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What is Supremus Typicality
o0

An Observation from the Classic Typicality (1)

Classic Asymptotically Equipartition Property (AEP): Given a randomly
generated (w.r.t. some stationary ergodic process of sample space 2,
say {0,1,2}) sequence X", say

00102 - 02210 - 02112 - 01022 - 01102,

in probability € close to 1 that X" is classic e-typical (in the strong or
weak sense) for large enough n.
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Classic Asymptotically Equipartition Property (AEP): Given a randomly
generated (w.r.t. some stationary ergodic process of sample space 2,
say {0,1,2}) sequence X", say

00102 - 02210 - 02112 - 01022 - 01102,

in probability € close to 1 that X" is classic e-typical (in the strong or
weak sense) for large enough n.

Let ) # AC 2. Define Yf\/) = X(Ta1) where

inf {j > 0|XW € A}; =1,
Tas=qinf{j> Ta—1|XY) € A}, 1>1,
sup {j < TaialXD e A}y 1< 1.
Let k = max{j|XY) € A}. The property that the reduced sequence YX of
X", say
0010 - 010 - 011 - 010 - 0110 when A = {0,1},

is also typical in probability close to 1 is important. Can one make such a
claim in general for all non-empty subset A of 277



What is Supremus Typicality
oe

An Observation from the Classic Typicality (I1)

Let {a, 3,7} be the state space of the Markov
(i.i.d.) process with transition matrix

13 13 173 Classical
P=(1/3 1/3 1/3]. (1)
1/3 1/3 1/3

x:(a7/87’y7a7/3777a7/67,7)7 (2)

it is easy to verify that x is a strongly Markov
5/12-typical sequence.

Sheng Huang and Mikael Skoglund 1SIT2014



What is Supremus Typicality

oe

An Observation from the Classic Typicality (I1)

Let {a, 3,7} be the state space of the Markov
(i.i.d.) process with transition matrix

13 13 173 Classical
P=1{(1/3 1/3 1/3]. (1)
1/3 1/3 1/3
For
x:(a7/6777a7/3777a7/67,7)7 (2)
it is easy to verify that x is a strongly Markov
5/12-typical sequence.
However, the subsequence
X{ay} = (04770‘7’770‘77) (3)

is no long a strongly Markov 5/12-typical sequence, because the stochastic

complement [Mey89] Sy} = [g.g g.g] and

5
5 =10-0. —. (4
05’ 0—05[> . (4)

the number of subsequence (o, a)’s in x{q 4}
2 _
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The Technical Issues

Qs {Y/(\/)} still an random process in general?
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The Technical Issues

Qs {Y/(\/)} still an random process in general?

@ How is (the stochastic properties of) {Yf\/)}
described mathematically that allows the
analysis to be carried out?
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What is Suprem
[ ]

The Technical Issues

Qs {Y/(\/)} still an random process in general?

@ How is (the stochastic properties of) {Yf\/)}
described mathematically that allows the
analysis to be carried out?

9 Is there an ergodic theorem associated with
iy
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Supremus Typicality in the Strong Sense

Q If {XU} is Markov, then {Y{"} is also Markov by the strong
Markov property [Nor98, Theorem 1.4.2].
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Supremus Typicality in the Strong Sense

Q If {XU} is Markov, then {Y{"} is also Markov by the strong
Markov property [Nor98, Theorem 1.4.2].

Q If {XW} is irreducible Markov with transition matrix P, then {Y/(\I)}
is also irreducible Markov. Moreover, the stochastic complement

SA = PA,A + PA,AC (1 — PAc’Ac)71 PAC’A

of P = [lf:/i\ lfjﬂ is the transition matrix of { Y} [Mey89].
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Supremus Typicality in the Strong Sense

Q If {XU} is Markov, then {Y{"} is also Markov by the strong
Markov property [Nor98, Theorem 1.4.2].

Q If {XW} is irreducible Markov with transition matrix P, then {Y/(\I)}
is also irreducible Markov. Moreover, the stochastic complement

SA = PA,A + PA,AC (1 — PAc’Ac)71 PAC’A

of P = [lf:/i\ lfjﬂ is the transition matrix of { Y} [Mey89].

Q Ergodic theorem of irreducible Markov chain [Nor98, Theorem
1.10.2].
AEP of Supremus Typical in the Strong Sense: In probability € close to 1,
all reduced sequences of a randomly generated sequence of an irreducible
Markov chain is Supremus e-typical for large enough n.
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What is Supremus Typicality
@00

Supremus Typicality in the Weak Sense: Backgrounds

@ probability space (Q, .7, ) .

© measurable transformation T : Q — Q (not necessarily probability
preserving).

© dynamical system (Q, %, u, T).

Q Let X:Q — 2 (Z is always assumed to be finite from now on) be a

measurable function. {X} = {X(T77)} defines a random process with

state space 2.

Q (Q,#,u, T) is said to be asymptotically mean stationary (a.m.s.) *

[GK80] if there exists a measure Tt on (£2,.%) satisfying
P I .
A(B) = lim — ZO:M(T B),VBec .7.
Q (2, F,u, T) is said to be ergodic if
T'B=B — u(B)=0o0ru(B)=1.
@ The random process {XY} = {X(T7)} is said to be a.m.s. (ergodic) if
(Q,Z,u, T)is am.s. (ergodic).
IThe a.m.s. condition is interesting because it is a sufficient and necessary
condition for the Point-wise Ergodic Theorem to hold [GK80, Theorem 1].

