Introduction	Optimality: Data Compression	Application: Source Coding for Computing	Conclusion	Thanks / References
0000	0000	000		000

On Existence of Optimal Linear Encoders over Non-field Rings for Data Compression with Application to Computing

Sheng Huang and Mikael Skoglund

Communication Theory Electrical Engineering KTH Royal Institute of Technology Stockholm, Sweden

> September 12, 2013 Seville, Spain

Introduction	Optimality: Data Compression	Application: Source Coding for Computing	Conclusion	Thanks / References
-	0000		Ŭ	000
Outline				

- Linear Source Coding over Finite Fields / Rings
- Achievability Theorem
- Optimality: Data Compression
 - Exist Optimal Linear Encoders over Non-field Rings
 - Other Rings
- 3 Application: Source Coding for Computing
 - Source Coding for Computing
 - LCoF is not optimal in the Sense of [Körner and Marton(1979)]

Conclusion

- Non-field Ring vs Field
- 5 Thanks / References
 - Thanks
 - Bibliography

伺 と く ヨ と く ヨ と

Consider the Slepian-Wolf Source Network:

- [Elias(1955), Csiszár(1982)] propose to use linear mappings (over finite fields) as encoders for Slepian–Wolf data compression;
- Linear coding over finite fields (LCoF) is optimal, i.e. achieves the Slepian–Wolf region [Slepian and Wolf(1973)].

イロト イポト イヨト イヨト 二日

How about linear coding over finite rings (LCoR)?

Definition 1

The tuple $[\Re,+,\cdot]$ is called a ring if the following criteria are met:

- $\textcircled{9} [\mathfrak{R}, +] \text{ is an Abelian group;}$
- **③** There exists a multiplicative identity $1 \in \mathfrak{R}$, namely, $1 \cdot a = a \cdot 1 = a$, $\forall a \in \mathfrak{R}$;

Examples: real (complex) numbers \mathbb{R} (\mathbb{C}), integers, \mathbb{Z}_q (q is any positive integer), polynomials, matrices and etc. \mathbb{R} , \mathbb{C} , \mathbb{Z}_p (p is a prime), invertible matrices are fields.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

How about linear coding over finite rings (LCoR)?

Definition 1

The tuple $[\Re,+,\cdot]$ is called a ring if the following criteria are met:

- $\textcircled{9} [\mathfrak{R}, +] \text{ is an Abelian group;}$
- Provide the exists a multiplicative identity 1 ∈ ℜ, namely, 1 · a = a · 1 = a, ∀ a ∈ ℜ;
- $\forall a, b, c \in \mathfrak{R}, a \cdot b \in \mathfrak{R} \text{ and } (a \cdot b) \cdot c = a \cdot (b \cdot c);$

 $\forall a, b, c \in \mathfrak{R}, a \cdot (b+c) = (a \cdot b) + (a \cdot c) \text{ and } (b+c) \cdot a = (b \cdot a) + (c \cdot a).$

Examples: real (complex) numbers \mathbb{R} (\mathbb{C}), integers, \mathbb{Z}_q (q is any positive integer), polynomials, matrices and etc. \mathbb{R} , \mathbb{C} , \mathbb{Z}_p (p is a prime), invertible matrices are fields.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへぐ

- † Will LCoR be optimal as LCoF for Slepian–Wolf coding?
- † What is the benefit?

Introduction	Optimality: Data Compression	Application: Source Coding for Computing	Conclusion	Thanks / References
0000	0000	000		000
Achieva	bility Theorem	(I)		

Definition 2

A subset \mathfrak{I} of a ring $[\mathfrak{R}, +, \cdot]$ is said to be a *left ideal* of \mathfrak{R} , denoted by $\mathfrak{I} \leq_l \mathfrak{R}$, if and only if

 $\textcircled{I} \ [\Im, +] \text{ is a subgroup of } [\Re, +];$

2 $\forall x \in \mathfrak{I} \text{ and } \forall a \in \mathfrak{R}, a \cdot x \in \mathfrak{I}.$

 $\{0\}$ is a *trivial* left ideal, usually denoted by 0.

Examples: all even numbers of integers, $\{0,2\}$ of $\mathbb{Z}_4,$ the ring itself.

