
The TUFF train scheduler

1

The TUFF train scheduler
Two duration trip scheduling on multi directional track networks

Per Kreuger, Mats Carlsson, Jan Olsson,
Thomas Sjöland, Emil Åström

Swedish Institute of Computer Science (SICS)
Box 1263, SE-164 29 Kista, Sweden

Abstract

This work describes a constraint model for scheduling train trips on a network of
tracks used in both directions. We argue that a generalization of a job-shop schedul-
ing formulation can drastically decrease the problem size. Preliminary complexity
and performance results and a set of examples of schedules generated by our imple-
mentation are presented. The system was implemented in the Oz programming sys-
tem and some experiences and opinions on this choice are noted in the paper.

1 Introduction

This paper describes a scheduling application implemented in the Oz programming lan-
guage [Sm 95] using DFKI Oz [ST 95] as a development environment. The first version of
this application was implemented in about three months using the Oz programming system
as a prototyping environment. The system uses the finite domain libraries in Oz and the
modelling of the domain was implemented using the object layer of Oz. We extract a con-
straint model from the object representation, solve it and feed the result to the gui sub system
which was implemented with the Oz embedded Tk package.

Oz rich higher order functional syntax provides convenient tools for manipulating the
data structures of the constraint model. The tread package and its CCP style implicit syn-
chronization mechanisms can be used to implement constraint propagators (solvers) and
very intricate search behaviours, although these aspects are not described in the present
state of this work. The system is currently being extended in a multitude of directions, still
using Oz as a development environment.

To schedule train trips on a network of multi directed tracks is a problem that resembles
but also differs in important ways from other typical scheduling tasks. This paper describes
a constraint model and solver for scheduling trains on a network of single tracks used in
both directions. This kind of problem can be modelled as a job-shop scheduling (JSS)
problem [CP 89, AC 91] considering train trips as jobs to be scheduled on tracks regarded as
resources.

Each train trip traversing a track represents a task. Since in general tracks can be used in
both directions the JSS formulation requires each trip to demand exclusive use of the track
as a resource for the duration of the track traversal. In order to achieve reasonable sched-
ules with such a model it is necessary to keep traversal times and hence individual tracks
short. This results in very large scheduling problems (in terms of the number of tasks).

By generalizing this model to take into account two distinct durations for each task we
are able to use a much coarser net without losing precision. Since train trips travelling in

The TUFF train scheduler

2

the same direction no longer require exclusive use of the track resource for the duration of
the traversal time the network can be used more efficiently without increasing the granular-
ity of the network representation.

The problem can be concisely stated as:

• Schedule a set of train trips over a fixed network of predetermined paths where trains
travel in both directions on single tracks connecting nodes where trains can meet and
overtake

• Maintain reasonable bounds on waiting and total times

The rest of the paper is organized as follows: First comes an introductory note illustrating a
geometric interpretation of our model. This is followed by a short description of the network
representation used and how the problem specifications are built and maintained in the form
of a data structure (object representation) we call plans. Then we describe the constraint
model used and formulate constraints stating soundness criteria of the generated schedules.
This section is concluded with a discussion of the enumeration strategy used and some pos-
sibilities for improvement in this area.

We then briefly consider some complexity and performance issues and conclude the
paper with some notes on limitations in the model, some possible lines of future work and
with a set of examples.

2 A geometric intuition

The following two diagrams illustrate the difference between a job-shop scheduling formu-
lation and our model. We use an adaptation of diagrams traditionally used to represent train
schedules. Time is on the axis and the height of each track represents the spatial distance
between the end points of each track.

In the JSS formulation (fig. 1) there is only one duration associated with each start time.
This duration is illustrated as the width of each task rectangle. Rectangles on a single track
must not overlap and track traversals belonging to a single trip follows in sequence.

In the second diagram (fig. 2) the width of each rhombus represents the headway while
its extension in the axis represents the traversal time. The angle of the rhombus repre-
sents the speed of each individual traversal. In the example below we have chosen to give
slow trains a long headway and quick trains a short headway.

