## Infotheory for Statistics and Learning

Lecture 12

- The method of types ${ }^{1}$
- Definition empirical distribution and type class
- Connection between types and probability theory
- Large deviation via types
- Joint types, V-shell, typicality


## Empirical distribution and type class

## Notation: Let

- $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots a_{M}\right\}$ denote a finite set with $|\mathcal{A}|=M$;
- $x^{n}=\left(x_{1}, x_{2} \ldots, x_{n}\right) \in \mathcal{A}^{n}$ denote a sequence of length $n$;
- frequency and relative freq. of letter $a \in \mathcal{A}$ in sequence $x^{n}$ :

$$
N\left(a \mid x^{n}\right)=\sum_{i=1}^{n} \mathbb{1}\left\{x_{i}=a\right\} \quad \hat{P}_{x^{n}}(a)=\frac{1}{n} N\left(a \mid x^{n}\right)
$$

Empirical distribution of sequence $x^{n}$ is the probability vector $\left(\hat{P}_{x^{n}}\left(a_{1}\right), \hat{P}_{x^{n}}\left(a_{2}\right), \ldots, \hat{P}_{x^{n}}\left(a_{M}\right)\right)$. Set of all empirical distributions of length $n$ is denoted by $\mathbb{P}_{n}=\left\{\hat{P}_{x^{n}}: x^{n} \in \mathcal{A}^{n}\right\}$.
Type and type class is $P \in \mathbb{P}_{n}$ with $\mathcal{T}_{P}^{n}=\left\{x^{n}: \hat{P}_{x^{n}}=P\right\}$.

- Example: $x^{n}=(1,3,2,1,3,1) \in\{1,2,3\}^{6} \rightarrow \hat{P}_{x^{n}}=\left(\frac{3}{6}, \frac{1}{6}, \frac{2}{6}\right)$
- Example: For $P=\left(\frac{3}{6}, \frac{1}{6}, \frac{2}{6}\right)$ we have type class $\mathcal{T}_{P}^{n}=$ $\{(1,1,1,2,3,3),(1,1,2,1,3,3),(1,1,2,3,1,3), \ldots,(3,3,2,1,1,1)\}$
- Note, the number of sequences grows exponentially $M^{n}$.
- Q: For sequence length $n$, how many types can we have?

Lemma: (HW) For the number possible $n$-types we have ${ }^{2}$

$$
\left|\mathbb{P}_{n}\right|=\binom{n+M-1}{M-1} \leq(n+1)^{M-1} \leq(n+1)^{M}
$$

- Key observation 1: We have only a sub-exponential growth of number of types!
- Key observation 2: For iid sequences, the probability of sequences of the same type are equal!
$\Rightarrow$ For the computation of the probability of a set of sequences of the same type we need the cardinality of the set.
- Q: How many sequences are in each type class $\mathcal{T}_{P}^{n}$ ?

[^0]- Q: How many sequences are in each type class $\mathcal{T}_{P}^{n}$ ?

Lemma: ${ }^{3}$ For any $P \in \mathbb{P}_{n}$ we have

$$
\frac{1}{\binom{n+M-1}{M-1}} 2^{n H(P)} \leq\left|\mathcal{T}_{P}^{n}\right| \leq 2^{n H(P)}
$$

Proof: Let $k_{i}=N\left(a_{i} \mid x^{n}\right)$ for $1 \leq i \leq M$. The number of sequences of length $n$ with $k_{i}$ times element $a_{i}$ is given by the number of distinct ways to permute a multiset ${ }^{4}$ of $n$ elements

$$
\left|\mathcal{T}_{P}^{n}\right|=\frac{n!}{k_{1}!k_{2}!\cdots \cdots k_{M}!}
$$

- Next, find upper and lower bounds on RHS.

