Infotheory for Statistics and Learning Lecture 8

- Selected recap
 - Basics statistical decision theory [PW, Chap. 28]
 - Variational representation of *f*-divergence [PW, Sect. 7.13]
- Statistical (lower) bounds [PW, Chap. 29]
 - Hammersley-Chapman-Robbins bound
 - Cramér-Rao bound
 - Fisher information

Framework of Statistical Decision Problem

Statistical experiment: Nature picks distribution with **parameter** θ from the set of probability distributions defined on a common probability space $(\mathcal{X}, \mathcal{F})$

$$\mathcal{P} = \{ P_{\theta} : \theta \in \Theta \}$$

- **Data** $X \sim P_{\theta}$ is observed
 - can be a random variable, vector, process etc. depending on $\ensuremath{\mathcal{X}}$

Estimator: We want to estimate $T(\theta)$ which is defined on \mathcal{Y} , which can be a θ itself, a relevant aspect or a function of θ .

- Decision rule: Compute $\hat{T}\in \hat{\mathcal{Y}}$ based on observed data X

$$\hat{T}: \mathcal{X} \to \hat{\mathcal{Y}}$$

- randomized estimator $\hat{T}=\hat{T}(X,U)$, external RV U or $P_{\hat{T}|X}$

Choice of estimator depends on different factors including estimator properties, but mostly on the performance objective.

• Loss function:

$$l: \mathcal{Y} \times \hat{\mathcal{Y}} \to \mathbb{R}, \quad T \times \hat{T} \mapsto l(T, \hat{T})$$

• example: $T(\theta) = \theta$ and $l(\theta, \hat{\theta}) = \|\theta - \hat{\theta}\|_2^2$

• **Risk** of estimator \hat{T} at θ :

$$R_{\theta} = E_{\theta}[l(T,\hat{T})] = \int l(T(\theta),\hat{t})P_{\hat{T}|X}(\hat{t}|x)P_{\theta}(x) d(x,\hat{t})$$

- $P_{\hat{T}|X}(\hat{t}|x)$ denotes the likelihood of \hat{t} after observing x
- log-likelihood function $\log P_{\hat{T}|X}(\hat{t}|x)$ is sometimes numerically beneficial, e.g, when x denotes a vector of iid observations
- converses correspond to lower bounds on the optimal loss/risk (achievable results/implementations are upper bounds)

Maximum Likelihood Estimator

 Maximum Likelihood (ML) estimator. Maximize the likelihood (fct) over parameter θ so that the observed data x is most likely

• e.g.
$$T(\theta) = \theta$$

$$\hat{T}(x) = \arg\max_{\theta\in\Theta} P_{\theta}(x)$$

• Gaussian Location Model (Additive Gaussian Noise)

•
$$\mathcal{P} = \{\mathcal{N}(\theta, \sigma^2) : \theta \in \mathbb{R}\}$$

• $X_i = \theta + Z_i$ with $Z_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$
• likelihood (fct) after observing x_1, \dots, x_n :
 $P_{\theta}(x_1^n) = \prod_{i=1}^n P_{\theta}(x_i) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(x_i - \theta)^2}{2\sigma^2}) = \frac{1}{(\sqrt{2\pi\sigma^2})^n} \exp(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \theta)^2)$
• Note that $P_{\theta}(x_1^n)$ is maximized if we minimize $\sum_{i=1}^n (x_i - \theta)^2$
 $0 = \frac{d}{d\theta} \sum_{i=1}^n (x_i - \theta)^2 = \sum_{i=1}^n -2(x_i - \theta)$ so that the minimizer is $\theta = \frac{1}{n} \sum_{i=1}^n x_i$
 \Rightarrow ML estimate $\hat{T}(x_1, \dots, x_n) = \frac{1}{n} \sum_{i=1}^n x_i$

Fundamental limit - "Best estimator"

Performance is measured by the risk

 $R_{\theta}(\hat{\theta}) = E_{\theta}[l(\theta, \hat{\theta})]$

Approaches to identify a best estimator

- Naïve method: Search for estimator θ̂ that is better than all other estimator θ' for all θ ∈ Θ, i.e. R_θ(θ̂) ≤ R_θ(θ')∀θ'∀θ.
 - often there does not exists one $\hat{\theta}$ that is uniformly the best

