Infotheory for Statistics and Learning
 Lecture 13

- Method of types in action ${ }^{1}$
- Recap
- Conditional limit theorem
- Hypothesis testing
- Neyman Pearson's Lemma
- Stein's Lemma
- Chernoff information

Recap: Sanov's Theorem

- Let $x^{n}=\left(x_{1}, x_{2} \ldots, x_{n}\right) \in \mathcal{A}^{n}$ denote a sequence of length n defined on finite set $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots a_{M}\right\}$ with empirical distribution $\hat{P}_{x^{n}}$, which is also the type of the sequence.
- The probability that a sequence drawn iid $\sim Q$ will have type $\hat{P}_{X^{n}}$ depends exponentially on the distance $D\left(\hat{P}_{X^{n}} \| Q\right) \cdot n$.
- Sanov's Theorem asks for the probability that the type $\hat{P}_{X^{n}}$ will be in a set $\mathcal{E} \subset \mathcal{P}$. We again observe an exponential decay rate, but the decay depends on the smallest distance between Q and distributions $P \in \mathcal{E}$, i.e. $D(\mathcal{E} \| Q)=\inf _{P \in \mathcal{E}} D(P \| Q)$.
Sanov's Theorem: Let \mathcal{E} be a set of distribution whose closure is equal to it closure of its interior. Then for the empirical distribution $\hat{P}_{x^{n}}$ of a sample sequence iid of strictly positive distribution Q on \mathcal{A} we have

$$
-\frac{1}{n} \log \operatorname{Prob}\left\{\hat{P}_{X^{n}} \in \mathcal{E}\right\} \xrightarrow{n \rightarrow \infty} D(\mathcal{E} \| Q) .
$$

Recap: Proof of Sanov's Theorem

Let $\Pi_{n}=\Pi \cap \mathbb{P}_{n}$ be the set of possible n-types in Π, then

- $\operatorname{Prob}\left\{\hat{P}_{n} \in \Pi_{n}\right\}=P^{n}\left(\cup_{Q \in \Pi_{n}} \mathcal{T}_{Q}^{n}\right)=\sum_{Q \in \Pi_{n}} P^{n}\left(\mathcal{T}_{Q}^{n}\right)$ and
- $\sum_{Q \in \Pi_{n}} P^{n}\left(\mathcal{T}_{Q}^{n}\right) \leq \sum_{Q \in \Pi_{n}} 2^{-n D\left(\Pi_{n} \| P\right)} \leq\binom{ n+M-1}{M-1} 2^{-n D\left(\Pi_{n} \| P\right)}$ since $P^{n}\left(\mathcal{T}_{Q}^{n}\right) \leq 2^{-n D(Q \| P)} \leq 2^{-n D\left(\Pi_{n} \| P\right)}$ and
- $\sum_{Q \in \Pi_{n}} P^{n}\left(\mathcal{T}_{Q}^{n}\right) \geq \sum_{Q \in \Pi_{n}} \frac{1}{\binom{n+M-1}{M-1}} 2^{-n D(Q \| P)} \geq \frac{1}{\binom{n+M-1}{M-1}} 2^{-n D\left(\Pi_{n} \| P\right)}$

Result follows taking the limit of $-\frac{1}{n} \log$ of the RHS and LHS. \square

Pythagorean theorem

- $D(P \| Q)$ is not a metric, but it behaves like an Euclidean metric

Theorem 1: For a closed convex set of distributions $\mathcal{E} \subset \mathcal{P}$ and distribution $Q \notin \mathcal{E}$.

$$
D\left(P^{*} \| Q\right)=\min _{P \in \mathcal{E}} D(P \| Q)
$$

then

$$
D(P \| Q) \geq D\left(P \| P^{*}\right)+D\left(P^{*} \| Q\right) \quad \forall P \in \mathcal{E}
$$

- The result implies if you have a sequence $P_{n} \in \mathcal{E}$ with $D\left(P_{n} \| Q\right) \xrightarrow{n \rightarrow \infty} D\left(P^{*} \| Q\right)$, then $D\left(P_{n} \| P^{*}\right) \xrightarrow{n \rightarrow \infty} 0$.