[^1]- Multinomial theorem gives

$$
\begin{equation*}
n^{n}=\left(k_{1}+k_{2}+\cdots+k_{M}\right)^{n}=\sum_{\substack{n+M-1 \\ M-1}}^{j_{1}+j_{2}+\cdots+j_{M}=n} \mathrm{terms} \underbrace{}_{\substack{(*) \\ \leq \frac{n!}{k_{1}!k_{2}!\cdots k_{M}!} k_{1}^{k_{1}} k_{2}^{k_{2} \cdots k_{M}^{k_{M}}}} \frac{n!}{j_{1}!j_{2}!\cdots j_{M}!} k_{1}^{j_{1}} k_{2}^{j_{2}} \cdots k_{M}^{j_{M}}} \tag{1}
\end{equation*}
$$

$(*)$ since for $k_{i} \leq j_{i}$ we have $\frac{k_{i}!}{j_{i}!} k_{i}^{j_{i}-k_{i}} \leq 1$ and for $k_{i}>j_{i}$ we have $\frac{j_{i}!}{k_{i}!} k_{i}^{k_{i}-j_{i}} \geq 1$ it follows $\prod_{i: k_{i} \leq j_{i}} \frac{k_{i}!}{j_{i}!} k_{i}^{j_{i}-k_{i}} \leq \prod_{i: k_{i}>j_{i}} \frac{j_{i}!}{k_{i}!} k_{i}^{k_{i}-j_{i}}$

- Divide (1) by $k_{1}^{k_{1}} k_{2}^{k_{2}} \cdots k_{M}^{k_{M}}$, then LHS gives

$$
\frac{n^{n}}{k_{1}^{k_{1}} k_{2}^{k_{2}} \cdots k_{M}^{k_{M}}}=\prod_{i=1}^{M}\left(\frac{k_{i}}{n}\right)^{-k_{i}}=\prod_{i=1}^{M} P\left(a_{i}\right)^{-n P\left(a_{i}\right)}=2^{\log \prod_{i=1}^{M} P\left(a_{i}\right)^{-n P\left(a_{i}\right)}}=2^{n H(P)}
$$

- Recall $\frac{n!}{k_{1}!k_{2}!\cdots k_{M}!}=\left|\mathcal{T}_{P}^{n}\right|$ so that bounds follow from (1) with
- Upper bound: RHS lower bounded by largest term in sum.
- Lower bound: RHS upper bounded by taking $\binom{n+M-1}{M-1}$-times largest term in sum.


## Connection between types and probability theory

- Let $P^{n}$ denote distribution of an iid sequence according to $P$, i.e., $P^{n}\left(x^{n}\right)=\prod_{i=1}^{n} P\left(x_{i}\right)$
- Entropy $H\left(\hat{P}_{x^{n}}\right)$ is called empirical entropy of $x^{n}$.

Lemma: ${ }^{5}$ For any $x^{n} \in \mathcal{A}^{n}$ and distribution $P$ on $\mathcal{A}$ we have

$$
P^{n}\left(x^{n}\right)=2^{-n\left[H\left(\hat{P}_{x^{n}}\right)+D\left(\hat{P}_{x^{n}} \| P\right)\right]} .
$$

Proof:

$$
\begin{aligned}
P^{n}\left(x^{n}\right) & =\prod_{i=1}^{n} P\left(x_{i}\right)=2^{\sum_{i=1}^{n} \log P\left(x_{i}\right)}=2^{\sum_{a \in \mathcal{A}} N\left(a \mid x^{n}\right) \log P(a)} \\
& =2^{-n\left[\sum_{a \in \mathcal{A}} \frac{N\left(a \mid x^{n}\right)}{n} \log \frac{1}{P(a)}\right]}=2^{-n\left[\sum_{a \in \mathcal{A}} \hat{P}_{x^{n}}(a) \log \frac{1}{P(a)} \frac{\hat{P}_{x^{n}}(a)}{P_{x^{n}(a)}}\right]} \\
& =2^{-n\left[H\left(\hat{P}_{x^{n}}\right)+D\left(\hat{P}_{x^{n}} \| P\right)\right]}
\end{aligned}
$$

${ }^{5} H\left(\hat{P}_{x^{n}}\right)+D\left(\hat{P}_{x^{n}} \| P\right)=-\sum_{a \in \mathcal{A}} \hat{P}_{x^{n}}(a) \log P(a)$ is called inaccuracy.

- A slight reformulation gives us the following lemma.

