Asymptotically Mean Stationary (A.M.S.)	Supremus Typicality in the Weak Sense	Proof of the AEP	Thanks / References
00000	OO	000	000

The Asymptotical Equipartition Property of Supremus Typicality in the Weak Sense

Sheng Huang and Mikael Skoglund

Communication Theory Electrical Engineering KTH Royal Institute of Technology Stockholm, Sweden

> March 13, 2014 Internal Seminar

> > - **(**

-

Asymptotically Mean Stationary (A.M.S.)	Supremus Typicality in the Weak Sense	Proof of the AEP 000	Thanks / References 000
Outline			

- Asymptotically Mean Stationary (A.M.S.)
 - A Starting Example
 - A.M.S. Dynamical Systems and A.M.S. Random Processes
 - Induced Transformations and Reduced Processes

2 Supremus Typicality in the Weak Sense

- Supremus Typicality in the Weak Sense
- Asymptotical Equipartition Property

Proof of the AEP

- Supporting Results
- The Proof

4 Thanks / References

- Thanks
- Bibliography

3

Asymptotically Mean Stationary (A.M.S.)	Supremus Typicality in the Weak Sense	Proof of the AEP	Thanks / References
0000	00	000	000
A Starting Example	2		

Let $\{\alpha,\beta,\gamma\}$ be the state space of the Markov (i.i.d.) process with transition matrix

$$\mathbf{P} = \begin{bmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{bmatrix}.$$
 (1)

For

$$\mathbf{x} = (\alpha, \beta, \gamma, \alpha, \beta, \gamma, \alpha, \beta, \gamma), \tag{2}$$

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへぐ

it is easy to verify that x is a strongly Markov 5/12-typical sequence.

Asymptotically Mean Stationary (A.M.S.)	Supremus Typicality in the Weak Sense	Proof of the AEP	Thanks / References
●○○○○		000	000
A Starting Example			

Let $\{\alpha,\beta,\gamma\}$ be the state space of the Markov (i.i.d.) process with transition matrix

$$\mathbf{P} = \begin{bmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{bmatrix}.$$
 (1)

For

$$\mathbf{x} = (\alpha, \beta, \gamma, \alpha, \beta, \gamma, \alpha, \beta, \gamma), \tag{2}$$

it is easy to verify that ${\bf x}$ is a strongly Markov 5/12-typical sequence. However, the subsequence

$$\mathbf{x}_{\{\alpha,\gamma\}} = (\alpha, \gamma, \alpha, \gamma, \alpha, \gamma) \tag{3}$$

is no long a strongly Markov 5/12-typical sequence, because the *stochastic* complement [Mey89] $\mathbf{S}_{\{\alpha,\gamma\}} = \begin{bmatrix} 0.5 & 0.5\\ 0.5 & 0.5 \end{bmatrix}$ and

$$\left|\frac{\text{the number of subsequence } (\alpha, \alpha)\text{'s in } \mathbf{x}_{\{\alpha, \gamma\}}}{6} - 0.5\right| = |0 - 0.5| > \frac{5}{12}.$$
 (4)

Asymptotically Mean Stationary (A.M.S.)	Supremus Typicality in the Weak Sense	Proof of the AEP	Thanks / References
○●○○○		000	000
AMS Random Pro	Cesses (1)		

Given a probability space $(\Omega, \mathscr{F}, \mu)$ and a measurable transformation $T: \Omega \to \Omega$ (not necessarily probability preserving), the tuple $(\Omega, \mathscr{F}, \mu, T)$ is called a *dynamical system* (or *ergodic system*).

