
Infotheory for Statistics and Learning
Lecture 8

• Selected recap
• Basics statistical decision theory [PW, Chap. 28]
• Variational representation of f -divergence [PW, Sect. 7.13]

• Statistical (lower) bounds [PW, Chap. 29]
• Hammersley-Chapman-Robbins bound
• Cramér-Rao bound
• Fisher information
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Framework of Statistical Decision Problem

Statistical experiment: Nature picks distribution with parameter θ
from the set of probability distributions defined on a common
probability space (X ,F)

P = {Pθ : θ ∈ Θ}

• Data X ∼ Pθ is observed
• can be a random variable, vector, process etc. depending on X

Estimator: We want to estimate T (θ) which is defined on Y,
which can be a θ itself, a relevant aspect or a function of θ.

• Decision rule: Compute T̂ ∈ Ŷ based on observed data X

T̂ : X → Ŷ

• randomized estimator T̂ = T̂ (X,U), external RV U or PT̂ |X
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Choice of estimator depends on different factors including
estimator properties, but mostly on the performance objective.

• Loss function:

l : Y × Ŷ → R, T × T̂ 7→ l(T, T̂ )

• example: T (θ) = θ and l(θ, θ̂) = ‖θ − θ̂‖22
• Risk of estimator T̂ at θ:

Rθ = Eθ[l(T, T̂ )] =

∫
l(T (θ), t̂)PT̂ |X(t̂|x)Pθ(x) d(x, t̂)

• PT̂ |X(t̂|x) denotes the likelihood of t̂ after observing x

• log-likelihood function logPT̂ |X(t̂|x) is sometimes numerically
beneficial, e.g, when x denotes a vector of iid observations

• converses correspond to lower bounds on the optimal loss/risk
(achievable results/implementations are upper bounds)
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Maximum Likelihood Estimator

• Maximum Likelihood (ML) estimator. Maximize the
likelihood (fct) over parameter θ so that the observed data x
is most likely

• e.g. T (θ) = θ

T̂ (x) = arg max
θ∈Θ

Pθ(x)

• Gaussian Location Model (Additive Gaussian Noise)
• P = {N (θ, σ2) : θ ∈ R}
• Xi = θ + Zi with Zi

iid∼ N (0, σ2)
• likelihood (fct) after observing x1, . . . , xn:

Pθ(x
n
1 ) =

∏n
i=1 Pθ(xi) =

∏n
i=1

1√
2πσ2

exp(− (xi−θ)2
2σ2 ) =

1

(
√
2πσ2)n

exp(− 1
2σ2

∑n
i=1(xi − θ)2)

• Note that Pθ(x
n
1 ) is maximized if we minimize

∑n
i=1(xi − θ)2

0 = d
dθ

∑n
i=1(xi − θ)2 =

∑n
i=1 −2(xi − θ) so that the

minimizer is θ = 1
n

∑n
i=1 xi

⇒ ML estimate T̂ (x1, . . . , xn) = 1
n

∑n
i=1 xi
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Fundamental limit – ”Best estimator”

Performance is measured by the risk

Rθ(θ̂) = Eθ[l(θ, θ̂)]

Approaches to identify a best estimator

• Näıve method: Search for estimator θ̂ that is better than all
other estimator θ′ for all θ ∈ Θ, i.e. Rθ(θ̂) ≤ Rθ(θ′)∀θ′∀θ.