Proof of Pythagorean theorem

- Let $P_{\lambda}=\lambda P+(1-\lambda) P^{*} \in \mathcal{E}$, since \mathcal{E} is convex, $P_{\lambda} \xrightarrow{\lambda \rightarrow 0} P^{*}$.
- Since $D\left(P^{*} \| Q\right) \leq D\left(P_{\lambda} \| Q\right)=D_{\lambda}$, we have $\left.\frac{\mathrm{d} D_{\lambda}}{\mathrm{d} \lambda}\right|_{\lambda=0} \leq 0$.

$$
\frac{\mathrm{d} D_{\lambda}}{\mathrm{d} \lambda}=\frac{\mathrm{d}}{\mathrm{~d} \lambda}\left[\sum P_{\lambda}(x) \log \frac{P_{\lambda}(x)}{Q(x)}\right]=\sum\left(P(x)-P^{*}(x)\right) \log \frac{P_{\lambda}(x)}{Q(x)}
$$

since $\sum_{x} P(x)-P^{*}(x)=0$. For $\lambda=0$ we have $P_{\lambda}=P^{*}$ and

$$
\begin{aligned}
0 & \leq\left.\frac{\mathrm{d} D_{\lambda}}{\mathrm{d} \lambda}\right|_{\lambda=0}=\sum\left(P(x)-P^{*}(x)\right) \log \frac{P^{*}(x)}{Q(x)} \\
& =\sum P(x) \log \frac{P^{*}(x)}{Q(x)} \frac{P(x)}{P(x)}-\sum P^{*}(x) \log \frac{P^{*}(x)}{Q(x)} \\
& =D(P \| Q)-D\left(P \| P^{*}\right)-D\left(P^{*} \| Q\right)
\end{aligned}
$$

Conditional Limit Theorem

Consider a set of distributions \mathcal{E}, e.g. satisfying a condition.

- Sanov: For sequence generated by distribution $Q \notin \mathcal{E}$, the probability that the sequence has a type in \mathcal{E} is asymptotically dominated by the distribution in \mathcal{E} that is closest to Q.
- The next theorem states that conditional probability of each random variable in the sequences asymptotically in probability also behaves as the dominating distribution.
Theorem 2: Let $\mathcal{E} \subset \mathcal{P}$ be a closed and convex set of distributions on \mathcal{A} and $Q \notin \mathcal{E}$ a distribution on \mathcal{A}. Let sequence $x^{n} \in \mathcal{A}^{n}$ be a realization of independently drawn random variables $X_{i} \sim Q$ and P^{*} achieve $\min _{P \in \mathcal{E}} D(P \| Q)=D\left(P^{*} \| Q\right)$. Then

$$
\operatorname{Prob}\left\{X_{1}=a \mid \hat{P}_{X^{n}} \in \mathcal{E}\right\} \xrightarrow{n \rightarrow \infty} P^{*}(a)
$$

in probability (with respect to $\left.X^{n}\right) .{ }^{2}$

[^0]
Proof of Conditional Limit Theorem

- Let $D^{*}=D\left(P^{*} \| Q\right)=\min _{P \in \mathcal{E}} D(P \| Q)$ with P^{*} unique since $D(P \| Q)$ is strictly convex in P and convex set $\mathcal{S}_{t}=\{P \in \mathcal{P}: D(P \| Q) \leq t\}$. Therewith define

$$
\mathcal{U}_{1}=\mathcal{S}_{D^{*}+\delta} \cap \mathcal{E} \quad \mathcal{U}_{2}=\mathcal{S}_{D^{*}+2 \delta} \cap \mathcal{E} \quad \mathcal{V}=\mathcal{E} \backslash \mathcal{U}_{2}
$$