Standard approaches that reduce the candidate set

- Method 1: Limit the class of competitors of $\hat{\theta}$
 - e.g. restricting to unbiased estimators or invariant estimators
- Method 2: Bayes (Bayesian) approach average analysis
- Method 3: Minimax approach worst-case analysis

Bayes risk

Average risk analysis with **prior** probability distribution π on Θ

$$R_{\pi}(\hat{\theta}) = E_{\theta \sim \pi} R_{\theta}(\hat{\theta}) = E_{\theta, X}[l(\theta, \hat{\theta})]$$

- Bayes risk: Minimum average risk $R_{\pi}^* = \inf_{\hat{\theta}} R_{\pi}(\hat{\theta})$
- Limitation: Need to know/assume the prior distribution
 - Worst case Bayes risk: $R_B^* = \sup_{\pi} R_{\pi}^*$

Example:

• MMSE: Minimum mean square error $R_{\pi}^* = E[\|\theta - E[\theta|X]\|_2^2]$

Minimax risk

Worst-case risk analysis is based on minimax risk

$$R^* = \inf_{\hat{\theta}} \sup_{\theta \in \Theta} R_{\theta}(\hat{\theta})$$

Theorem (Minimax risk \geq worst-case Bayes risk)

$$R^* \ge R^*_B = \sup_{\pi} R^*_{\pi} = \sup_{\pi} \inf_{\hat{\theta}} R_{\pi}(\hat{\theta})$$

Proof.

$$\forall \hat{\theta}, \pi : \sup_{\theta \in \Theta} R_{\theta}(\hat{\theta}) \ge E_{\theta \sim \pi}[R_{\theta}(\hat{\theta})] = R_{\pi}(\hat{\theta}), \text{ consider } \sup_{\pi} \inf_{\hat{\theta}} \square$$

- key idea also later for lower bounds on minimax risk: Consider Bayes risk with smart prior results in lower bound on R^* .
- result is weak duality, minimax theorem is strong duality

Variational representation of f-divergence

Legendre-Fenchel transform: Let $f: \mathcal{X} \to \overline{\mathbb{R}}$ be a function (not necessarily convex), then $f^*: \mathcal{X} \to \overline{\mathbb{R}}$ with

$$f^*(a) = \sup_{x \in \mathcal{X}} [\langle a, x \rangle - f(x)]$$

is the conjugate of f (aka Legendre-Fenchel conjugate).

- f^* is convex.
- If f is convex, then $(f^*)^* = f$ (biconjugation)

Similarly, the convex conjugate for any convex functional $\Psi(P)$ defined on the space of measures can be defined as

$$\Psi^*(g) = \sup_{P \in \mathcal{P}} \int g \mathrm{d}P - \Psi(P)$$

Biconjugation holds under certain conditions (e.g. domain of g is finite)

$$\Psi(P) = \sup_{g} \int g \mathrm{d}P - \Psi^*(P)$$

This can be applied to convex functional $P \mapsto D_f(P||Q)$ which provides variational representation of f-divergence,¹ where f^* denotes the convex conjugate of f

$$D_f(P||Q) = E_Q\left[f\left(\frac{P}{Q}\right)\right] = \sup_{g:\mathcal{X} \to \operatorname{dom}(f^*)} E_P\left[g(X)\right] - E_Q\left[f^*(g(X))\right]$$

where g is such that both expectations are finite.

¹Generalization to infinite domains requires a technical partition argument, for more details see http://people.lids.mit.edu/yp/homepage/data/LN_fdiv.pdf Tobias Occhtering 9/19

- Total variation: $f(x) = \frac{1}{2}|x-1|$ with convex conjugate $f^*(y) = \sup_x \{xy - \frac{1}{2}|x-1|\} = \begin{cases} +\infty & \text{if } |y| > \frac{1}{2} \\ y & \text{if } |y| \le \frac{1}{2} \end{cases}$ $TV(P,Q) = \sup_{q:|q| \le \frac{1}{2}} E_P\left[g(X)\right] - E_Q\left[g(X)\right]$
- Relative entropy (aka KL divergence), $f(x) = x \log x$ with $f^*(y) = \exp(y-1)$

$$D(P||Q) = 1 + \sup_{g:\mathcal{X}\to\mathbb{R}} E_P[g(X)] - E_Q[\exp(g(X))]$$

Donsker-Varadhan representation (proof see [PW, Sect. 3.3])
 D(P||Q) = sup_{g:X→ℝ} E_P [g(X)] - log E_Q [exp(g(X))], which is stronger since RHS is tighter for any g due to log(1 + t) ≤ t