• often there does not exists one θ̂ that is uniformly the best

Standard approaches that reduce the candidate set

• Method 1: Limit the class of competitors of θ̂
• e.g. restricting to unbiased estimators or invariant estimators

• Method 2: Bayes (Bayesian) approach - average analysis

• Method 3: Minimax approach - worst-case analysis
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Bayes risk

Average risk analysis with prior probability distribution π on Θ

Rπ(θ̂) = Eθ∼πRθ(θ̂) = Eθ,X [l(θ, θ̂)]

• Bayes risk: Minimum average risk R∗π = inf θ̂ Rπ(θ̂)

• Limitation: Need to know/assume the prior distribution
• Worst case Bayes risk: R∗B = supπ R

∗
π

Example:

• MMSE: Minimum mean square error R∗π = E[‖θ −E[θ|X]‖22]
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Minimax risk

Worst-case risk analysis is based on minimax risk

R∗ = inf
θ̂

sup
θ∈Θ

Rθ(θ̂)

Theorem (Minimax risk ≥ worst-case Bayes risk)

R∗ ≥ R∗B = sup
π
R∗π = sup

π
inf
θ̂
Rπ(θ̂)

Proof.
∀θ̂, π : sup

θ∈Θ
Rθ(θ̂) ≥ Eθ∼π[Rθ(θ̂)] = Rπ(θ̂), consider sup

π
inf
θ̂

• key idea also later for lower bounds on minimax risk: Consider
Bayes risk with smart prior results in lower bound on R∗.

• result is weak duality, minimax theorem is strong duality
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Variational representation of f -divergence

Legendre-Fenchel transform: Let f : X → R̄ be a function (not
necessarily convex), then f∗ : X → R̄ with

f∗(a) = sup
x∈X

[〈a, x〉 − f(x)]

is the conjugate of f (aka Legendre-Fenchel conjugate).

• f∗ is convex.

• If f is convex, then (f∗)∗ = f (biconjugation)

Similarly, the convex conjugate for any convex functional Ψ(P )
defined on the space of measures can be defined as

Ψ∗(g) = sup
P∈P

∫
gdP −Ψ(P )
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Biconjugation holds under certain conditions (e.g. domain of g is
finite)

Ψ(P ) = sup
g

∫
gdP −Ψ∗(P )

This can be applied to convex functional P 7→ Df (P‖Q) which
provides variational representation of f -divergence,1 where f∗

denotes the convex conjugate of f

Df (P‖Q) = EQ

[
f

(
P

Q

)]
= sup

g:X→dom(f∗)
EP [g(X)]−EQ [f∗(g(X))]

where g is such that both expectations are finite.

1Generalization to infinite domains requires a technical partition argument,
for more details see
http://people.lids.mit.edu/yp/homepage/data/LN_fdiv.pdf
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• Total variation: f(x) = 1
2 |x− 1| with convex conjugate

f∗(y) = supx{xy − 1
2 |x− 1|} =

{
+∞ if |y| > 1

2

y if |y| ≤ 1
2

TV (P,Q) = sup
g:|g|≤1

2

EP [g(X)]− EQ [g(X)]

• Relative entropy (aka KL divergence), f(x) = x log x with
f∗(y) = exp(y − 1)

D(P‖Q) = 1 + sup
g:X→R

EP [g(X)]− EQ [exp(g(X))]

• Donsker-Varadhan representation (proof see [PW, Sect. 3.3])
D(P‖Q) = supg:X→REP [g(X)]− logEQ [exp(g(X))] , which
is stronger since RHS is tighter for any g due to log(1 + t) ≤ t
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• χ2-divergence, f(x) = (x− 1)2 with f∗(y) = y + 1
4y

2 (HW)

χ2(P,Q) = sup
g:X→R

EP [g(X)]− EQ
[
g(X) + 1

4g
2(X)

]
,

• with substitution h(x) = 1
2g(x) + 1 we get

χ2(P,Q) = sup
h:X→R

2EP [h(X)]− EQ
[
h2(X)

]
− 1,

Variational representations provide a systematic analytical
approach to obtain lower bounds: χ2(P,Q) representation
restricted to affine functions h(x) = ax+ b

χ2(P,Q) ≥ sup
a,b∈R

2(aEP [X] + b)− EQ
[
(aX + b)2

]
− 1

(HW)
=

(EP [X]− EQ [X])2

VarQ[X]
(1)
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Hammersley-Chapman-Robbins lower bound

Setup: Data X ∼ Pθ, parameter of interest θ ∈ Θ, estimator θ̂(X)
(possibly random), cost of prediction error l(θ, θ̂) = (θ − θ̂)2.