- For $P \in \mathcal{V}$ we have $Q^{n}\left(\mathcal{T}_{P}^{n}\right) \leq 2^{-n D(P \| Q)} \leq 2^{-n\left(D^{*}+2 \delta\right)}$ and

$$
(n+1)^{M} Q^{n}\left(\mathcal{T}_{P}^{n}\right) \geq 2^{-n D(P \| \bar{Q})} \geq 2^{-n\left(D^{*}+\bar{\delta}\right)} \text { for } P \in \mathcal{U}_{1} .
$$

$$
\begin{aligned}
& \operatorname{Prob}\left\{\hat{P}_{X^{n}} \in \mathcal{V} \mid \hat{P}_{X^{n}} \in \mathcal{E}\right\}=\frac{Q^{n}(\mathcal{V} \cap \mathcal{E})}{Q^{n}(\mathcal{E})} \leq \frac{Q^{n}(\mathcal{V})}{Q^{n}\left(\mathcal{U}_{1}\right)}=\frac{\sum_{P \in \mathcal{V}} Q^{n}\left(\mathcal{T}_{P}^{n}\right)}{\sum_{P \in \mathcal{U}_{1}} Q^{n}\left(\mathcal{T}_{P}^{n}\right)} \\
& \quad \geq \frac{\sum_{P \in \mathcal{V}} 2^{-n\left(D^{*}+2 \delta\right)}}{\sum_{P \in \mathcal{U}_{1}} \frac{2^{-n\left(D^{*}+\delta\right)}}{(n+1)^{M}}} \geq \frac{(n+1)^{M} 2^{-n\left(D^{*}+2 \delta\right)}}{\frac{1}{(n+1)^{M}} 2^{-n\left(D^{*}+\delta\right)}}=\underbrace{(n+1)^{2 M} 2^{-n\left(D^{*}+\delta\right)}}_{{ }_{n \rightarrow \infty} 0} \\
& \Rightarrow \operatorname{Prob}\left\{\hat{P}_{X^{n}} \in \mathcal{U}_{2} \mid \hat{P}_{X^{n}} \in \mathcal{E}\right\} \rightarrow 1 \text { as } n \rightarrow \infty .
\end{aligned}
$$

- For all $P \in \mathcal{U}_{2}$ we have $D(P \| Q) \leq D^{*}+2 \delta$ so that

$$
\left.0 \leq D\left(P \| P^{*}\right)+D\left(P^{*} \| Q\right) \stackrel{D}{\leq} \quad D \| Q\right) \leq D^{*}+2 \delta
$$

Since $D\left(P^{*} \| Q\right)=D^{*}$ we have $D\left(P \| P^{*}\right) \leq 2 \delta$.

- Since this all holds as well for $\hat{P}_{x^{n}} \in \mathcal{U}_{2}$ we have for $n \rightarrow \infty$
$\operatorname{Prob}\left\{D\left(\hat{P}_{X^{n}} \| P^{*}\right) \leq 2 \delta \mid \hat{P}_{X^{n}} \in \mathcal{E}\right\}=\operatorname{Prob}\left\{\hat{P}_{X^{n}} \in \mathcal{U}_{2} \mid \hat{P}_{X^{n}} \in \mathcal{E}\right\} \rightarrow 1$
- A small relative entropy implies a small L_{1}-distance ${ }^{3}$ which implies a small $\max _{a \in \mathcal{A}}\left|\hat{P}_{X^{n}}(a)-P^{*}(a)\right|$ so that we have

$$
\operatorname{Prob}\left\{\left|\hat{P}_{X^{n}}(a)-P^{*}(a)\right| \geq \epsilon \mid \hat{P}_{X^{n}} \in \mathcal{E}\right\} \xrightarrow{n \rightarrow \infty} 0 \quad \forall a \in \mathcal{A},
$$

alternatively we can write $\operatorname{Prob}\left\{X_{1}=a \mid \hat{P}_{X^{n}} \in \mathcal{E}\right\} \rightarrow P^{*}(a)$ as $n \rightarrow \infty$ in probability for all $a \in \mathcal{A}$.
${ }^{3} D\left(P_{1} \| P_{2}\right) \geq \frac{1}{2 \log 2}\left\|P_{1}-P_{2}\right\|_{1}^{2}$ see Lemma 11.6.1 [CT].