Lemma: For any distribution $P$ on $\mathcal{A}$ and any $n$-type $Q$ we have

$$
\frac{P^{n}\left(x^{n}\right)}{Q^{n}\left(x^{n}\right)}=2^{-n D(Q \| P)}, \quad x^{n} \in \mathcal{T}_{Q}^{n}
$$

Proof: For $x^{n} \in \mathcal{T}_{Q}^{n}$ we have $H\left(\hat{P}_{x^{n}}\right)=H(Q)$ and $D\left(\hat{P}_{x^{n}} \| P\right)=D(Q \| P)$ so that the previous lemma gives

$$
Q^{n}\left(x^{n}\right)=2^{-n\left[H\left(\hat{P}_{x^{n}}\right)+D\left(\hat{P}_{x^{n}} \| Q\right)\right]}=2^{-n[H(Q)+D(Q \| Q)]}=2^{-n H(Q)}
$$

and therewith

$$
P^{n}\left(x^{n}\right)=2^{-n\left[H\left(\hat{P}_{x^{n}}\right)+D\left(\hat{P}_{x^{n}} \| P\right)\right]}=\underbrace{2^{-n[H(Q)+D(Q \| P)]}}_{=Q^{n}\left(x^{n}\right) 2^{-n D(Q \| P)}}
$$

- In particular, the lemma implies $P^{n}\left(\mathcal{T}_{Q}^{n}\right)=\sum_{x^{n} \in \mathcal{T}_{Q}^{n}} P^{n}\left(x^{n}\right)=$

$$
2^{-n D(Q \| P)} \sum_{x^{n} \in \mathcal{T}_{Q}^{n}} Q^{n}\left(x^{n}\right)=2^{-n D(Q \| P)} Q\left(\mathcal{T}_{Q}^{n}\right)
$$

- The next lemma combines the previous results.

Lemma: For any distribution $P$ on $\mathcal{A}$ and any $n$-type $Q$ we have

$$
\frac{1}{\binom{n+M-1}{M-1}} 2^{-n D(Q \| P)} \leq P^{n}\left(\mathcal{T}_{Q}^{n}\right) \leq 2^{-n D(Q \| P)}
$$

Proof:

$$
\begin{gathered}
P^{n}\left(\mathcal{T}_{Q}^{n}\right)=\sum_{x^{n} \in \mathcal{T}_{Q}^{n}} P^{n}\left(x^{n}\right)=\sum_{x^{n} \in \mathcal{T}_{Q}^{n}} Q^{n}\left(x^{n}\right) 2^{-n D(Q \| P)} \leq 2^{-n D(Q \| P)} \\
P^{n}\left(\mathcal{T}_{Q}^{n}\right)=\sum_{x^{n} \in \mathcal{T}_{Q}^{n}} \underbrace{Q^{n}\left(x^{n}\right)}_{=2^{-n H(Q)}} 2^{-n D(Q \| P)}=\underbrace{\left|\mathcal{T}_{Q}^{n}\right|} 2^{-n[H(Q)+D(Q \| P)]} \\
\geq \frac{1}{\binom{n+M-1}{M-1}} 2^{H(Q)}
\end{gathered}
$$

- In particular $\frac{1}{\binom{n+M-1}{M-1}} \leq P^{n}\left(\mathcal{T}_{P}^{n}\right) \leq 1$.
- If $P \neq Q$, then $P^{n}\left(\mathcal{T}_{Q}^{n}\right) \xrightarrow{n \rightarrow \infty} 0$ exponentially fast.
- As a direct consequence we have the following:

Corollary: Let $\hat{P}^{n}$ be the empirical distribution of a sequence of length $n$ iid randomly drawn according to distribution $P$. Then

$$
\operatorname{Prob}\left\{D\left(\hat{P}_{X^{n}} \| P\right) \geq \delta\right\} \leq\binom{ n+M-1}{M-1} 2^{-n \delta} \quad \forall \delta>0
$$

Proof:

$$
\operatorname{Prob}\left\{D\left(\hat{P}_{X^{n}} \| P\right) \geq \delta\right\}=\sum_{Q: D(Q \| P) \geq \delta} \underbrace{P^{n}\left(\mathcal{T}_{Q}^{n}\right)}_{\leq 2^{-n D(Q \| P)}} \leq\binom{ n+M-1}{M-1} 2^{-n \delta}
$$

- Note ${ }^{6}$ that we have $\binom{n+M-1}{M-1} 2^{-n \delta} \leq 2^{(M-1) \log n} 2^{-n \delta} \xrightarrow{n \rightarrow \infty} 0$.