• Interested in lower bound on risk Rθ(θ̂) = Eθ[(θ − θ̂)2] of
estimator θ̂ given the distribution of real parameter θ!

Eθ[(θ−θ̂)2] = Eθ[(θ−Eθ[θ̂]+Eθ[θ̂]−θ̂)2] = ... = Eθ[(bias(θ̂))
2]+Varθ[θ̂]

Theorem (Hammersley-Chapman-Robbins lower bound)

For the quadratic loss l(θ, θ̂) = (θ − θ̂)2, any estimator θ̂(X)
satisfies

Rθ(θ̂) ≥ sup
θ′ 6=θ

(Eθ′ [θ̂]− Eθ[θ̂])2

χ2(Pθ′ , Pθ)
∀θ ∈ Θ
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Proof Hammersley-Chapman-Robbins lower bound

Approach: Utilize derived bound (1) on χ2(P,Q). Identify
distributions P and Q & data processing ineq. In more detail:

• In (1) set Q = Pθ. For P , suppose X was produced by Pθ′

with θ 6= θ′ ∈ Θ.

• Let Qθ̂ and Pθ̂ denote the distributions on θ̂ generated by X
distributed according to Pθ and Pθ′ respectively.

• Estimator θ̂(X) acts a channel that transfers X into θ̂.

χ2(Pθ′ , Pθ)
data proc.ineq.

≥ χ2(Pθ̂, Qθ̂)
(1)

≥ (Eθ′ [θ̂]− Eθ[θ̂])2

Varθ[θ̂]

• Swap LHS with denominator and use Rθ(θ̂) ≥ Varθ[θ̂].

• Bound holds for all θ′ ∈ Θ and Rθ(θ̂) does not depend on θ′,
thus tighten bound by taking supθ′ 6=θ provides desired result.

�
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Cramér-Rao lower bound

• Cramér-Rao lower bound can be derived from
Hammersley-Chapman-Robbins lower bound

• Restricted to unbiased estimators, i.e., Eθ[θ̂(θ)] = θ.

• Derivation requires regularity conditions to be satisfied

Theorem (Cramér-Rao lower bound)

Varθ[θ̂] ≥
1

I(θ)

with I(θ) =
∫ (dPθ(x)

dθ

)2

Pθ(x) dx, which is the Fisher information of

the parametric family of densities {Pθ : θ ∈ Θ} at θ (if it exists).

• Interpretation: The Fisher information is a measure of
information in the data that is useful for the estimation task.
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Proof Cramér-Rao lower bound

• HCR bound for unbiased estimators and θ′ → θ becomes

Varθ[θ̂]
HCR
≥ sup

θ′ 6=θ

(Eθ′ [θ̂]− Eθ[θ̂])2

χ2(Pθ′ , Pθ)
≥ lim

θ′→θ

(θ′ − θ)2

χ2(Pθ′ , Pθ)
∀θ ∈ Θ.

• Taylor series expansion for Pθ − Pθ′ at θ′ for θ close to θ′:

Pθ−Pθ′ = (θ−θ′)d(Pθ − Pθ′)
dθ

+o((θ−θ′)2) = (θ−θ′)dPθ
dθ

+o((θ−θ′)2)

• With χ2(Pθ′ , Pθ) =
∫ (Pθ−Pθ′ )2

Pθ
= (θ′ − θ)2

∫ (
dPθ
dθ

+
o((θ−θ′)2)
θ−θ′ )2

Pθ

lim
θ′→θ

(θ′ − θ)2

χ2(Pθ′ , Pθ)
= lim

θ′→θ

1∫ (
dPθ
dθ

+
o((θ−θ′)2)
θ−θ′ )2

Pθ

=
1∫ (
dPθ
dθ

)2

Pθ

�
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Fisher information

I(θ) =

∫ ( dPθ(x)
dθ

Pθ(x)

)2

Pθ(x) dx = Eθ

[(
d logPθ(x)

dθ

)2
]

• Regularity condition (HW): I(θ) = −Eθ
[

d2 logPθ
dθ2

]
if Pθ is

twice differentiable and we have∫
d2Pθ(x)

dθ2
dx =

d2

dθ2

∫
Pθ(x)dx = 0.