•
$$\chi^2$$
-divergence, $f(x) = (x-1)^2$ with $f^*(y) = y + \frac{1}{4}y^2$ (HW)
 $\chi^2(P,Q) = \sup_{g:\mathcal{X} \to \mathbb{R}} E_P[g(X)] - E_Q[g(X) + \frac{1}{4}g^2(X)],$

• with substitution
$$h(x) = \frac{1}{2}g(x) + 1$$
 we get

$$\chi^{2}(P,Q) = \sup_{h:\mathcal{X} \to \mathbb{R}} 2E_{P} \left[h(X) \right] - E_{Q} \left[h^{2}(X) \right] - 1,$$

Variational representations provide a systematic analytical approach to obtain lower bounds: $\chi^2(P,Q)$ representation restricted to affine functions h(x) = ax + b

$$\chi^{2}(P,Q) \geq \sup_{a,b \in \mathbb{R}} 2(aE_{P}[X]+b) - E_{Q}\left[(aX+b)^{2}\right] - 1$$

$$(\mathsf{HW}) = \frac{(E_{P}[X] - E_{Q}[X])^{2}}{\operatorname{Var}_{Q}[X]}$$
(1)

Hammersley-Chapman-Robbins lower bound

Setup: Data $X \sim P_{\theta}$, parameter of interest $\theta \in \Theta$, estimator $\hat{\theta}(X)$ (possibly random), cost of prediction error $l(\theta, \hat{\theta}) = (\theta - \hat{\theta})^2$.

• Interested in lower bound on risk $R_{\theta}(\hat{\theta}) = E_{\theta}[(\theta - \hat{\theta})^2]$ of estimator $\hat{\theta}$ given the distribution of real parameter θ !

$$E_{\theta}[(\theta - \hat{\theta})^2] = E_{\theta}[(\theta - E_{\theta}[\hat{\theta}] + E_{\theta}[\hat{\theta}] - \hat{\theta})^2] = \dots = E_{\theta}[(bias(\hat{\theta}))^2] + \operatorname{Var}_{\theta}[\hat{\theta}]$$

Theorem (Hammersley-Chapman-Robbins lower bound) For the quadratic loss $l(\theta, \hat{\theta}) = (\theta - \hat{\theta})^2$, any estimator $\hat{\theta}(X)$ satisfies

$$R_{\theta}(\hat{\theta}) \ge \sup_{\theta' \neq \theta} \frac{(E_{\theta'}[\hat{\theta}] - E_{\theta}[\hat{\theta}])^2}{\chi^2(P_{\theta'}, P_{\theta})} \qquad \forall \theta \in \Theta$$

Proof Hammersley-Chapman-Robbins lower bound

Approach: Utilize derived bound (1) on $\chi^2(P,Q)$. Identify distributions P and Q & data processing ineq. In more detail:

- In (1) set $Q = P_{\theta}$. For P, suppose X was produced by $P_{\theta'}$ with $\theta \neq \theta' \in \Theta$.
- Let $Q_{\hat{\theta}}$ and $P_{\hat{\theta}}$ denote the distributions on $\hat{\theta}$ generated by X distributed according to P_{θ} and $P_{\theta'}$ respectively.
 - Estimator $\hat{\theta}(X)$ acts a channel that transfers X into $\hat{\theta}$.

$$\chi^2(P_{\theta'}, P_{\theta}) \stackrel{\text{data proc.ineq.}}{\geq} \chi^2(P_{\hat{\theta}}, Q_{\hat{\theta}}) \stackrel{(1)}{\geq} \frac{(E_{\theta'}[\hat{\theta}] - E_{\theta}[\hat{\theta}])^2}{\operatorname{Var}_{\theta}[\hat{\theta}]}$$

- Swap LHS with denominator and use $R_{\theta}(\hat{\theta}) \geq \operatorname{Var}_{\theta}[\hat{\theta}]$.
- Bound holds for all $\theta' \in \Theta$ and $R_{\theta}(\hat{\theta})$ does not depend on θ' , thus tighten bound by taking $\sup_{\theta' \neq \theta}$ provides desired result.