Sheng Huang and Mikael Skoglund 1SIT2014




What is Supremus Typicality
oeo

Supremus Typicality in the Weak Sense: Induced

Transformations

Given a recurrent system (Q,.%,u, T) and A € F (u(A) > 0), one can
define the induced transformation [Kak43] T4 on (Ao, 4, t|or), where

Ag=AN ﬂU T7Aand o = {A;NB|B € .F}, such that

i=0 j=i
Ta(x) = THO(x),V x € Ao,
where
P (x) = min {i € N*|T/(x) € Ao}

is the first return time function.
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Supremus Typicality in the Weak Sense: Induced

Transformations

Given a recurrent system (Q,.%,u, T) and A € F (u(A) > 0), one can
define the induced transformation [Kak43] T4 on (Ao, 4, t|or), where

Ag=AN ﬂU T7Aand o = {A;NB|B € .F}, such that

i=0 j=i
Ta(x) = THO(x),V x € Ao,
where
P (x) = min {i € N*|T/(x) € Ao}

is the first return time function.

One can verify that (Ag, &, ——
Yy (Ao 1(Ao)

system. Moreover ...

tler, Ta) forms a new dynamical
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Supremus Typicality in the Weak Sense

Q If {XV} = {X(TY)} is recurrent, then {Y{"} = {X (T/)} with
A= X"1(A), and {Y/(\I)} is recurrent.
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Supremus Typicality in the Weak Sense

Q If {XV} = {X(TY)} is recurrent, then {Y{"} = {X (T/)} with
A= X"1(A), and {Y/(\I)} is recurrent.

Q If {XW} = {X(T¥)} is ergodic, so is {YASI)} ={X(TL)} [Aar97,
Proposition 1.5.2].
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Supremus Typicality in the Weak Sense

Q If {XV} = {X(TY)} is recurrent, then {Y{"} = {X (T/)} with
A= X"1(A), and {Y/(\/)} is recurrent.

Q If {XW} = {X(T¥)} is ergodic, so is {YASI)} ={X(TL)} [Aar97,
Proposition 1.5.2].

Q If {XV} = {X(TY)} isams., sois {Y{} = {X (T!)} [HS14].
Q If {XV} = {X(T’)} is a.m.s. and ergodic, then the
Shannon-McMillan-Breiman (SMB) Theorem holds. In exact terms,

1
- log p(X©@, XM ... X1y 5 H with probability 1,

where H is the entropy rate of {X()} [GK80].
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Supremus Typicality in the Weak Sense

Q If {XV} = {X(TY)} is recurrent, then {Y{"} = {X (T/)} with
A= X"1(A), and {Y/(\/)} is recurrent.

Q If {XW} = {X(T¥)} is ergodic, so is {YASI)} ={X(TL)} [Aar97,
Proposition 1.5.2].

Q If {XV} = {X(TY)} isams., sois {Y{} = {X (T!)} [HS14].

Q If {XV} = {X(T’)} is a.m.s. and ergodic, then the
Shannon-McMillan-Breiman (SMB) Theorem holds. In exact terms,

1
- log p(X©@, XM ... X1y 5 H with probability 1,

where H is the entropy rate of {X()} [GK80].

AEP of Supremus Typical in the Weak Sense: In probability € close to 1,
all reduced sequences of a randomly generated sequence of a recurrent
a.m.s. ergodic process is Supremus e-typical for large enough n.
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Where Is It Used

Where is it used

For i.i.d. sources,

SW scheme field linear scheme non-field ring linear scheme
[SWT3] [Eli55, Csi82] [HS12]
dominate SW for dominate field linear for
encoding binary sum encoding some functions
X @y over Zy e.g. X+ 2y + 3z over Zs
[KM79] [HS12]
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Where is it used

For i.i.d. sources,

SW scheme field linear scheme non-field ring linear scheme
[SWT3] [Eli55, Csi82] [HS12]
dominate SW for dominate field linear for
encoding binary sum encoding some functions
X @y over Zy e.g. X+ 2y + 3z over Zs
[KM79] [HS12]

To generalized results in [HS12] to the non-i.i.d. scenarios, the argument based
on classic typicality does not lead to a conclusion that is accessible and easy to

analyse.
non-field ring linear scheme non-field ring linear scheme
for i.i.d. sources [HS12] for irreducible Markov sources [HS13]
classic typicality Supremus typicality
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it is easy to verify that x is a strongly Markov
5/12-typical sequence.
However, the subsequence
X{ay} = (04770‘7’770‘77) (7)

is no long a strongly Markov 5/12-typical sequence, because the stochastic

complement [Mey89] Sy} = [g.g g.g] and

5
0.5’ —l0-05/> = (8)

the number of subsequence (o, a)’s in x{q 4}
2 _
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Conclusion
Conclusion

@ Supremus typicality refines Shannon's idea on
typicality [SW49];

@ Apart from the ergodic theorem, it takes the
self-iterating properties of the random process

into account;
Q@ Self-iterating properties:

@ reduced chains of an irreducible Markov chain are irreducible Markov
[Mey89];

@ reduced processes of a recurrent (a.m.s. and ergodic, resp.) random
process are also recurrent (a.m.s. and ergodic, resp.) [HS14, Aar97].
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