A.M.S. Random Processes (I)

Given a probability space $(\Omega, \mathscr{F}, \mu)$ and a measurable transformation $T: \Omega \to \Omega$ (not necessarily probability preserving), the tuple $(\Omega, \mathscr{F}, \mu, T)$ is called a *dynamical system* (or *ergodic system*). Let $X: \Omega \to \mathscr{X}$ (e.g. \mathscr{X} is a finite set) be a measurable function. Then

$$\{X^{(n)}\} = \{X(T^n)\}$$
(5)

(日) (同) (三) (三) (三) (○) (○)

defines a random process with state space $\mathscr X$ and pdf/pmf

$$p(x^{(0)}, x^{(1)}, \cdots, x^{(n-1)}) = \mu\left(\bigcap_{i=0}^{n-1} T^{-i}(X^{-1}(x^{(i)}))\right).$$
(6)

Asymptotically Mean Stationary (A.M.S.) ©©OO
Supremus Typicality in the Weak Sense OO
Supremus Typicality in the

A.M.S. Random Processes (I)

Given a probability space $(\Omega, \mathscr{F}, \mu)$ and a measurable transformation $T: \Omega \to \Omega$ (not necessarily probability preserving), the tuple $(\Omega, \mathscr{F}, \mu, T)$ is called a *dynamical system* (or *ergodic system*). Let $X: \Omega \to \mathscr{X}$ (e.g. \mathscr{X} is a finite set) be a measurable function. Then

$$\{X^{(n)}\} = \{X(T^n)\}$$
(5)

defines a $\mathit{random\ process}$ with state space $\mathscr X$ and pdf/pmf

$$p\left(x^{(0)}, x^{(1)}, \cdots, x^{(n-1)}\right) = \mu\left(\bigcap_{i=0}^{n-1} T^{-i}\left(X^{-1}\left(x^{(i)}\right)\right)\right).$$
(6)

Example 1

Given a random process $\{X^{(n)}\}$ with sample space. Let $\Omega = \prod_{i=-\infty}^{\infty} \mathscr{X}$, T be a time shift and X be the coordinate function

$$X: (\cdots, x^{(-1)}, x^{(0)}, x^{(1)}, \cdots) \mapsto x^{(0)}.$$
(7)

Define μ satisfying $\mu\left(\bigcap_{i=0}^{n-1} T^{-i}\left(X^{-1}\left(x^{(i)}\right)\right)\right) = p\left(x^{(0)}, x^{(1)}, \cdots, x^{(n-1)}\right)$. By the Kolmogorov Extension Theorem, $\{X^{(n)}\} = \{X(T^n)\}$.

Asymptotically Mean Stationary (A.M.S.)	Supremus Typicality in the Weak Se	nse Proof of the AEP	Thanks / References
00000	00	000	000
A.M.S. Random Pro	ocesses (II)		

 $(\Omega, \mathscr{F}, \mu, T)$ is said to be asymptotically mean stationary (a.m.s.) ¹ [GK80] if there exists a measure $\overline{\mu}$ on (Ω, \mathscr{F}) satisfying

$$\overline{\mu}(B) = \lim_{m \to \infty} \frac{1}{m} \sum_{i=0}^{m} \mu(T^{-i}B), \forall B \in \mathscr{F}.$$
(8)

¹The a.m.s. condition is interesting because it is a sufficient and necessary condition for the Point-wise Ergodic Theorem to hold [GK80, Theorem 1]. (3×3)

Asymptotically Mean Stationary (A.M.S.) OOO A.M.S. Random Processes (II)

 $(\Omega, \mathscr{F}, \mu, T)$ is said to be *asymptotically mean stationary* (*a.m.s.*) ¹ [GK80] if there exists a measure $\overline{\mu}$ on (Ω, \mathscr{F}) satisfying

$$\overline{\mu}(B) = \lim_{m \to \infty} \frac{1}{m} \sum_{i=0}^{m} \mu(T^{-i}B), \forall B \in \mathscr{F}.$$
(8)

Obviously, if $(\Omega, \mathscr{F}, \mu, T)$ is stationary, i.e. $\mu(B) = \mu(T^{-1}B)$, then it is a.m.s.. In addition, $(\Omega, \mathscr{F}, \mu, T)$ is said to be ergodic if

$$T^{-1}B = B \implies \mu(B) = 0 \text{ or } \mu(B) = 1.$$
 (9)

¹The a.m.s. condition is interesting because it is a sufficient and necessary condition for the Point-wise Ergodic Theorem to hold [GK80, Theorem 1]. $\langle \cdot \rangle = 0$

