: Minimax approach - worst-case analysis

Bayes risk

Average risk analysis with prior probability distribution π on Θ

$$
R_{\pi}(\hat{\theta})=E_{\theta \sim \pi} R_{\theta}(\hat{\theta})=E_{\theta, X}[l(\theta, \hat{\theta})]
$$

- Bayes risk: Minimum average risk $R_{\pi}^{*}=\inf _{\hat{\theta}} R_{\pi}(\hat{\theta})$
- Limitation: Need to know/assume the prior distribution
- Worst case Bayes risk: $R_{B}^{*}=\sup _{\pi} R_{\pi}^{*}$

Example:

- MMSE: Minimum mean square error $R_{\pi}^{*}=E\left[\|\theta-E[\theta \mid X]\|_{2}^{2}\right]$

Minimax risk

Worst-case risk analysis is based on minimax risk

$$
R^{*}=\inf _{\hat{\theta}} \sup _{\theta \in \Theta} R_{\theta}(\hat{\theta})
$$

Theorem (Minimax risk \geq worst-case Bayes risk)

$$
R^{*} \geq R_{B}^{*}=\sup _{\pi} R_{\pi}^{*}=\sup _{\pi} \inf _{\hat{\theta}} R_{\pi}(\hat{\theta})
$$

Proof.
$\forall \hat{\theta}, \pi: \sup _{\theta \in \Theta} R_{\theta}(\hat{\theta}) \geq E_{\theta \sim \pi}\left[R_{\theta}(\hat{\theta})\right]=R_{\pi}(\hat{\theta})$, consider $\sup _{\pi} \inf _{\hat{\theta}}$

- key idea also later for lower bounds on minimax risk: Consider Bayes risk with smart prior results in lower bound on R^{*}.
- result is weak duality, minimax theorem is strong duality

Variational representation of f-divergence

Legendre-Fenchel transform: Let $f: \mathcal{X} \rightarrow \overline{\mathbb{R}}$ be a function (not necessarily convex), then $f^{*}: \mathcal{X} \rightarrow \overline{\mathbb{R}}$ with

$$
f^{*}(a)=\sup _{x \in \mathcal{X}}[\langle a, x\rangle-f(x)]
$$

is the conjugate of f (aka Legendre-Fenchel conjugate).

- f^{*} is convex.
- If f is convex, then $\left(f^{*}\right)^{*}=f$ (biconjugation)

Similarly, the convex conjugate for any convex functional $\Psi(P)$ defined on the space of measures can be defined as

$$
\Psi^{*}(g)=\sup _{P \in \mathcal{P}} \int g \mathrm{~d} P-\Psi(P)
$$

Biconjugation holds under certain conditions (e.g. domain of g is finite)

$$
\Psi(P)=\sup _{g} \int g \mathrm{~d} P-\Psi^{*}(P)
$$

This can be applied to convex functional $P \mapsto D_{f}(P \| Q)$ which provides variational representation of f-divergence, ${ }^{1}$ where f^{*} denotes the convex conjugate of f
$D_{f}(P \| Q)=E_{Q}\left[f\left(\frac{P}{Q}\right)\right]=\sup _{g: \mathcal{X} \rightarrow \operatorname{dom}\left(f^{*}\right)} E_{P}[g(X)]-E_{Q}\left[f^{*}(g(X))\right]$
where g is such that both expectations are finite.