Hypothesis Testing

- Observation of n independent drawings x_{i} of random variable X_{i} with an unknown distribution Q on $\mathcal{A}, i=1, \ldots, n$.
- Decision maker needs to decide between hypotheses
$H_{0}: Q=P_{0}$
$H_{1}: Q=P_{1}$
- Let $g: \mathcal{A}^{n} \rightarrow\left\{H_{0}, H_{1}\right\}$ denote a (non-)randomized test for sample size n characterized by decision region $\mathcal{D} \subseteq \mathcal{A}^{n}$:

$$
g\left(x^{n}\right)= \begin{cases}H_{0}, & \text { if } x^{n} \in \mathcal{D} \\ H_{1}, & \text { if } x^{n} \notin \mathcal{D}\end{cases}
$$

- Error terminology
- Type 1 error: $g\left(x^{n}\right)=H_{1}$, i.e., $x^{n} \notin \mathcal{D}$ although $Q=P_{0}$
- Type 1 error probability: $\alpha=P_{0}^{n}\left(\mathcal{D}^{c}\right)$ with $\mathcal{D}^{c}=\mathcal{A}^{n} \backslash \mathcal{D}$.
- Type 2 error: $g\left(x^{n}\right)=H_{0}$, i.e., $x^{n} \in \mathcal{D}$ although $Q=P_{1}$
- Type 2 error probability $\beta=P_{1}^{n}(\mathcal{D})$.

Neyman-Pearson Lemma

- Wish to find a test g that minimizes both probabilities of error α and β, but there is a trade-off.
- Neyman-Pearson approach is the constraint optimization problem:

$$
\min _{\mathcal{D} \subseteq A^{n}} P_{1}^{n}(\mathcal{D}) \quad \text { subject to } \quad P_{0}^{n}\left(\mathcal{D}^{c}\right) \leq \epsilon
$$

- Ratio tests $\frac{P_{0}^{n}\left(x^{n}\right)}{P_{1}^{n}\left(x^{n}\right)} \underset{H_{1}}{H_{0}} T$ will be sufficient for optimality since...

Neyman-Pearson Lemma: Let $X_{i} \stackrel{i i d}{\sim} Q$ defined on finite set \mathcal{A}, $i=1, \ldots n$. Consider the decision problem with hypothesis H_{0} : $Q=P_{0}$ and $H_{1}: Q=P_{1}$. For $T \geq 0$ define decision region

$$
\mathcal{D}_{n}(T)=\left\{x^{n} \in \mathcal{A}^{n}: \frac{P_{0}^{n}\left(x^{n}\right)}{P_{1}^{n}\left(x^{n}\right)}>T\right\}
$$

with associated error probabilities $\alpha^{*}=P_{0}^{n}\left(\mathcal{D}_{n}^{c}(T)\right)$ and $\beta^{*}=P_{1}^{n}\left(\mathcal{D}_{n}(T)\right)$. Let \mathcal{F} be any other decision region with associated error probabilities α and β. If $\alpha \leq \alpha^{*}$, then $\beta \geq \beta^{*}$.

Proof Neyman-Pearson Lemma

- Let $\mathcal{D}=\mathcal{D}_{n}(T)$ and let \mathcal{F} denote any other decision region. Let $\mathbb{1}_{\mathcal{D}}$ and $\mathbb{1}_{\mathcal{F}}$ denote corresponding indicator functions
- For any $x^{n} \in \mathcal{A}^{n}$ we have ${ }^{4}$

$$
\left.\left(\mathbb{1}_{\mathcal{D}}\left(x^{n}\right)-\mathbb{1}_{\mathcal{F}}\left(x^{n}\right)\right)\left(P_{0}\left(x^{n}\right)\right)-T \cdot P_{1}\left(x^{n}\right)\right) \geq 0
$$