Asymptotically Mean Stationary (A.M.S.) OOO A.M.S. Random Processes (II)

 $(\Omega, \mathscr{F}, \mu, T)$ is said to be *asymptotically mean stationary* (*a.m.s.*) ¹ [GK80] if there exists a measure $\overline{\mu}$ on (Ω, \mathscr{F}) satisfying

$$\overline{\mu}(B) = \lim_{m \to \infty} \frac{1}{m} \sum_{i=0}^{m} \mu(T^{-i}B), \forall B \in \mathscr{F}.$$
(8)

Obviously, if $(\Omega, \mathscr{F}, \mu, T)$ is stationary, i.e. $\mu(B) = \mu(T^{-1}B)$, then it is a.m.s.. In addition, $(\Omega, \mathscr{F}, \mu, T)$ is said to be ergodic if

$$T^{-1}B = B \implies \mu(B) = 0 \text{ or } \mu(B) = 1.$$
 (9)

The random process $\{X^{(n)}\} = \{X(T^n)\}$ is said to be *a.m.s.* (stationary/ergodic) if $(\Omega, \mathscr{F}, \mu, T)$ is a.m.s. (stationary/ergodic).

¹The a.m.s. condition is interesting because it is a sufficient and necessary condition for the Point-wise Ergodic Theorem to hold [GK80, Theorem 1]. (3 = 3 = 3)

Asymptotically Mean Stationary (A.M.S.)

Supremus Typicality in the Weak Sense

Proof of the AEP

Thanks / References 000

(日) (同) (目) (日) (日) (0) (0)

Induced Transformations and Reduced Processes (I)

Definition 2

A dynamical system $(\Omega, \mathcal{F}, \mu, T)$ is said to be *recurrent* (*conservative*) if $\mu \left(B - \bigcap_{i=0}^{\infty} \bigcup_{j=i}^{\infty} T^{-j}B\right) = 0, \forall B \in \mathcal{F}.$

Asymptotically Mean Stationary (A.M.S.)

Supremus Typicality in the Weak Sense

Proof of the AEP

Thanks / References 000

Induced Transformations and Reduced Processes (I)

Definition 2

A dynamical system $(\Omega, \mathcal{F}, \mu, T)$ is said to be *recurrent* (*conservative*) if $\mu \left(B - \bigcap_{i=0}^{\infty} \bigcup_{j=i}^{\infty} T^{-j}B\right) = 0, \forall B \in \mathcal{F}.$

Given a recurrent system $(\Omega, \mathscr{F}, \mu, T)$ and $A \in \mathscr{F}$ $(\mu(A) > 0)$, one can define a new transformation T_A on $(A_0, \mathscr{A}, \mu|_{\mathscr{A}})$, where $A_0 = A \cap \bigcap_{i=0}^{\infty} \bigcup_{j=i}^{\infty} T^{-j}A$ and $\mathscr{A} = \{A_0 \cap B | B \in \mathscr{F}\}$, such that

$$T_{A}(x) = T^{\psi_{A}^{(1)}(x)}(x), \forall x \in A_{0},$$
(10)

where

$$\psi_{A}^{(1)}(x) = \min\left\{i \in \mathbb{N}^{+} | T^{i}(x) \in A_{0}\right\}$$
(11)

is the first return time function.

- ($A_0, \mathscr{A}, \mu|_{\mathscr{A}}, T_A$) forms a new dynamical system;
- **2** T_A is called an *induced transformation* of $(\Omega, \mathscr{F}, \mu, T)$ with respect to A [Kak43].