[^0]- Total variation: $f(x)=\frac{1}{2}|x-1|$ with convex conjugate

$$
f^{*}(y)=\sup _{x}\left\{x y-\frac{1}{2}|x-1|\right\}= \begin{cases}+\infty & \text { if }|y|>\frac{1}{2} \\ y & \text { if }|y| \leq \frac{1}{2}\end{cases}
$$

$$
T V(P, Q)=\sup _{g:|g| \leq \frac{1}{2}} E_{P}[g(X)]-E_{Q}[g(X)]
$$

- Relative entropy (aka KL divergence), $f(x)=x \log x$ with $f^{*}(y)=\exp (y-1)$

$$
D(P \| Q)=1+\sup _{g: \mathcal{X} \rightarrow \mathbb{R}} E_{P}[g(X)]-E_{Q}[\exp (g(X))]
$$

- Donsker-Varadhan representation (proof see [PW, Sect. 3.3]) $D(P \| Q)=\sup _{g: \mathcal{X} \rightarrow \mathbb{R}} E_{P}[g(X)]-\log E_{Q}[\exp (g(X))]$, which is stronger since RHS is tighter for any g due to $\log (1+t) \leq t$
- χ^{2}-divergence, $f(x)=(x-1)^{2}$ with $f^{*}(y)=y+\frac{1}{4} y^{2}$ (HW)

$$
\chi^{2}(P, Q)=\sup _{g: \mathcal{X} \rightarrow \mathbb{R}} E_{P}[g(X)]-E_{Q}\left[g(X)+\frac{1}{4} g^{2}(X)\right]
$$

- with substitution $h(x)=\frac{1}{2} g(x)+1$ we get

$$
\chi^{2}(P, Q)=\sup _{h: \mathcal{X} \rightarrow \mathbb{R}} 2 E_{P}[h(X)]-E_{Q}\left[h^{2}(X)\right]-1,
$$

Variational representations provide a systematic analytical approach to obtain lower bounds: $\chi^{2}(P, Q)$ representation restricted to affine functions $h(x)=a x+b$

$$
\begin{align*}
\chi^{2}(P, Q) & \geq \sup _{a, b \in \mathbb{R}} 2\left(a E_{P}[X]+b\right)-E_{Q}\left[(a X+b)^{2}\right]-1 \\
& \stackrel{(H W)}{=} \frac{\left(E_{P}[X]-E_{Q}[X]\right)^{2}}{\operatorname{Var}_{Q}[X]} \tag{1}
\end{align*}
$$

Hammersley-Chapman-Robbins lower bound

Setup: Data $X \sim P_{\theta}$, parameter of interest $\theta \in \Theta$, estimator $\hat{\theta}(X)$ (possibly random), cost of prediction error $l(\theta, \hat{\theta})=(\theta-\hat{\theta})^{2}$.

- Interested in lower bound on risk $R_{\theta}(\hat{\theta})=E_{\theta}\left[(\theta-\hat{\theta})^{2}\right]$ of estimator $\hat{\theta}$ given the distribution of real parameter θ !

$$
E_{\theta}\left[(\theta-\hat{\theta})^{2}\right]=E_{\theta}\left[\left(\theta-E_{\theta}[\hat{\theta}]+E_{\theta}[\hat{\theta}]-\hat{\theta}\right)^{2}\right]=\ldots=E_{\theta}\left[(\operatorname{bias}(\hat{\theta}))^{2}\right]+\operatorname{Var}_{\theta}[\hat{\theta}]
$$

Theorem (Hammersley-Chapman-Robbins lower bound)
For the quadratic loss $l(\theta, \hat{\theta})=(\theta-\hat{\theta})^{2}$, any estimator $\hat{\theta}(X)$ satisfies

$$
R_{\theta}(\hat{\theta}) \geq \sup _{\theta^{\prime} \neq \theta} \frac{\left(E_{\theta^{\prime}}[\hat{\theta}]-E_{\theta}[\hat{\theta}]\right)^{2}}{\chi^{2}\left(P_{\theta^{\prime}}, P_{\theta}\right)} \quad \forall \theta \in \Theta
$$

Proof Hammersley-Chapman-Robbins lower bound

Approach: Utilize derived bound (1) on $\chi^{2}(P, Q)$. Identify distributions P and Q \& data processing ineq. In more detail:

- In (1) set $Q=P_{\theta}$. For P, suppose X was produced by $P_{\theta^{\prime}}$ with $\theta \neq \theta^{\prime} \in \Theta$.
- Let $Q_{\hat{\theta}}$ and $P_{\hat{\theta}}$ denote the distributions on $\hat{\theta}$ generated by X distributed according to P_{θ} and $P_{\theta^{\prime}}$ respectively.
- Estimator $\hat{\theta}(X)$ acts a channel that transfers X into $\hat{\theta}$.

$$
\chi^{2}\left(P_{\theta^{\prime}}, P_{\theta}\right) \stackrel{\text { data proc.ineq. }}{\geq} \chi^{2}\left(P_{\hat{\theta}}, Q_{\hat{\theta}}\right) \stackrel{(1)}{\geq} \frac{\left(E_{\theta^{\prime}}[\hat{\theta}]-E_{\theta}[\hat{\theta}]\right)^{2}}{\operatorname{Var}_{\theta}[\hat{\theta}]}
$$

- Swap LHS with denominator and use $R_{\theta}(\hat{\theta}) \geq \operatorname{Var}_{\theta}[\hat{\theta}]$.
- Bound holds for all $\theta^{\prime} \in \Theta$ and $R_{\theta}(\hat{\theta})$ does not depend on θ^{\prime}, thus tighten bound by taking $\sup _{\theta^{\prime} \neq \theta}$ provides desired result.

Cramér-Rao lower bound

- Cramér-Rao lower bound can be derived from Hammersley-Chapman-Robbins lower bound
- Restricted to unbiased estimators, i.e., $E_{\theta}[\hat{\theta}(\theta)]=\theta$.
- Derivation requires regularity conditions to be satisfied

Theorem (Cramér-Rao lower bound)

$$
\operatorname{Var}_{\theta}[\hat{\theta}] \geq \frac{1}{I(\theta)}
$$

with $I(\theta)=\int \frac{\left(\frac{\mathrm{d} P_{\theta}(x)}{\mathrm{d} \theta}\right)^{2}}{P_{\theta}(x)} d x$, which is the Fisher information of the parametric family of densities $\left\{P_{\theta}: \theta \in \Theta\right\}$ at θ (if it exists).

- Interpretation: The Fisher information is a measure of information in the data that is useful for the estimation task.

Proof Cramér-Rao lower bound

- HCR bound for unbiased estimators and $\theta^{\prime} \rightarrow \theta$ becomes

$$
\operatorname{Var}_{\theta}[\hat{\theta}] \stackrel{H C R}{\geq} \sup _{\theta^{\prime} \neq \theta} \frac{\left(E_{\theta^{\prime}}[\hat{\theta}]-E_{\theta}[\hat{\theta}]\right)^{2}}{\chi^{2}\left(P_{\theta^{\prime}}, P_{\theta}\right)} \geq \lim _{\theta^{\prime} \rightarrow \theta} \frac{\left(\theta^{\prime}-\theta\right)^{2}}{\chi^{2}\left(P_{\theta^{\prime}}, P_{\theta}\right)} \quad \forall \theta \in \Theta .
$$

- Taylor series expansion for $P_{\theta}-P_{\theta^{\prime}}$ at θ^{\prime} for θ close to θ^{\prime} :

$$
P_{\theta}-P_{\theta^{\prime}}=\left(\theta-\theta^{\prime}\right) \frac{d\left(P_{\theta}-P_{\theta^{\prime}}\right)}{d \theta}+o\left(\left(\theta-\theta^{\prime}\right)^{2}\right)=\left(\theta-\theta^{\prime}\right) \frac{d P_{\theta}}{d \theta}+o\left(\left(\theta-\theta^{\prime}\right)^{2}\right)
$$