- Summing over all $x^{n} \in \mathcal{A}^{n}$ and expanding the product gives

$$
\begin{aligned}
0 & \leq \sum^{\sum\left(\mathbb{1}_{\mathcal{D}} P_{0}-T \mathbb{1}_{\mathcal{D}} P_{1}-\mathbb{1}_{\mathcal{F}} P_{0}+T \mathbb{1}_{\mathcal{F}} P_{1}\right)} \\
& =\underbrace{\sum_{x^{n} \in \mathcal{D}}\left(P_{0}-T P_{1}\right)}_{=\left(1-\alpha^{*}\right)-T \beta^{*}}-\underbrace{\sum_{x^{n} \in \mathcal{F}}\left(P_{0}-T P_{1}\right)}_{=(1-\alpha)-T \beta}=T\left(\beta-\beta^{*}\right)-\left(\alpha^{*}-\alpha\right)
\end{aligned}
$$

since $T \geq 0$ it follows that if $\alpha \leq \alpha^{*}$, then $\beta \geq \beta^{*}$.

[^1]- Q: What to expect if support $\left(P_{0}\right) \cap \operatorname{support}\left(P_{1}\right) \neq \emptyset$?

Theorem 3: Let P_{0} and P_{1} be any two distributions on \mathcal{A} and suppose a sequence of sets $\mathcal{B}_{n} \subseteq \mathcal{A}^{n}$ that satisfies $P_{0}^{n}\left(\mathcal{B}_{n}\right) \geq \gamma$ for all n and a given positive $\gamma>0 .{ }^{5}$ Then

$$
\liminf _{n \rightarrow \infty} \frac{1}{n} \log P_{1}^{n}\left(\mathcal{B}_{n}\right) \geq-D\left(P_{0} \| P_{1}\right)
$$

Proof: Let $\delta_{n}=\frac{|\mathcal{A}| \log n}{n}$. Then $2^{-n \delta_{n}}=n^{-M}$ so that we have $\binom{n+M-1}{M-1} 2^{-n \delta_{n}} \leq \frac{(n+1)^{M-1}}{n^{M}} \xrightarrow{n \rightarrow \infty} 0$. For a sample x^{n} drawn $\stackrel{i i d}{\sim} P_{0}$, from a previous corollary we have $\operatorname{Prob}\left\{D\left(\hat{P}_{X^{n}} \| P_{0}\right) \geq \delta_{n}\right\} \leq\binom{ n+M-1}{M-1} 2^{-n \delta_{n}} \xrightarrow{n \rightarrow \infty} 0$. Thus,

$$
\operatorname{Prob}\left\{D\left(\hat{P}_{X^{n}} \| P_{0}\right)<\delta_{n}\right\}=\sum_{Q: D\left(Q \| P_{0}\right)<\delta_{n}} P_{0}^{n}\left(\mathcal{T}_{Q}^{n}\right) \xrightarrow{n \rightarrow \infty} 1 .
$$

[^2]- From the assumption $P_{0}^{n}\left(\mathcal{B}_{n}\right) \geq \gamma$ for all n it follows

$$
\exists n_{0}: \sum_{Q: D\left(Q \| P_{0}\right)<\delta_{n}} P_{0}^{n}\left(\mathcal{T}_{Q}^{n} \cap \mathcal{B}_{n}\right)>\frac{\gamma}{2} \quad \forall n>n_{0}
$$

- Consequently, there exists n-types Q_{n} with $D\left(Q_{n} \| P_{0}\right)<\delta_{n}$ and $P_{0}^{n}\left(\mathcal{T}_{Q_{n}}^{n} \cap \mathcal{B}_{n}\right) \geq \frac{\gamma}{2} P_{0}^{n}\left(\mathcal{T}_{Q_{n}}^{n}\right)$ for all $n>n_{0}$.
- Since sequences of the same type are equiprobable, which holds for any distribution P on \mathcal{A}, the last inequality holds also for P_{1}. Thus, for $n>n_{0}$ we have

$$
P_{1}^{n}\left(\mathcal{B}_{n}\right) \geq P_{1}^{n}\left(\mathcal{T}_{Q_{n}}^{n} \cap \mathcal{B}_{n}\right) \geq \frac{\gamma}{2} P_{1}^{n}\left(\mathcal{T}_{Q_{n}}^{n}\right) \geq \frac{\gamma}{2} \frac{1}{\binom{n+M-1}{M-1}} 2^{-n D\left(Q_{n} \| P_{1}\right)}
$$