Asymptotically Mean Stationary (A.M.S.) Supremus Typicality in the Weak Sense Proof of the AEP Thanks / References 000 000 000 000 000 000 000 000 000

Induced Transformations and Reduced Processes (II)

Let $\{X^{(n)}\}$ be a random process with state space \mathscr{X} . A reduced process $\{X^{(k)}_{\mathscr{Y}}\}$ of $\{X^{(n)}\}$ with sub-state space $\mathscr{Y} \subseteq \mathscr{X}$ is defined to be $\{X^{(k)}_{\mathscr{Y}}\} = \{X^{(n_k)}\}$, where

$$n_k = \begin{cases} \min\{n \ge 0 | X^{(n)} \in \mathscr{Y}\}; & k = 0, \\ \min\{n > n_{k-1} | X^{(n)} \in \mathscr{Y}\}; & k > 0. \end{cases}$$

(日) (同) (目) (日) (日) (0) (0)

Induced Transformations and Reduced Processes (II)

Let $\{X^{(n)}\}$ be a random process with state space \mathscr{X} . A reduced process $\{X^{(k)}_{\mathscr{Y}}\}$ of $\{X^{(n)}\}$ with sub-state space $\mathscr{Y} \subseteq \mathscr{X}$ is defined to be $\{X^{(k)}_{\mathscr{Y}}\} = \{X^{(n_k)}\}$, where

$$n_k = \begin{cases} \min\{n \ge 0 | X^{(n)} \in \mathscr{Y}\}; & k = 0, \\ \min\{n > n_{k-1} | X^{(n)} \in \mathscr{Y}\}; & k > 0. \end{cases}$$

Assume that $\{X^{(n)}\} = \{X(T^n)\}$ defined by $(\Omega, \mathscr{F}, \mu, T)$ and the measurable function $X : \Omega \to \mathscr{X}$, and let $A = X^{-1}(\mathscr{Y})$. It is easily seen that $\{X^{(k)}_{\mathscr{Y}}\}$ is essentially the random process $\{X(T^k_A)\}$ defined by the system

$$\left(A_0, A_0 \cap \mathscr{F}, \frac{1}{\mu(A)} \mu|_{A_0 \cap \mathscr{F}}, T_A\right)$$
(12)

and X.

Asymptotically	Mean	(A.M.S.)

Supremus Typicality in the Weak Sense

Proof of the AEP

3

Supremus Typicality in the Weak Sense

Let $\mathbf{x}_{\mathscr{Y}}$ be the subsequence of $\mathbf{x} = \left[x^{(1)}, x^{(2)}, \cdots, x^{(n)}\right] \in \mathscr{X}^n$ formed by all those $x^{(l)}$'s that belong to $\mathscr{Y} \subseteq \mathscr{X}$ in the original ordering. $\mathbf{x}_{\mathscr{Y}}$ is called a *reduced subsequence* of \mathbf{x} with respect to \mathscr{Y} .

イロト 不得 とくき とくき とうき

Supremus Typicality in the Weak Sense

Let $\mathbf{x}_{\mathscr{Y}}$ be the subsequence of $\mathbf{x} = \left[x^{(1)}, x^{(2)}, \cdots, x^{(n)}\right] \in \mathscr{X}^n$ formed by all those $x^{(l)}$'s that belong to $\mathscr{Y} \subseteq \mathscr{X}$ in the original ordering. $\mathbf{x}_{\mathscr{Y}}$ is called a *reduced subsequence* of \mathbf{x} with respect to \mathscr{Y} .

Definition 3 (Supremus Typicality in the Weak Sense [HS14])

Let $\{X^{(n)}\}$ be a recurrent a.m.s. ergodic process with state space \mathscr{X} . A sequence $\mathbf{x} \in \mathscr{X}^n$ is said to be *Supremus* ϵ -typical with respect to $\{X^{(n)}\}$ for some $\epsilon > 0$, if

$$|\mathbf{x}_{\mathscr{Y}}|(H_{\mathscr{Y}}-\epsilon) < -\log p_{\mathscr{Y}}(\mathbf{x}_{\mathscr{Y}}) < |\mathbf{x}_{\mathscr{Y}}|(H_{\mathscr{Y}}+\epsilon), \forall \ \emptyset \neq \mathscr{Y} \subseteq \mathscr{X}, \ (13)$$

where $p_{\mathscr{Y}}$ and $H_{\mathscr{Y}}$ are the joint distribution and entropy rate of the reduced process $\left\{X_{\mathscr{Y}}^{(k)}\right\}$ of $\{X^{(n)}\}$ with sub-state space \mathscr{Y} , respectively.