- With $\chi^{2}\left(P_{\theta^{\prime}}, P_{\theta}\right)=\int \frac{\left(P_{\theta}-P_{\theta^{\prime}}\right)^{2}}{P_{\theta}}=\left(\theta^{\prime}-\theta\right)^{2} \int \frac{\left(\frac{d P_{\theta}}{d \theta}+\frac{o\left(\left(\theta-\theta^{\prime}\right)^{2}\right)}{\theta-\theta^{\prime}}\right)^{2}}{P_{\theta}}$

$$
\lim _{\theta^{\prime} \rightarrow \theta} \frac{\left(\theta^{\prime}-\theta\right)^{2}}{\chi^{2}\left(P_{\theta^{\prime}}, P_{\theta}\right)}=\lim _{\theta^{\prime} \rightarrow \theta} \frac{1}{\int \frac{\left(\frac{d P_{\theta}}{d \theta}+\frac{o\left(\left(\theta-\theta^{\prime}\right)^{2}\right)}{\theta-\theta^{\prime}}\right)^{2}}{P_{\theta}}}=\frac{1}{\int \frac{\left(\frac{d P_{\theta}}{d \theta}\right)^{2}}{P_{\theta}}}
$$

Fisher information

$$
I(\theta)=\int\left(\frac{\frac{\mathrm{d} P_{\theta}(x)}{\mathrm{d} \theta}}{P_{\theta}(x)}\right)^{2} P_{\theta}(x) \mathrm{d} x=E_{\theta}\left[\left(\frac{\mathrm{d} \log P_{\theta}(x)}{\mathrm{d} \theta}\right)^{2}\right]
$$

- Regularity condition (HW): $I(\theta)=-E_{\theta}\left[\frac{\mathrm{d}^{2} \log P_{\theta}}{\mathrm{d} \theta^{2}}\right]$ if P_{θ} is twice differentiable and we have

$$
\int \frac{\mathrm{d}^{2} P_{\theta}(x)}{\mathrm{d} \theta^{2}} \mathrm{~d} x=\frac{\mathrm{d}^{2}}{\mathrm{~d} \theta^{2}} \int P_{\theta}(x) \mathrm{d} x=0
$$

- Multiple samples (HW): Let $X_{1}, \ldots, X_{n} \sim P_{\theta}$ iid, then

$$
I_{n}(\theta)=n I(\theta)
$$

holds where $I_{n}(\theta)$ and $I(\theta)$ denote the vector-valued and single-letter Fisher information.

Multivariate HCR/CR lower bounds

Consider multi-dimensional case with $\theta, \theta^{\prime}, \hat{\theta}$ and x defined on \mathbb{R}^{p}

- Multivariate version of HCR lower bound: $\forall \theta, \theta \in \Theta$

$$
\chi^{2}\left(P_{\theta}^{\prime}, P_{\theta}\right) \geq\left(E_{\theta^{\prime}}[\hat{\theta}]-E_{\theta}[\hat{\theta}]\right)^{T} \operatorname{cov}_{\theta}[\hat{\theta}]^{-1}\left(E_{\theta^{\prime}}[\hat{\theta}]-E_{\theta}[\hat{\theta}]\right)
$$

with $\operatorname{cov}_{\theta}[\hat{\theta}]=E_{\theta}\left[\left(\hat{\theta}-E_{\theta}[\hat{\theta}]\right)\left(\hat{\theta}-E_{\theta}[\hat{\theta}]\right)^{T}\right] \in \mathbb{R}^{p \times p}$

- Multivariate CR lower bound
- considering unbiased estimators $\hat{\theta}$, i.e. $E_{\theta}[\hat{\theta}]=\theta$

$$
\operatorname{cov}_{\theta}[\hat{\theta}] \succeq I(\theta)^{-1}
$$

with Fisher information matrix $I(\theta)=\int \frac{\nabla_{\theta} P_{\theta}(x)\left(\nabla_{\theta} P_{\theta}(x)\right)^{T}}{P_{\theta}(x)} \mathrm{d} x$