- $D\left(Q_{n} \| P_{0}\right)<\delta_{n} \rightarrow 0$ implies $D\left(Q_{n} \| P_{1}\right) \xrightarrow{n \rightarrow \infty} D\left(P_{0} \| P_{1}\right)$

$$
\frac{1}{n} \log P_{1}^{n}\left(\mathcal{B}_{n}\right) \geq \underbrace{-\frac{1}{n} \log \left[\frac{2}{\gamma}\binom{n+M-1}{M-1}\right]}_{\substack{n \rightarrow \infty}}+\underbrace{D\left(Q_{n} \| P_{1}\right)}_{\substack{n \rightarrow \infty \\ D\left(P_{0} \| P_{1}\right)}}
$$

Testing null-hypothesis formulation

- Observation of n independent drawings from an unknown distribution P on \mathcal{A} denoted by x^{n}.
- Testing of null-hypothesis: unknown P belongs to a given set of distributions Π on \mathcal{A}
- (Non-)randomized test for samples size n is characterized by critical region $\mathcal{C} \subseteq \mathcal{A}^{n}$:
- null-hypothesis is accepted if $x^{n} \notin \mathcal{C}$ and rejected otherwise
- Error terminology
- Type 1 error: Null-hypothesis rejected although $P \in \Pi$
- Type 1 error probability is given by $P^{n}(\mathcal{C})$
- Type 2 error: Null-hypothesis accepted although $P \notin \Pi$
- Type 2 error probability $P^{n}\left(\mathcal{C}^{c}\right)$ with $\mathcal{C}^{c}=\mathcal{A} \backslash \mathcal{C}$
- Since $P \in \Pi$ is unknown we now may require tests with desired performance for all $P \in \Pi$, e.g. bounded type 1 error $P^{n}(\mathcal{C}) \leq \epsilon$ for all $P \in \Pi$ and characterize the decaying type 2 error for all $P \notin \Pi$!

Theorem 4: Consider testing the null-hypothesis that $P \in \Pi$, where $\Pi \subset \mathcal{P}$ is a closed set of distributions on \mathcal{A}. Then tests with critical region

$$
\mathcal{C}_{n}=\left\{x^{n} \in \mathcal{A}^{n}: \inf _{P \in \Pi} D\left(\hat{P}_{x^{n}}| | P\right) \geq \delta_{n}\right\} \quad \text { with } \delta_{n}=\frac{|\mathcal{A}| \log n}{n}
$$

have type 1 error probability $P^{n}\left(\mathcal{C}_{n}\right)$ not exceeding ϵ_{n}, where $\epsilon_{n} \rightarrow 0$, and for each $Q \notin \Pi$, the type 2 error probability $Q^{n}\left(\mathcal{C}_{n}^{c}\right)$ goes to 0 with exponential rate $D(\Pi \| Q)$.

- Considering the previous hypothesis testing problem deciding between distributions P_{0} and P_{1}, the result above (with $\Pi=\left\{P_{2}\right\}$) shows the existence of sets $\mathcal{B}_{n} \subset \mathcal{A}^{n}$ satisfying

$$
P_{0}^{n}\left(\mathcal{B}_{n}\right) \rightarrow 1 \quad \frac{1}{n} \log P_{1}^{n}\left(\mathcal{B}_{n}\right) \rightarrow-D\left(P_{1} \| P_{2}\right)
$$

as $n \rightarrow \infty$. This result is known as Stein's Lemma. ${ }^{6}$

[^3]Proof of theorem:

- For type 1 error, same arguments as proof of previous corollary

$$
P^{n}\left(\mathcal{C}_{n}\right)=\sum_{Q: \inf _{P \in \Pi}}^{D(Q \| P) \geq \delta_{n}} \underbrace{P^{n}\left(\mathcal{T}_{Q}^{n}\right)}_{\leq 2^{-n D(Q \| P)}} \leq\binom{ n+M-1}{M-1} 2^{-n \delta_{n}}=\epsilon_{n} \xrightarrow{n \rightarrow \infty} 0
$$