Cramér-Rao lower bound

- Cramér-Rao lower bound can be derived from Hammersley-Chapman-Robbins lower bound
- Restricted to unbiased estimators, i.e., $E_{\theta}[\hat{\theta}(\theta)] = \theta$.
- Derivation requires regularity conditions to be satisfied

Theorem (Cramér-Rao lower bound)

$$Var_{\theta}[\hat{\theta}] \ge \frac{1}{I(\theta)}$$

with $I(\theta) = \int \frac{\left(\frac{\mathrm{d}P_{\theta}(x)}{\mathrm{d}\theta}\right)^2}{P_{\theta}(x)} dx$, which is the Fisher information of the parametric family of densities $\{P_{\theta} : \theta \in \Theta\}$ at θ (if it exists).

• Interpretation: The Fisher information is a measure of information in the data that is useful for the estimation task.

Proof Cramér-Rao lower bound

• HCR bound for unbiased estimators and $\theta' \to \theta$ becomes

$$\operatorname{Var}_{\theta}[\hat{\theta}] \stackrel{\mathsf{HCR}}{\geq} \sup_{\theta' \neq \theta} \frac{(E_{\theta'}[\hat{\theta}] - E_{\theta}[\hat{\theta}])^2}{\chi^2(P_{\theta'}, P_{\theta})} \geq \lim_{\theta' \to \theta} \frac{(\theta' - \theta)^2}{\chi^2(P_{\theta'}, P_{\theta})} \quad \forall \theta \in \Theta.$$

• Taylor series expansion for $P_{\theta} - P_{\theta'}$ at θ' for θ close to θ' :

$$P_{\theta} - P_{\theta'} = (\theta - \theta') \frac{d(P_{\theta} - P_{\theta'})}{d\theta} + o((\theta - \theta')^2) = (\theta - \theta') \frac{dP_{\theta}}{d\theta} + o((\theta - \theta')^2)$$

• With
$$\chi^2(P_{\theta'}, P_{\theta}) = \int \frac{(P_{\theta} - P_{\theta'})^2}{P_{\theta}} = (\theta' - \theta)^2 \int \frac{(\frac{dP_{\theta}}{d\theta} + \frac{o((\theta - \theta')^2)}{\theta - \theta'})^2}{P_{\theta}}$$

$$\lim_{\theta' \to \theta} \frac{(\theta' - \theta)^2}{\chi^2(P_{\theta'}, P_{\theta})} = \lim_{\theta' \to \theta} \frac{1}{\int \frac{(\frac{dP_{\theta}}{d\theta} + \frac{o((\theta - \theta')^2)}{\theta - \theta'})^2}{P_{\theta}}} = \frac{1}{\int \frac{(\frac{dP_{\theta}}{d\theta})^2}{P_{\theta}}}$$

Fisher information

$$I(\theta) = \int \left(\frac{\mathrm{d}P_{\theta}(x)}{\mathrm{d}\theta}\right)^2 P_{\theta}(x) \,\mathrm{d}x = E_{\theta} \left[\left(\frac{\mathrm{d}\log P_{\theta}(x)}{\mathrm{d}\theta}\right)^2 \right]$$

• Regularity condition (HW): $I(\theta) = -E_{\theta} \left\lfloor \frac{d^2 \log P_{\theta}}{d\theta^2} \right\rfloor$ if P_{θ} is twice differentiable and we have

$$\int \frac{\mathrm{d}^2 P_{\theta}(x)}{\mathrm{d}\theta^2} \mathrm{d}x = \frac{\mathrm{d}^2}{\mathrm{d}\theta^2} \int P_{\theta}(x) \mathrm{d}x = 0.$$

• Multiple samples (HW): Let $X_1, ..., X_n \sim P_{\theta}$ iid, then

$$I_n(\theta) = nI(\theta)$$

holds where $I_n(\theta)$ and $I(\theta)$ denote the vector-valued and single-letter Fisher information.