(Fig. 1)

x

x

1:3

T 2

JSS formulation

T 4

T 1

T 3

1:1

1:4

1:22:3

2:2

2:43:1

3:2

3:4

3:3

4:1

4:3

4:2

4:4

2:1

The TUFF train scheduler

3

(Fig. 2)

It is easy to see that for comparable total times the number of trains that can be scheduled
with JSS on an identical network is significantly lower. It is possible to achieve a schedule
similar to the second one using a network with a larger number of (shorter) tracks but then
the size of the scheduling problem increases accordingly.
If job-shop scheduling can be seen as the problem of packing the rectangles of the regular
Gantt diagram under the precedence constraints imposed by the jobs, the single track train
scheduling problem can be seen as the corresponding truncated triangle packing problem.

3 Network representation

A railroad network is represented as three interrelated sets:

• Locations (nodes)

• Tracks (arcs)

• Predetermined paths

Each location is characterized by a unique name, geographical coordinates, a set of tracks
adjoined to it and a set of paths passing through it while a track encodes the two locations
at its end points, a unique name, a length and a maximum speed at which trains may traverse
it. Each path, on the other hand, is determined by a unique name and an ordered sequence
of track/direction pairs.

4 Problem representation - plans

We use the notion plan to denote a data structure representing a scheduling problem in terms
of a given network and a set of required train trips, each with constraints on departure and
arrival times at a subset of the locations passed by the trip.

Trips are determined by a unique name, the path the train is required to traverse, a speci-
fications of constraints on arrival and departure times, maximum speeds on involved tracks
and average speed for involved vehicles.

The scheduling problem is extracted from the plan as a set of trips each consisting of a
set of time slots representing the track traversals of the trip in the required schedule. Fur-
thermore the set of slots associated with each track and path is extracted.

Each slot encodes a unique name, the name of a train trip traversing a track, the name of
the traversed track, the direction of the track traversal, headway and traversal times.

2:2

T 2

Distinct headway and traversal time

T 4

T 1

T 3

3:1 4:46:12:4 5:1

2:3 1:23:2 4:35:2 6:2

1:1

2:1

3:3 4:2 5:3 1:3 6:3

4:1 3:4 5:4 6:4 1:4

The TUFF train scheduler

4

The scheduling problem can now be solved by imposing precedence constraints for all
departure and arrival times associated with each trip, serializing the slots associated with
each track and searching for schedules consistent with these constraints.

In this process we can choose to constrain also the accumulated waiting and total time
for each trip and the total and accumulated waiting time required to execute the entire
schedule.

There is a trade-off between these two quality measures of the generated schedule such
that plans with high demands on (short) waiting times will, in general, have a longer total
time and vice versa. See the examples of section 10.1 for an illustration of this phenome-
non.

5 Constraint model

Slots represent traversals of tracks by trips at specific time intervals. We use a vector of finite
domain variables to represent departure times for such traversals and associate with each
slot a variable and not one but two durations:

• headway: (time) distance between any two trains departing from some location in the
same direction on single track

• traversal time: time during which no two trains in opposite direction may use a single
track

This model is similar to those used for job-shop scheduling (see e.g. [CP 89, AC 91]) but dif-
fers essentially in the use of two durations for each task. The model reduces to JSS if head-
way is identical to traversal time i.e. if no two trains can ever simultaneously use the same
track.

5.1 Constraints

There are two distinct sets of constraints used in the model. The first set is for maintaining
the precedence of the track traversals for each single trip. The only uncertainty here is how
much slack (waiting time) to allow at each node, for each trip and for the complete schedule.

The second set of constraints is used to enforce a satisfiable serialization of all the slots
associated with each track. To summarize:

1. For each trip all track traversals must follow in the sequence defined by its path and not
overlap

2. For each track

• Any two trains travelling in the same direction must respect headway (even if speeds
are different)

• Any two trains in opposite direction must not simultaneously use the same (single)
track

We will now examine the formulation of these constraints in some detail.

5.1.1 Precedence (trip) constraints

For all slots associated with a trip select uniquely:

The TUFF train scheduler

5

• One finite domain variable to represent departure time

• One finite domain variable to represent waiting time (slack) at the location at the end
of the traversal

and state:

• One sum constraint per slot to represent precedence between departure and arrival
times and upper bounds on waiting times

More formally, assume that we have for each trip unique finite domain variables represent-
ing requirements on departure and arrival times, and , a vector
of slots representing the track traversals of the trip. Assume furthermore that this vector is
ordered by the path the trip traverses. Let the slots be represented as records using “.” as a
field access operation and use the fields , , and
to represent the departure time, the waiting time at the end of the traversal, the traversal time
and headway of the slot respectively. The first two contain unique finite domain variables
while the second two are fixed durations associated with the slot. The following equality
between the departure time of the first slot and that of the whole trip must then hold:

furthermore for each slot in the vector but the last the following equality must hold:

For the last slot this is replaced by:

The waiting times at each location can furthermore be limited either individually or by sums
over the waiting times associated with each and every trip. In addition we may state limits
on the latest arrival time allowed in a particular schedule. These two parameters can, as we
shall later see, be used to select schedules with different properties.