[^2]
## Large deviation via types

- Let $D(\Pi \| P)=\inf _{Q \in \Pi} D(Q \| P)$ for a set of distributions $\Pi$.
- Q: Can we otherwise make an asymptotic statement?

Sanov's Theorem: Let $\Pi$ be a set of distribution on $\mathcal{A}$ whose closure is equal to the closure of its interior. ${ }^{7}$ Then for the empirical distribution $\hat{P}_{n}$ of a sample sequence iid of strictly positive distribution $P$ on $\mathcal{A}$ we have

$$
-\frac{1}{n} \log \operatorname{Prob}\left\{\hat{P}_{n} \in \Pi\right\} \xrightarrow{n \rightarrow \infty} D(\Pi \| P) .
$$

Proof: Let $\Pi_{n}=\Pi \cap \mathbb{P}_{n}$ be the set of possible $n$-types in $\Pi$, then we have $\operatorname{Prob}\left\{\hat{P}_{n} \in \Pi_{n}\right\}=P^{n}\left(\cup_{Q \in \Pi_{n}} \mathcal{T}_{Q}^{n}\right)$ and

- $\frac{1}{\binom{n+M-1}{M-1}} 2^{-n D\left(\Pi_{n} \| P\right)} \leq P^{n}\left(\cup_{Q \in \Pi_{n}} \mathcal{T}_{Q}^{n}\right) \leq\binom{ n+M-1}{M-1} 2^{-n D\left(\Pi_{n} \| P\right)}$
- Result follows taking the limit of $-\frac{1}{n} \log$ of the RHS and LHS.

Convergence is guaranteed due to assumption on $\Pi$.
${ }^{7}$ For any set $\Pi$ we have $\lim \sup _{n \rightarrow \infty} \frac{1}{n} \log \operatorname{Prob}\left\{\hat{P}_{n} \in \Pi\right\} \leq-D(\Pi| | P)$.

## Example

- Consider $f: \mathcal{A} \rightarrow \mathbb{R}$ and $\Pi=\left\{Q: \sum_{a \in \mathcal{A}} Q(a) f(a)>\alpha\right\}$
- $\hat{P}_{x^{n}} \in \Pi$ for sequence $x^{n} \in \mathcal{A}^{n}$ if $\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)>\alpha$
- since $\sum_{a \in \mathcal{A}} \hat{P}_{n}(a) f(a)=\frac{1}{n} \sum_{a \in \mathcal{A}} N\left(a \mid x^{n}\right) f(a)=\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)$
- Using Sanov's theorem we have large deviation result

$$
-\frac{1}{n} \log \operatorname{Prob}\left\{\frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right)>\alpha\right\} \xrightarrow{n \rightarrow \infty} D(\Pi \| P)
$$

- Here $D(\Pi \| P)=D(\operatorname{cl}(\Pi) \| P)=\min _{Q: \sum_{a} Q(a) f(a) \geq \alpha} D(Q \| P)$
- For $\alpha>\sum_{a} P(a) f(a)$ we have $D(\Pi \| P)>0^{8}$
$\Rightarrow \operatorname{Prob}\left\{\frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right)>\alpha\right\}$ decays to 0 exponentially fast!
- Remaining task is to compute (or bound) $D(\Pi \| P)$ for a specific function $f$ and distribution $P .{ }^{9}$
${ }^{8}$ Note, if $\alpha \leq \sum_{a} P(a) f(a)$, then $P \in \Pi$ so that $D(\Pi \| P)=D(P \| P)=0$.
${ }^{9}$ Basically same idea is used in achievability proofs in coding theorems.


## Joint Type

- Besides $\mathcal{A}$ consider $\mathcal{B}=\left\{b_{1}, b_{2}, \ldots, b_{N}\right\}$ with $|\mathcal{B}|=N$.
- Consider two sequences $x^{n} \in \mathcal{A}^{n}$ and $y^{n} \in \mathcal{B}^{n}$ of length $n$.
- Frequency and relative freq. of $(a, b) \in \mathcal{A} \times \mathcal{B}$ in $\left(x^{n}, y^{n}\right)$

$$
N\left(a, b \mid x^{n}, y^{n}\right)=\sum_{i=1}^{n} \mathbb{1}\left\{x_{i}=a, y_{i}=b\right\}, \quad \hat{P}_{x^{n} y^{n}}(a, b)=\frac{N\left(a, b \mid x^{n}, y^{n}\right)}{n}
$$

Joint type is defined as type of the sequence $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$, in other words the relative frequency $\hat{P}_{x^{n} y^{n}}$ (aka empirical distribution).

