IT for Statistics and Learning

2024
Assignment 12
Assigned: Thu, Feb 8, 2024
Due: before the lecture on Thu, Feb 15, 2024 T. Oechtering

Problem 12.1: Complete the proof. Show that for the number of possible n-types we have
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Problem 12.2: Stirling’s formula. Show that for the size of 75 we have
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with s(P) is the number of elements a € A with P(a) > 0 and 0 < J(n, P) < 1. Note that
P(a) < L if P(a) > 0. Use Robbins’ sharpening of Stirling’s formula :
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Problem 12.3: Large deviation. Let P be any set of probability distributions on A and let
Pr. be the set of those distributions P € P which are types of sequences in A". Show that for
every distribution @ on A we have
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Problem 12.4: V-shell. Every y™ € B™ in the V-shell of an ™ € A" has the same type @
where Q(b) is defined as

Q(b) =Y Pun(a)V(bla).
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(i) Show that 7y/(z") # T even if all rows of the matrix V' are equal to @ (unless z"
consists of identical elements).

(ii) Show that if P,n = P then
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where the mutual information is defined as I(P; V) = H(Q)—H (V|P) with roles P = Px
and V = Ple