5.1.2 Resource (track) constraints

Define a disjointness relation as:

.

Then, for each track traversed by more than one trip:

1. For each pair of trips traversing a single track in same direction let one disjointness con-
straint ensure that headway is respected at both departure and arrival.

2. For each pair of trains traversing the track in opposite directions let one disjointness
constraint ensure that trains will not collide.

This second case corresponds to exclusive use of the track as resource and is equivalent to
the situation in job-shop scheduling. The first case however uses essentially the fact that we
consider two distinct durations for each slot.

DepTimei ArrTimei Tripi

depTime waitTime travTime headway

Tripi1.depTime DepTimei=

Tripij

Tripij.depTime Tripij.travTime Tripij.waitTime+ + Tripi j 1+().depTime=

Tripin

Tripin.depTime Tripin.travTime+ ArrTimei=

Disjoint T1 D1 T2 D2, , ,() T1 D1+ T2≤() T2 D2+ T1≤()∨⇔

The TUFF train scheduler

6

Assume that we have for each track a set of slots representing trips traversing the
track. Then for each pair of slots in the set:

1. If the two trips traverse the track in the same direction the following relation must hold

where

Note that this formalization in itself does not guarantee that two trains running in the
same direction will not run into each other. This is the case only when the headways
(for each slot) exceeds the maximum traversal time variance.

2. If the two trips traverse the track in opposite directions instead the following relation
must hold

Note the similarity with the standard job-shop scheduling formulation in the simple case of
avoiding collisions (2). The choice between the two cases is completely determined by the
relative direction of the traversals and does not in itself introduce indeterminacy into the
model.

5.2 The constraint solver

Since the model uses disjunctions in the disjointness constraints for the tracks, to enumerate
the departure times generally involves search. We have investigated two distinct methods to
do this.

• The most straightforward approach is to enumerate the departure times themselves
in some order, rely on propagation to further restrict the domains of remaining depar-
ture times and to detect failure in the case of an inconsistent instantiation.

• An alternative approach is to first serialize the slots for each track. The propagation
behaviour of the disjunction propagators used then ensures that enumeration of the
departure times can be done without search if the minimum or maximum value of
each domain is consistently chosen (See e.g. [BP 95]). This possibility and its impli-
cations is further discussed in section 8.1.

5.2.1 Enumeration of departure times

The performance figures given in section 7 below was achieved with an approach using the
number of constraints associated with each variable as a variable ordering criterion and
bisecting the domain of each departure time trying first the lower half of the domain for each
variable.

Clearly such a strategy does not lend itself well to optimization. The search tree for this
formulation is simply too large. However given reasonable upper bounds on waiting times
it is a quick way to find reasonable solutions. Unfortunately search explodes when the

Tracki
Trackik Trackil(,)

Disjoint Trackik.depTime Distanceikl Trackil.depTime Distanceilk, , ,()

Distanceikl
max Headwayik Headwayik Trackik.travTime Trackil.travTime–+,()

=

Disjoint Trackik.depTime Trackik.travTime Trackil.depTime Trackil.travTime, , ,()

The TUFF train scheduler

7

bounds place us close to optimal total time which effectively excludes branch and bound
search for optimal solutions.

6 Some complexity results

For most realistic problems it is not absolutely clear what is a good problem size measure.
The number of trips for a given net is a measure which comes naturally to mind but the
number of slots for problems sharing such a size varies irregularly with the particular paths
selected for each problem, at least for small problems sizes (number of trips less than 100
on a network of about 45 nodes).

Even if we use the number of slots as a size measure, the complexity varies with the
actual selection of paths in the problem. This phenomenon arises because the number of
constraints grows quadratically with the number of slots associated with each single track.
Some problems distribute their slots evenly over the tracks. These are relatively easy prob-
lems. Difficult problems have a few very “tight” tracks with a large number of slots. For
such problems the number of constraints can grow very quickly.