- Example: $\mathcal{A}=\{1,2,3\}$ and $\mathcal{B}=\{\triangle, \square\}$

$$
\begin{aligned}
& \left(x^{6}, y^{6}\right)=((1, \triangle),(3, \triangle),(2, \square),(1, \square),(3, \square),(1, \triangle)) \\
& \quad \cdot \hat{P}_{x^{n} y^{n}}(1, \triangle)=\frac{2}{6}, \hat{P}_{x^{n} y^{n}}(2, \triangle)=0, \hat{P}_{x^{n} y^{n}}(2, \square)=\frac{1}{6}, \ldots
\end{aligned}
$$

- Joint types are often given in terms of the type of $x^{n}$ and a stochastic matrix ${ }^{10} V: \mathcal{A} \rightarrow \mathcal{B}$,

$$
\hat{P}_{x^{n} y^{n}}(a, b)=\hat{P}_{x^{n}}(a) V(b \mid a)
$$

${ }^{10} \hat{P}_{x^{n} y^{n}}$ uniquely specifies $V(b \mid a)$ for which $N\left(a \mid x^{n}\right) \neq 0$.

## Conditional type and $V$-shell

Conditional type: Sequence $y^{n} \in \mathcal{B}^{n}$ has conditional type $V$ given sequence $x^{n} \in \mathcal{A}^{n}$ if we have

$$
N\left(a, b \mid x^{n}, y^{n}\right)=N\left(a \mid x^{n}\right) V(b \mid a) \quad \forall a \in \mathcal{A}, b \in \mathcal{B} .
$$

$V$-shell: For any given $x^{n} \in \mathcal{A}^{n}$ and stochastic matrix $V$, the set of all sequences $y^{n} \in \mathcal{B}^{n}$ having conditional type $V$ given $x^{n}$ is called $V$-shell of $x^{n}$ and is denoted by $\mathcal{T}_{V}^{n}\left(x^{n}\right)$.

- $\mathcal{T}_{V}^{n}\left(x^{n}\right)$ is uniquely defined, even if $N\left(a \mid x^{n}\right)=0$ for some $a$.

Notation:

- $H(V \mid P)=\sum_{a \in \mathcal{A}} P(a) H(V(\cdot \mid a))$ denotes the average of entropies of rows of $V$ with respect to a distribution $P$ on $\mathcal{A}$.
- $D\left(V||W| P)=\sum_{a \in \mathcal{A}} P(a) D(V(\cdot \mid a) \| W(\cdot \mid a))\right.$ denotes the average of divergences between rows of stochastic matrices $V$ and $W$ with respect to a distribution $P$ on $\mathcal{A}$.
- Most previous results can be straightforwardly generalized.
- The number of sequences in a $V$-shell of $x^{n}$ is given by:

Lemma: For every $x^{n} \in \mathcal{A}$ and stochastic matrix $V: \mathcal{A} \rightarrow \mathcal{B}$ such that $\mathcal{T}_{V}^{n}\left(x^{n}\right) \neq \emptyset$ with $|\mathcal{A}|=M$ and $|\mathcal{B}|=N$ we have

$$
(n+1)^{-M N} 2^{n H\left(V \mid \hat{P}_{x^{n}}\right)} \leq\left|\mathcal{T}_{V}^{n}\left(x^{n}\right)\right| \leq 2^{H\left(V \mid \hat{P}_{x^{n}}\right)}
$$

Proof: Note, $\left|\mathcal{T}_{V}^{n}\left(x^{n}\right)\right|$ depends on $x^{n}$ only through its type $\hat{P}_{x^{n}}$ ! Thus consider vector

$$
x^{n}=(\underbrace{a_{1}, \ldots, a_{1}}_{N\left(a_{1} \mid x^{n}\right) \text { times }}, \underbrace{a_{2}, \ldots, a_{2}}_{N\left(a_{2} \mid x^{n}\right) \text { times }}, \ldots, \underbrace{a_{M} \ldots, a_{m}}_{N\left(a_{M} \mid x^{n}\right) \text { times }})
$$