Asymptotically Mean Stationary (A.M.S.) 00000 Supremus Typicality in the Weak Sense

Proof of the AEP

Thanks / References

Asymptotical Equipartition Property

Designate $S_{\epsilon}(n, \{X^{(n)}\})$ as the set of all Supremus ϵ -typical sequences with respect to $\{X^{(n)}\}$ in \mathscr{X}^n . Obviously, $S_{\epsilon}(n, \{X^{(n)}\})$ is a subset of all classical ϵ -typical sequences [SW49].

イロト イポト イヨト イヨト

3

Asymptotically Mean Stationary (A.M.S.) 00000 Supremus Typicality in the Weak Sense

Proof of the AEP

Thanks / References

Asymptotical Equipartition Property

Designate $S_{\epsilon}(n, \{X^{(n)}\})$ as the set of all Supremus ϵ -typical sequences with respect to $\{X^{(n)}\}$ in \mathscr{X}^n . Obviously, $S_{\epsilon}(n, \{X^{(n)}\})$ is a subset of all classical ϵ -typical sequences [SW49].

(日) (同) (日) (日)

Theorem 4 (AEP of Weak Supremus Typicality [HS14])

In Definition 3, $\forall \eta > 0$, there exists some positive integer N₀, such that

$$\mathsf{Pr}\left\{\left[X^{(1)}, X^{(2)}, \cdots, X^{(n)}\right] \notin \mathcal{S}_{\epsilon}(n, \{X^{(n)}\})\right\} < \eta,$$

for all $n > N_0$.

Asymptotically Mean Stationary (A.M.S.)	Supremus Typicality in the Weak Sense	Proof of the AEP	Thanks / References
00000	OO	●○○	
Supporting Results			

Theorem 5 ([HS13b])

If $(\Omega, \mathscr{F}, \mu, T)$ is recurrent a.m.s., then $(A_0, \mathscr{A}, \mu|_{\mathscr{A}}, T_A)$ is a.m.s. for all $A \in \mathscr{F}$ $(\mu(A) > 0)$.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへぐ

Supporting Results			
Asymptotically Mean Stationary (A.M.S.)	Supremus Typicality in the Weak Sense	Proof of the AEP ●○○	Thanks / References

Theorem 5 ([HS13b])

If $(\Omega, \mathscr{F}, \mu, T)$ is recurrent a.m.s., then $(A_0, \mathscr{A}, \mu|_{\mathscr{A}}, T_A)$ is a.m.s. for all $A \in \mathscr{F}$ $(\mu(A) > 0)$.

Theorem 6 (Shannon–McMillan–Breiman–Gray Theorem [GK80])

lf

$${X^{(n)}} = {X(T^n)}$$

is a.m.s. and ergodic, then the Shannon–McMillan–Breiman Theorem holds. In exact terms,

$$-\frac{1}{n}\log p(X^{(0)}, X^{(1)}, \cdots, X^{(n-1)}) \rightarrow H$$
 with probability 1,

イロト 不同 トイヨト イヨト

э

where H is the entropy rate of $\{X^{(n)}\}$.

Asymptotically Mean Stationary (A.M.S.)	Supremus Typicality in the Weak Sense	Proof of the AEP	Thanks / References
00000	OO	○●O	000
The Proof (I)			

Let
$$\mathbf{X} = \left[X^{(1)}, X^{(2)}, \cdots, X^{(n)}\right]$$
. Then

$$\left\{\mathbf{X} \notin \mathcal{S}_{\epsilon}(n, \{X^{(n)}\})\right\} = \bigcup_{\emptyset \neq \mathscr{Y} \subseteq \mathscr{X}} \left\{\mathbf{X}_{\mathscr{Y}} \notin \mathcal{T}_{\epsilon}(n, \{X^{(k)}_{\mathscr{Y}}\})\right\}.$$
(14)