The number of variables used to represent the problem are first of all 2 for each slot: One
for the departure time and one for the waiting time. From a complexity point of view the
second is redundant but in practice it is essential.

There is furthermore one arithmetic equality constraint stated for each slot. So far every-
thing is linear. The real complexity comes from the serialization of the track traversals. We
state one disjointness (disjunctive) constraint for each pair of trips traversing it. This opera-
tion amounts to finding each subset of size 2 of the slots associated with a track, i.e.

where the measure is the number of trips traversing a single track.
For most realistic problems average and maximum will vary greatly from track to

track and from plan to plan. Some typical averages (for randomly generated problems) are
listed in (Figs. 3 and 4) below.

7 Performance

Performance figures are rough and since the main limitation is memory the problem size we
can handle is not really large enough to do a more thorough empirical time complexity anal-
ysis.

We currently schedule 200 trips traversing on the average 6 tracks each in a network con-
sisting of 45 tracks where the average number of trips passing a single track is 28 and the
number of variables and constraints used are 5541 and 73281 respectively. A first schedule
is found in about 74 seconds on a 120 Mhz Pentium PC with 40 MB of RAM memory.

This is searching for a “good” but not necessarily optimal solution (in terms of total time
to execute the complete plan) where individual waiting times are bounded by a fixed (5%)
fraction of the traversal time. Optimal solutions for smaller examples can be found by

N

2
 N N 1–()

2
---------------------- O N

2
()= =

N
N

The TUFF train scheduler

8

(manually) decreasing an upper bound for the total time but for larger examples (
trips) search times tends to increase very fast close to an optimal solution.

On a 248MHz Sun Ultra Sparc using 512 Mb of RAM memory we schedule 1 000 trips
in a network of 45 tracks where the average number of trips passing a single track is 138
and the number of variables and constraints used are 9 227 and 586 201 respectively in
about 25 minutes. This approaches a realistic size for the highly practical problem of
scheduling all major train movements in the Swedish rail network during 24 hours. The
real net is of course larger1.

The corresponding figures for some other sample problems are given in (Figs. 3 and 4)
below.

(Fig. 3)

(Fig. 4)

8 Future work

Since there is currently a lot of time and mainly memory spent in search, search behaviour
has to be analysed in more detail. Both domain dependent heuristics and general search pro-
cedures such as hill climbing techniques or limited discrepancy search ([HG 95]) should be
investigated.

An alternate approach would be to attempt to define global constraints for our model
using e.g. edge finding and transitive closure techniques. Some initial experiments in this
direction seem to indicate that the required schedules are too sparse (under-constrained) for
these techniques to provide significant improvements in propagation behaviour but this
possibility should be investigated further. Since memory consumption seems to be the main

1. An early estimate seem to indicate about 250 meeting points and about 300 tracks in the rail
network.

> 60

120 MHz Pentium using 16 Mb of memory
No. of trips 25 50 75 100 125 150 175 200
No. of tracks used 44 45 45 45 45 45 45 45
No. of slots 145 345 450 532 728 901 1 066 1 245
Av. no. of trips/track 3,29 7,67 10,00 11,82 16,18 20,02 23,69 27,67
Av. no. tracks/trip 5,80 6,90 6,00 5,32 5,82 6,01 6,09 6,23
No. of Vars 222 497 677 834 1105 1353 1593 1847
No. of constraints 472 2 126 3 565 4 870 8 652 12 962 17 814 24 427
Propagator invocations 8 725 73 664 128 403 195 074 491 555 866 931 1 349 553 2 085 021
Time (seconds) 2,1 4,0 5,9 11,9 15,2 19,0 30,5 73,9

248 MHz Ultra sparc using 512 Mb of memory
No. of trips 200 400 600 800 1000
No. of tracks used 45 45 45 45 45
No. of slots 1 245 2 490 3 735 4 980 6 225
Av. no. of trips/track 27,67 55,33 83,00 110,67 138,33
Av. no. tracks/trip 6,23 6,23 6,23 6,23 6,23
No. of Vars 1847 3692 5537 7382 9227
No. of constraints 24 427 95 260 212 500 376 147 586 201
Propagator invocations 2 085 021 15 014 919 48 477 686 115 295 819 223 643 484
Time (seconds) 9 73 290 716 1500

The TUFF train scheduler

9

limiting factor of how large problems we can attack, global constraints may also be useful
to reduce the overall memory consumption.