• Multiple samples (HW): Let X1, ..., Xn ∼ Pθ iid, then

In(θ) = nI(θ)

holds where In(θ) and I(θ) denote the vector-valued and
single-letter Fisher information.
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Multivariate HCR/CR lower bounds

Consider multi-dimensional case with θ, θ′, θ̂ and x defined on Rp

• Multivariate version of HCR lower bound: ∀θ, θ ∈ Θ

χ2(P ′θ, Pθ) ≥
(
Eθ′ [θ̂]− Eθ[θ̂]

)T
covθ[θ̂]

−1
(
Eθ′ [θ̂]− Eθ[θ̂]

)
with covθ[θ̂] = Eθ

[
(θ̂ − Eθ[θ̂])(θ̂ − Eθ[θ̂])T

]
∈ Rp×p

• Multivariate CR lower bound

• considering unbiased estimators θ̂, i.e. Eθ[θ̂] = θ

covθ[θ̂] � I(θ)−1

with Fisher information matrix I(θ) =
∫ ∇θPθ(x)(∇θPθ(x))T

Pθ(x) dx

• I(θ) = −Eθ
[
∂2 logPθ
∂θi∂θj

]
if Hessian satisfies regularity condition
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Bayesian Cramér-Rao lower bound

• Bayesian approach: Parameter θ ∈ R with prior dist. π

• loss function l(θ, θ̂) = (θ − θ̂)2

• consider unbiased estimators θ̂, i.e. Eθ[θ̂] = θ

Theorem (Bayesian Cramér-Rao lower bound)

R∗π = inf
θ̂
Rπ(θ̂) = inf

θ̂
Eθ∼π[l(θ, θ̂)] ≥ 1

Eθ∼π[I(θ)] + I(π)

with I(π) =
∫ (dπ(θ)/dθ)2

π(θ) dθ Fisher information of the prior given

that suitable regularity conditions hold such as (*)∫
∂2

∂θ2
(Pθ(X)π(θ))dθ = ∂2

∂θ2

∫
(Pθ(X)π(θ))dθ = 0.

• Result can be derived with previous arguments deriving first
Bayesian HCR with clever choice of distribution in χ2-term.
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Classical proof for Bayesian CR lower bound

• Due to the regularity condition and integration by parts we
have

∫
(−θ)∂(Pθ(x)π(θ))

∂θ dθ =
∫
Pθ(x)π(θ)dθ and∫

θ̂(x) ∂∂θ (Pθ(x)π(θ))dθ = 0 so that

EθX

[
(θ̂(X)− θ)∂ log(Pθ(X)π(θ))

∂θ

]
=

∫ ∫
(θ̂(x)− θ)∂(Pθ(x)π(θ))

∂θ

Pθ(x)π(θ)

Pθ(x)π(θ)
dθdx = 1

• Using Cauchy-Schwarz inequality on (LHS)2 and rearrange

1 =
(
EθX

[
(θ̂(X)− θ)∂ log(Pθ(X)π(θ))

∂θ

])2

≤ EθX
[
(θ̂(X)− θ)2

]
︸ ︷︷ ︸

=Rπ(θ̂)

EθX

[(
∂ log(Pθ(X)π(θ))

∂θ

)2
]

︸ ︷︷ ︸
(∗)
=−EθX

[
∂2

∂θ2
log(Pθ(X)π(θ))

]
=Eθ[I(θ)]+I(π)

�
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