- For type 2 error, for each $Q \notin \Pi$ we have

$$
Q^{n}\left(\mathcal{C}_{n}^{c}\right)=\sum_{R: \inf _{P \in \Pi}}^{D(R \| P)<\delta_{n}} \underbrace{Q^{-n D(R \|}\left(\mathcal{T}_{R}^{n}\right)} \leq\binom{ n+M-1}{M-1} 2^{-n \xi_{n}}
$$

$$
\text { with } \xi_{n}=\inf _{R: \inf _{P \in \Pi} D(R \| P)<\delta_{n}} D(R \| Q)
$$

- Since $\lim _{n \rightarrow \infty} \xi_{n}=\inf _{P \in \Pi} D(P \| Q)=D(\Pi| | Q)$ so that

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log Q^{n}\left(\mathcal{C}_{n}^{c}\right) \leq-D(\Pi \mid Q)
$$

Combining results

- Theorem 3 can be applied using \mathcal{C}_{n}^{c} defined in Theorem 4 as sets \mathcal{B}_{n} as follows: For any $P \in \Pi$
- we have $P^{n}\left(\mathcal{C}_{n}\right) \leq \epsilon_{n}<1$ with $\epsilon_{n} \rightarrow 0$ for the type 1 error.
\Rightarrow There exists $\delta>0$ such that $\epsilon_{n} \leq 1-\delta$ so that

$$
P^{n}\left(\mathcal{C}_{n}^{c}\right)=1-P^{n}\left(\mathcal{C}_{n}\right) \geq 1-\epsilon_{n} \geq \delta>0
$$

- Thus, Theorem 3 can be applied for any $P_{1} \notin \Pi$ so that

$$
\liminf _{n \rightarrow \infty} \frac{1}{n} \log P_{1}^{n}\left(\mathcal{C}_{n}^{c}\right) \geq-D\left(\Pi \| P_{1}\right) \quad \forall P_{1} \notin \Pi
$$

- The combination of the previous with Theorem 4 results in

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log P_{1}^{n}\left(\mathcal{C}_{n}^{c}\right)=-D\left(\Pi| | P_{1}\right) \quad \forall P_{1} \notin \Pi
$$

- Hence, the test related to \mathcal{C}_{n} are asymptotically optimal. ${ }^{7}$
- Closedness of Π in Theorem 4 ensures $D\left(\Pi\left|\mid P_{1}\right)>0\right.$ if $P_{1} \notin \Pi$, i.e. exponential decay rate for all P_{2}
${ }^{7}$ Criterion $\inf _{P \in \Pi} D\left(\hat{P}_{x^{n}} \| P\right) \geq \delta_{n} \Leftrightarrow \frac{\sup _{P \in \Pi} P^{n}\left(x^{n}\right)}{Q\left(x^{n}\right)} \leq 2^{-n \delta_{n}}$ with $Q=P_{x^{n}}$.

Bayesian setting - Chernonff information

- Consider the two hypothesis setting with prior probabilities.
- $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} Q$ with hypotheses $H_{0}: Q=P_{0}$ and $H_{1}: Q=P_{1}$ with prior probabilities π_{0} and π_{1}
- Objective is probability of error $P_{e}^{(n)}=\pi_{0} \alpha_{n}+\pi_{1} \beta_{n}$ with

$$
D^{*}=\lim _{n \rightarrow \infty}-\frac{1}{n} \log \min _{\mathcal{D}_{n} \subset \mathcal{A}^{n}} P_{e}^{(n)}
$$

Theorem 5: (Chernoff) The best achievable exponent for the Bayesian probability of error is given by

$$
D^{*}=D\left(P_{\lambda^{*}} \| P_{1}\right)=D\left(P_{\lambda^{*}} \| P_{2}\right)
$$

with $P_{\lambda}(x)=\frac{P_{0}^{\lambda}(x) P_{1}^{1-\lambda}(x)}{\sum_{a \in \mathcal{A}} P_{1}^{\lambda}(a) P_{2}^{1-\lambda}(a)}$ and λ^{*} the value of λ such that $D\left(P_{\lambda^{*}} \| P_{0}\right)=D\left(P_{\lambda^{*}} \| P_{1}\right)$.