The model lacks limitation on vehicle and staff resources as well as limits on how many
trains that can actually meet in any one location. These are serious limitations in practice
and essential for this kind of technique to be useful in solving real life problems. There is
as far as we can see nothing in our model that would not extend naturally to this more com-
plex domain but we have not yet seriously addressed these issues.

In practice it will probably also be both possible and necessary to subdivide the complete
problem into several smaller and relatively independent sub-problems. For larger realistic
problems such as producing schematic schedules several months in advance problem sub-
division is most likely the only possible approach. The standard way to do this is to subdi-
vide the problem into that of producing several weekly and daily schedules and to do
detailed scheduling for separate geographic regions given non local constraints only on e.g.
interregional trains.

8.1 Enumeration of boolean variables representing serialization choices

We have been experimenting with serializing the slots for each track before actually assign-
ing values to the departure times but have so far not been able to reproduce the performance
results given with the naive strategy above. It appears that enumerating departure times gives
better propagation thus eliminating most of the search while a bad serialization choice early
in the enumeration process can potentially generate a huge amount of search much later in
the enumeration process.

We believe however that this approach will eventually prove to be superior. First the
search tree in this formulation identifies all solutions that do not result in a reordering of
the slots within a given track. This means that it will be more realistic to search for optimal
or close to optimal solutions, possibly using the naive approach to determine reasonable
upper bounds.

Second it is possible with such an approach to formulate more intricate search strategies.
It may e.g. be a good idea to first serialize the tracks with the largest number of slots or
with the largest number of constraints summed over all its slots. Such tracks would repre-
sent the tight resources in the network.

It could also be a good idea to choose first to serialize long tracks or to use the fact that
the upper bound on total time is to a large extent dependent on a few relatively long trips, at
least for the kind of problem sizes considered so far.

To formulate a good strategy using such ideas is of course not trivial and presently repre-
sents future work. It may also turn out that generalizing existing methods to implement
global constraints for job-shop scheduling problems e.g. edge finding (see e.g. [BP 95])
and/or transitive closure is in fact feasible. This would represent a complementary
approach to refining the present results.

Choosing to represent potential schedules by a boolean vector also allows for more flexi-
ble rescheduling and incremental updates of exiting schedules. Investigations of these
aspects of constraint programming is currently under way within our group.

The TUFF train scheduler

10

9 Conclusions

We have described a novel constraint model for train scheduling and evaluated a correspond-
ing solver on a number of more or less realistically sized problems. With a relatively
straightforward solver we have been able to attack problem sizes approaching those appear-
ing in actual practice. It is notable also that even though the simple solver we used in the
performance tests does not lend itself well to optimization, the schedules found are in gen-
eral quite close to manually found optima.

Our modelling approach seem therefore to represent a major improvement of more tradi-
tional alternatives.

The choice to use Oz as developmentmade it possible for us to quickly implement a first
prototype of the scheduler. In the currently ongoing work to extend the system to handle
resource limitations of various kinds we have chosen to continue to use Oz.

The main features used include:

• The object system was used to model the different aspects of the problem domain.

• The higher order functional syntax and concurrent guarded clause conditionals of the
language gave us high level tools to manipulate the models, and customize the built
in constraint solving libraries to suit our domain.

• The Tk interface provides an adequate gui development environment.

We used the finite domain library extensively and found it to very efficient. It does not yet
include some of more sophisticated global constraints found in e.g. the CHIP system but it
is possible to extend the constraint packages both on level of Oz it self and in C using Oz’s
constraint propagator interface.

The Ilog system provide a richer gui development environment but the advantage of the
high level constructs present in Oz was clearly an advantage, at least in the early develop-
ment face. We are currently collecting experience with using Oz in a more long term and
ambitious project.

The Oz system allowed us to implement a first prototype very quickly and is well suited
to the explorative development work that we pursue in our current projects.

10 Sample schedules

The following diagrams illustrate some sample schedules generated by our implementation.
The implementation was done completely in the Oz programming language [Sm 95, ST 95]
using the embedded Tcl/Tk interface for the GUI parts. The diagrams encode time on the
axis and spatial distance between locations on a given path on the axis. The width of the
rhombi representing the trip’s track traversals encode the headway for each individual trip
on the given track. The angle of the rhombi sides encodes the speed of the train during the
traversal with angles larger than encoding trips moving in opposite direction.