Then $\mathcal{T}_{V}^{n}\left(x^{n}\right)$ is Cartesian product of sets of sequences of type $V\left(\cdot \mid a_{i}\right)$ on $\mathcal{B}^{N\left(a_{i} \mid x^{n}\right)}$. For each $a_{i}$ apply previous lemma $\prod_{a_{i} \in \mathcal{A}}\left(N\left(a_{i} \mid x^{n}\right)+1\right)^{-N} 2^{N\left(a_{i} \mid x^{n}\right) H\left(V\left(\cdot \mid a_{i}\right)\right)} \leq\left|\mathcal{T}_{V}^{n}\left(x^{n}\right)\right|$ $\leq \prod_{a_{i} \in \mathcal{A}} 2^{N\left(a_{i} \mid x^{n}\right) H\left(V\left(\cdot \mid a_{i}\right)\right)}$.

- ... the inaccuracy result becomes:

Lemma: For every $x^{n} \in \mathcal{A}$ and stochastic matrices $V: \mathcal{A} \rightarrow \mathcal{B}$ and $W: \mathcal{A} \rightarrow \mathcal{B}$ such that $\mathcal{T}_{V}^{n}\left(x^{n}\right) \neq \emptyset$ we have

$$
\begin{gathered}
W^{n}\left(y^{n} \mid x^{n}\right)=2^{-n\left(D\left(V| | W \mid \hat{P}_{x^{n}}\right)+H\left(V \mid \hat{P}_{x^{n}}\right)\right)} \quad \text { if } y^{n} \in \mathcal{T}_{V}\left(x^{n}\right) \\
\frac{1}{(n+1)^{N M}} 2^{-n D\left(V| | W \mid \hat{P}_{x^{n}}\right)} \leq W^{n}\left(\mathcal{T}_{V}^{n}\left(x^{n}\right) \mid x^{n}\right) \leq 2^{-n D\left(V \| W \mid \hat{P}_{x^{n}}\right)}
\end{gathered}
$$

Proof idea: The results can be similarly deduced from the previous results as previously using

$$
W^{n}\left(y^{n} \mid x^{n}\right)=\prod_{a_{i} \in \mathcal{A}, b_{j} \in \mathcal{B}} W\left(b_{j} \mid a_{i}\right)^{N\left(a_{i}, b_{j} \mid x^{n}, y^{n}\right)}
$$

## Typical sequences

- Coding results can be derived using types (see Wolfowitz).
- Recently they are more often derived using the concept of (strong) typical sequences, which is very closely related to the concept of types. ${ }^{11}$

Typical sequences: For any distribution $P$ on $\mathcal{A}$, a sequence $x^{n} \in \mathcal{A}^{n}$ is called $P$-typical with constant $\delta$ if

$$
\left|\frac{1}{n} N\left(a \mid x^{n}\right)-P(a)\right| \leq \delta \quad \forall a \in \mathcal{A}
$$

[^3]
[^0]:    ${ }^{2}$ A type is described by a vector $\left(N\left(a_{1} \mid x^{n}\right), \ldots, N\left(a_{M} \mid x^{n}\right)\right) \in[0: n]^{M}$.

[^1]:    ${ }^{3}$ Note that we write $H(P)$ for entropy $H(X)$ when $\mathrm{RV} X$ is distributed according to $P$. A stronger result can be obtained using the Stirling formula (HW). A weaker result can be obtained using $\left|\mathbb{P}_{n}\right| \leq(n+1)^{M}$ in the proof, which is often sufficient if we are interested in the asymptotic only.
    ${ }^{4} \mathrm{~A}$ multiset is a set where multiple instances of an element are allowed.

[^2]:    ${ }^{6}$ In comparison, convergence of the weak law of large numbers:
    $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \rightarrow \mu$ in probability when $n \rightarrow \infty$, i.e. $\lim _{n \rightarrow \infty} \operatorname{Prob}\left\{\left|\bar{X}_{n}-\mu\right|>\epsilon\right\}=0$ for any $\epsilon>0$.

[^3]:    ${ }^{11}$ More can be learned about this in our other graduate courses Information Theory, Multiuser Information Theory, or Information-theoretic Security.