Assume that $(\Omega, \mathscr{F}, \mu, T)$ and X are the recurrent a.m.s. ergodic system and the measurable function define $\{X^{(n)}\}$, i.e. $\{X^{(n)}\} = \{X(T^n)\}$. For any non-empty $\mathscr{Y} \subseteq \mathscr{X}$, we have that $\{X^{(k)}_{\mathscr{Y}}\} = \{X(T^k_A)\}$, where $A = X^{-1}(\mathscr{Y})$ and T_A is an induced transformation of $(\Omega, \mathscr{F}, \mu, T)$ with respect to A. Furthermore, Theorem 5 and [Aar97, Proposition 1.5.2] guarantee that

$$\left(A_0, A_0 \cap \mathscr{F}, \frac{1}{\mu(A)} \mu|_{A_0 \cap \mathscr{F}}, T_A\right), \tag{15}$$

(日) (同) (三) (三) (三) (○) (○)

is a.m.s. ergodic.

Asymptotically Mean Stationary (A.M.S.)	Supremus Typicality in the Weak Sense	Proof of the AEP	Thanks / References
00000		○O●	000
The Proof (II)			

Consequently, the Shannon–McMillan–Breiman–Gray Theorem (Theorem 6) says

$$-\frac{1}{n}\log p_{\mathscr{Y}}\left(X^{(0)}_{\mathscr{Y}},X^{(1)}_{\mathscr{Y}},\cdots,X^{(n-1)}_{\mathscr{Y}}\right)\to H_{\mathscr{Y}}, \text{ with probability 1}.$$

This implies that there exists a positive integer $N_{\mathscr{Y}}$ such that

$$\Pr\left\{\mathbf{X}_{\mathscr{Y}}\notin\mathcal{T}_{\epsilon}(n,\{X_{\mathscr{Y}}^{(k)}\})\right\} < \frac{\eta}{2^{|\mathscr{X}|}-1}, \forall n > N_{\mathscr{Y}}.$$

Let $N_0 = \max_{\emptyset \neq \mathscr{Y} \subseteq \mathscr{X}} N_{\mathscr{Y}}$. One easily concludes that

$$\Pr\left\{\mathbf{X}\notin \mathcal{S}_{\epsilon}(n,\{X^{(n)}\})\right\} < \eta, \forall n > N_0.$$

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

The statement is proved.

Asymptotically Mean Stationary (A.M.S.)	Supremus Typicality in the Weak Sense	Proof of the AEP	Thanks / References
00000	00	000	000
Thanks			

₅ ت Thanks!

Asymptotically Mean Stationary (A.M.S.)	Supremus Typicality in the Weak Sense	Proof of the AEP	Thanks / References
00000	00	000	000
Bibliography I			

Jon Aaronson.

An Introduction to Infinite Ergodic Theory. American Mathematical Society, Providence, R.I., 1997.

- Robert M. Gray and J. C. Kieffer.
 Asymptotically mean stationary measures.
 The Annals of Probability, 8(5):962–973, October 1980.
- Sheng Huang and Mikael Skoglund. Encoding Irreducible Markovian Functions of Sources: An Application of Supremus Typicality. KTH Royal Institute of Technology, May 2013.
- Sheng Huang and Mikael Skoglund. Induced Transformations of Recurrent A.M.S. Dynamical Systems. KTH Royal Institute of Technology, October 2013.

- 4 同 6 4 日 6 4 日 6

Asymptotically Mean Stationary (A.M.S.)	Supremus Typicality in the Weak Sense	Proof of the AEP	Thanks / References
00000	00	000	○●●
Bibliography II			

Sheng Huang and Mikael Skoglund. Supremus Typicality. KTH Royal Institute of Technology, January 2014.

Shizuo Kakutani.

Induced measure preserving transformations. Proceedings of the Imperial Academy, 19(10):635–641, 1943.

Carl D. Meyer.

Stochastic complementation, uncoupling markov chains, and the theory of nearly reducible systems. SIAM Rev., 31(2):240-272, June 1989.

Claude Elwood Shannon and Warren Weaver. The mathematical theory of communication. University of Illinois Press, Urbana, 1949.