10.1 Trade-off between total time and waiting time

The trade-off between total time and waiting time is nicely illustrated by the following three
schedules.

x
y

90°

The TUFF train scheduler

11

In the first (fig. 5) we have set a very tight limit on the waiting time for all trains at the
intermediate location (Södertälje). So tight, in fact, as to exclude any meetings at this loca-
tion. In the second schedule (fig. 6) we loosen this bound slightly to allow a maximum of
two trains to meet at this location. In the last (fig. 7), finally, we allow an arbitrarily long
waiting time thus allowing all three trains to meet at this point. Note how the total time
decreases throughout this process.

Note also that headway is respected even where trains travel at different speeds. The
steeper the angle the quicker the train.

(Fig. 5)

(Fig. 6)

(Fig. 7)

10.2 Some larger schedules

The following examples illustrate some larger schedules and how much bounds on the wait-
ing times influences the sparseness of the schedules. The following diagrams represent iden-
tical fragments (all traversals of the tracks of one particular path) of 2 different 60 trip
schedules. The first (fig. 8) with low tolerance on waiting times, the second (fig. 9) with high
tolerance on waiting times. Note also how the total time is decreased with about 25% by
bounding waiting times to allow approximately three trips to meet at each location.

The TUFF train scheduler

12

(Fig. 8)

(Fig. 9)

11 Acknowledgements

The work reported in this paper is one of the results of a pilot study done in cooperation with
the Swedish State Railway (SJ). The motivation behind this cooperation has been to evaluate
the feasibility of using modern constraint techniques for realistically sized problems in their
domain.

We would like to thank Jolanta Drott and her group at the Swedish State Railway (SJ) for
presenting us with the problem and for good cooperation in the TUFF project, on which the
present results are built.

The TUFF train scheduler

13

12 References

AC 91
Applegate, D.; Cook, W. “A computational Study of the Job-Shop Scheduling Problem”.
In ORSA Journal of computing, 3(2):149-156, 1991.

BP 95
Baptiste, P.; Pape, C. L. “A theoretical and Experimental Comparison of Constraint
Propagation Techniques for Disjunctive Scheduling”. In the “Proceedings of the Four-
teenth International Joint Conference on Artificial Intelligence Montreal, Quebec” pp.
400-606, 1995.

CL 94
Caseau, Y.; Laburthe, F. “Improved CLP Scheduling with Task Intervals”. In Proceed-
ings of the Eleventh international Conference on Logic Programming, Santa Margherita
Ligure, Italy, 1994.

CP 89
Carlier, J.; Pinson, E. “An Algorithm for solving the Job-Shop Scheduling Problem”. In
the Management Science 35(2) 164-176, 1989.

CP 94
Carlier, J.; Pinson, E. “Adjustments of Heads and Tails for the Job-Shop Scheduling
Problem”. In the European Journal of Operational Research, 78:146-161, 1994.

HG 95
Harvey, W. D.; Ginsberg, M. L. “Limited Discrepancy Search”. In the Proceedings of the
International Joint Conference on artificial Intelligence, pp 607-613,1995.

Sm 95
Smolka, G. “The Oz programming model” In van Leeuwen, J, ed. “Computer Science
Today”. In Lecture Notes in Computer Science volume 1000: 324-343. Springer Verlag,
Berlin, 1995.

ST 95
Smolka, G.; Treinen, R. Eds. “DFKI Oz Documentation Series”. Deutsches Forschungs-
zentrum für Künstliche Intelligenz GmbH, Stuhlsatzenhausweg 3, 66123 Saarbrücken,
Germany 1995.

SC 93
Smith, S. F.; Cheng, C. C. “Slack-Based Heuristics for Constraint Satisfaction Schedul-
ing”. In proceedings of the Eleventh National Conference on Artificial Intelligence, pp.
139-144, American Association for Artificial Intelligence, Washington, 1993.

VH 89
Van Hentenryck, P. “Constraint Satisfaction in Logic Programming”. Programming
Logic Series. The MIT Press, Cambridge, MA, 1989.

XSS 92
Xiong, Y.; Sadeh, N; Sycara, K. “Intelligent Backtracking Techniques for Job-Shop
Scheduling” In the Proceedings of the Third International Conference on Principles of
Knowledge Representation and Reasoning, 1992.