Multivariate HCR/CR lower bounds

Consider multi-dimensional case with $\theta, \theta', \hat{\theta}$ and x defined on \mathbb{R}^p

• Multivariate version of HCR lower bound: $\forall \theta, \theta \in \Theta$

$$\chi^{2}(P_{\theta}', P_{\theta}) \geq \left(E_{\theta'}[\hat{\theta}] - E_{\theta}[\hat{\theta}]\right)^{T} cov_{\theta}[\hat{\theta}]^{-1} \left(E_{\theta'}[\hat{\theta}] - E_{\theta}[\hat{\theta}]\right)$$

with $cov_{\theta}[\hat{\theta}] = E_{\theta} \left[(\hat{\theta} - E_{\theta}[\hat{\theta}])(\hat{\theta} - E_{\theta}[\hat{\theta}])^{T} \right] \in \mathbb{R}^{p \times p}$

- Multivariate CR lower bound
 - considering unbiased estimators $\hat{\theta}$, i.e. $E_{\theta}[\hat{\theta}] = \theta$ $cov_{\theta}[\hat{\theta}] \succeq I(\theta)^{-1}$

with Fisher information matrix $I(\theta) = \int \frac{\nabla_{\theta} P_{\theta}(x) (\nabla_{\theta} P_{\theta}(x))^{T}}{P_{\theta}(x)} dx$

•
$$I(\theta) = -E_{\theta} \left[\frac{\partial^2 \log P_{\theta}}{\partial \theta_i \partial \theta_j} \right]$$
 if Hessian satisfies regularity condition

Bayesian Cramér-Rao lower bound

- Bayesian approach: Parameter $\theta \in \mathbb{R}$ with prior dist. π
- loss function $l(\theta, \hat{\theta}) = (\theta \hat{\theta})^2$
- consider unbiased estimators $\hat{ heta}$, i.e. $E_{ heta}[\hat{ heta}]= heta$

Theorem (Bayesian Cramér-Rao lower bound)

$$R_{\pi}^{*} = \inf_{\hat{\theta}} R_{\pi}(\hat{\theta}) = \inf_{\hat{\theta}} E_{\theta \sim \pi}[l(\theta, \hat{\theta})] \ge \frac{1}{E_{\theta \sim \pi}[I(\theta)] + I(\pi)}$$

with $I(\pi) = \int \frac{(\mathrm{d}\pi(\theta)/\mathrm{d}\theta)^2}{\pi(\theta)} \mathrm{d}\theta$ Fisher information of the prior given that suitable regularity conditions hold such as (*) $\int \frac{\partial^2}{\partial \theta^2} (P_{\theta}(X)\pi(\theta)) \mathrm{d}\theta = \frac{\partial^2}{\partial \theta^2} \int (P_{\theta}(X)\pi(\theta)) \mathrm{d}\theta = 0.$

• Result can be derived with previous arguments deriving first Bayesian HCR with clever choice of distribution in χ^2 -term.

Classical proof for Bayesian CR lower bound

• Due to the regularity condition and integration by parts we have $\int (-\theta) \frac{\partial (P_{\theta}(x)\pi(\theta))}{\partial \theta} d\theta = \int P_{\theta}(x)\pi(\theta) d\theta$ and $\int \hat{\theta}(x) \frac{\partial}{\partial \theta} (P_{\theta}(x)\pi(\theta)) d\theta = 0$ so that

$$E_{\theta X} \left[(\hat{\theta}(X) - \theta) \frac{\partial \log(P_{\theta}(X)\pi(\theta))}{\partial \theta} \right]$$

= $\int \int (\hat{\theta}(x) - \theta) \frac{\partial(P_{\theta}(x)\pi(\theta))}{\partial \theta} \frac{P_{\theta}(x)\pi(\theta)}{P_{\theta}(x)\pi(\theta)} d\theta dx = 1$

• Using Cauchy-Schwarz inequality on (LHS)² and rearrange

$$1 = \left(E_{\theta X}\left[(\hat{\theta}(X) - \theta)\frac{\partial \log(P_{\theta}(X)\pi(\theta))}{\partial \theta}\right]\right)^{2} \leq \underbrace{E_{\theta X}\left[(\hat{\theta}(X) - \theta)^{2}\right]}_{=R_{\pi}(\hat{\theta})} \underbrace{E_{\theta X}\left[\left(\frac{\partial \log(P_{\theta}(X)\pi(\theta))}{\partial \theta}\right)^{2}\right]}_{\stackrel{(*)}{=} -E_{\theta X}\left[\frac{\partial^{2}}{\partial \theta^{2}}\log(P_{\theta}(X)\pi(\theta))\right] = E_{\theta}[I(\theta)] + I(\pi)} \square$$