- $I(\theta)=-E_{\theta}\left[\frac{\partial^{2} \log P_{\theta}}{\partial \theta_{i} \partial \theta_{j}}\right]$ if Hessian satisfies regularity condition

Bayesian Cramér-Rao lower bound

- Bayesian approach: Parameter $\theta \in \mathbb{R}$ with prior dist. π
- loss function $l(\theta, \hat{\theta})=(\theta-\hat{\theta})^{2}$
- consider unbiased estimators $\hat{\theta}$, i.e. $E_{\theta}[\hat{\theta}]=\theta$

Theorem (Bayesian Cramér-Rao lower bound)

$$
R_{\pi}^{*}=\inf _{\hat{\theta}} R_{\pi}(\hat{\theta})=\inf _{\hat{\theta}} E_{\theta \sim \pi}[l(\theta, \hat{\theta})] \geq \frac{1}{E_{\theta \sim \pi}[I(\theta)]+I(\pi)}
$$

with $I(\pi)=\int \frac{(\mathrm{d} \pi(\theta) / \mathrm{d} \theta)^{2}}{\pi(\theta)} \mathrm{d} \theta$ Fisher information of the prior given that suitable regularity conditions hold such as (*)
$\int \frac{\partial^{2}}{\partial \theta^{2}}\left(P_{\theta}(X) \pi(\theta)\right) \mathrm{d} \theta=\frac{\partial^{2}}{\partial \theta^{2}} \int\left(P_{\theta}(X) \pi(\theta)\right) \mathrm{d} \theta=0$.

- Result can be derived with previous arguments deriving first Bayesian HCR with clever choice of distribution in χ^{2}-term.

Classical proof for Bayesian CR lower bound

- Due to the regularity condition and integration by parts we have $\int(-\theta) \frac{\partial\left(P_{\theta}(x) \pi(\theta)\right)}{\partial \theta} \mathrm{d} \theta=\int P_{\theta}(x) \pi(\theta) \mathrm{d} \theta$ and $\int \hat{\theta}(x) \frac{\partial}{\partial \theta}\left(P_{\theta}(x) \pi(\theta)\right) \mathrm{d} \theta=0$ so that

$$
\begin{aligned}
E_{\theta X} & {\left[(\hat{\theta}(X)-\theta) \frac{\partial \log \left(P_{\theta}(X) \pi(\theta)\right)}{\partial \theta}\right] } \\
& =\iint(\hat{\theta}(x)-\theta) \frac{\partial\left(P_{\theta}(x) \pi(\theta)\right)}{\partial \theta} \frac{P_{\theta}(x) \pi(\theta)}{P_{\theta}(x) \pi(\theta)} \mathrm{d} \theta \mathrm{~d} x=1
\end{aligned}
$$

- Using Cauchy-Schwarz inequality on (LHS) ${ }^{2}$ and rearrange

$$
\begin{align*}
1 & =\left(E_{\theta X}\left[(\hat{\theta}(X)-\theta) \frac{\partial \log \left(P_{\theta}(X) \pi(\theta)\right)}{\partial \theta}\right]\right)^{2} \\
& \leq \underbrace{E_{\theta X}\left[(\hat{\theta}(X)-\theta)^{2}\right]}_{=R_{\pi}(\hat{\theta})} \underbrace{E_{\theta X}\left[\left(\frac{\partial \log \left(P_{\theta}(X) \pi(\theta)\right)}{\partial \theta}\right)^{2}\right]}_{\stackrel{(*)}{=}-E_{\theta X}\left[\frac{\partial^{2}}{\partial \theta^{2}} \log \left(P_{\theta}(X) \pi(\theta)\right)\right]=E_{\theta}[I(\theta)]+I(\pi)}
\end{align*}
$$

[^0]: ${ }^{1}$ Generalization to infinite domains requires a technical partition argument, for more details see http://people.lids.mit.edu/yp/homepage/data/LN_fdiv.pdf