- It can be shown that D^{*} is equivalent to the standard definition of Chernoff information

$$
C\left(P_{1}, P_{2}\right)=-\min _{0 \leq \lambda \leq 1} \log \left[\sum_{a \in \mathcal{A}} P_{0}^{\lambda}(a) P_{1}^{1-\lambda}(a)\right]
$$

Proof

- The Neyman-Pearson optimal test can be written as (HW):

$$
D\left(\hat{P}_{x^{n}} \| P_{1}\right)-D\left(\hat{P}_{x^{n}} \| P_{0}\right) \underset{H_{1}}{\stackrel{H_{0}}{\gtrless}} \frac{1}{n} \log T
$$

- Let \mathcal{D}_{n} denote the set of types associated with hypothesis H_{0} and \mathcal{D}_{n}^{c} is the set of types associated with hypothesis H_{1}, then we have $\alpha_{n}=P_{0}^{n}\left(\mathcal{D}_{n}^{c}\right)$ and $\beta_{n}=P_{1}^{n}\left(\mathcal{D}_{n}\right)$
- $\min _{P} D\left(P \| P_{1}\right)$ subject to $D\left(P \| P_{0}\right)-D\left(P \| P_{1}\right) \geq \frac{1}{n} \log T$ provides type $\hat{P}_{x^{n}} \in \mathcal{D}_{n}$ closest to P_{1} but still deciding for H_{0}
- Simple calculus shows that P_{λ} is minimizer [CT (11.200)] where λ is chosen such that $D\left(P_{\lambda} \| P_{0}\right)-D\left(P_{\lambda} \| P_{1}\right)=\frac{1}{n} \log T$
- From Sanov's theorem we have
- $-\frac{1}{n} \log \alpha_{n}=-\frac{1}{n} \log P_{0}^{n}\left(\mathcal{D}_{n}^{c}\right) \xrightarrow{n \rightarrow \infty} D\left(\mathcal{D}_{n}^{c} \| P_{0}\right)=D\left(P_{\lambda} \| P_{0}\right)$
- $-\frac{1}{n} \log \beta_{n}=-\frac{1}{n} \log P_{1}^{n}\left(\mathcal{D}_{n}\right) \xrightarrow{n \rightarrow \infty} D\left(\mathcal{D}_{n} \| P_{1}\right)=D\left(P_{\lambda} \| P_{1}\right)$

$$
\lim _{n \rightarrow \infty}-\frac{1}{n} \log P_{e}^{(n)}=\min \left\{D\left(P_{\lambda} \| P_{0}\right), D\left(P_{\lambda} \| P_{1}\right)\right\}
$$

\Rightarrow The optimal T is where $D\left(P_{\lambda} \| P_{0}\right)=D\left(P_{\lambda} \| P_{1}\right) \Rightarrow \lambda^{*}$.

[^0]: ${ }^{2}$ Convergence in probability: $\lim _{n \rightarrow \infty} \operatorname{Prob}\left\{\left|Z_{n}-Z\right| \geq \epsilon\right\}=0$ for $\epsilon>0$.

[^1]: ${ }^{4}$ If $x^{n} \in \mathcal{D}$ both factors are ≥ 0 and if $x^{n} \notin \mathcal{D}$, then both factors are ≤ 0.

[^2]: ${ }^{5}$ If \mathcal{B}^{n} is the decision region, then type 1 error is non-trivially bounded $P_{0}^{n}\left(\mathcal{B}_{n}^{c}\right)=1-P_{0}^{n}\left(\mathcal{B}_{n}\right) \leq 1-\gamma<1 \forall n$.

[^3]: ${ }^{6}$ Stein's Lemma can be also proved using a weak typicality argument so that it applies to continuous distributions with finite relative entropy, see [CT].