- 4 同 6 4 日 6 4 日 6

Introduction	Optimality: Data Compression	Application: Source Coding for Computing	Conclusion	Thanks / References
0000	0000	000		000
Achieva	bility Theorem	(I)		

Definition 2

A subset \mathfrak{I} of a ring $[\mathfrak{R}, +, \cdot]$ is said to be a *left ideal* of \mathfrak{R} , denoted by $\mathfrak{I} \leq_l \mathfrak{R}$, if and only if

 $\textcircled{I} \ [\Im,+] \text{ is a subgroup of } [\Re,+];$

2 $\forall x \in \mathfrak{I} \text{ and } \forall a \in \mathfrak{R}, a \cdot x \in \mathfrak{I}.$

 $\{0\}$ is a $\mathit{trivial}$ left ideal, usually denoted by 0.

Examples: all even numbers of integers, $\{0,2\}$ of $\mathbb{Z}_4,$ the ring itself.

Definition 3

Given a finite ring \mathfrak{R} and one of its left ideal \mathfrak{I} , the coset $\mathfrak{R}/\mathfrak{I}$ is the set

$$\{r_1+\mathfrak{I}, r_2+\mathfrak{I}, \cdots, r_m+\mathfrak{I}\},\$$

where $m = |\Re| / |\Im|$, $r_i \in \Re$ for all feasible *i* and $r_i + \Im \cap r_j + \Im = \emptyset \Leftrightarrow i \neq j$. \Re/\Im forms a *left module* over \Re .

イロン イロン イヨン イヨン

Introduction Optimality: Data Compression Application: Source Coding for Computing Conclusion Thanks / References 000 <td

Assume that the sample space of X_i $(1 \le i \le s)$ is a finite set \mathscr{X}_i , and write

$$X_T = \prod_{i \in T} X_i, \ \mathfrak{R}_T = \prod_{i \in T} \mathfrak{R}_i$$

for $\emptyset \neq T \subseteq \{1, 2, \dots, s\}$ and $\mathfrak{I}_T = \prod_{i \in T} \mathfrak{I}_i$ where $\mathfrak{I}_i \leq_l \mathfrak{R}_i$. Let $\Phi = \{\Phi_1, \Phi_2, \dots, \Phi_s\}$, where $\Phi_i : \mathscr{X}_i \to \mathfrak{R}_i$ is any injective mapping.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ の Q ()

Optimality: Data Compression Application: Source Coding for Computing Thanks / References Introduction 000 Achievability Theorem (II)

Assume that the sample space of X_i $(1 \le i \le s)$ is a finite set \mathscr{X}_i , and write

$$X_T = \prod_{i \in T} X_i, \ \mathfrak{R}_T = \prod_{i \in T} \mathfrak{R}_i$$

for $\emptyset \neq T \subseteq \{1, 2, \cdots, s\}$ and $\mathfrak{I}_T = \prod \mathfrak{I}_i$ where $\mathfrak{I}_i \leq_l \mathfrak{R}_i$.

Let $\Phi = {\Phi_1, \Phi_2, \dots, \Phi_s}$, where $\Phi_i : \mathscr{X}_i \to \mathfrak{R}_i$ is any injective mapping.

Theorem 4 ([Huang and Skoglund(2013a)])

The region \mathcal{R}_{Φ} containting coding rate $(R_1, R_2, \cdots, R_s) \in \mathbb{R}^s$ that satisfies

$$\sum_{i \in \mathcal{T}} \frac{R_i \log |\mathfrak{I}_i|}{\log |\mathfrak{R}_i|} > H(X_T | X_{T^c}) - H(Y_{\mathfrak{R}_T / \mathfrak{I}_T} | X_{T^c}),$$
(1)
$$\forall \emptyset \neq T \subseteq \{1, 2, \cdots, s\} \text{ and for all } 0 \neq \mathfrak{I}_i \leq_l \mathfrak{R}_i,$$

where $Y_{\mathfrak{R}_T/\mathfrak{I}_T} = \prod \Phi_i(X_i) + \mathfrak{I}_T$ (which has sample space $\mathfrak{R}_T/\mathfrak{I}_T$), is $i \in T$ achievable with linear coding over $\mathfrak{R}_1, \mathfrak{R}_2, \cdots, \mathfrak{R}_s$.

Introduction 0000	Optimality: Dat •000	ta Compression	Application: Source	Coding for Co	omputing Concl O	usion Tha OC	nks / References
Exist	Optimal	Linear	Encoders	over	Non-field	Rings	(1)

Theorem 5 ([Huang and Skoglund(2013b)])

Let $\mathfrak{R}_1, \mathfrak{R}_2, \cdots, \mathfrak{R}_s$ be s finite rings with $|\mathfrak{R}_i| \ge |\mathscr{X}_i|$. If \mathfrak{R}_i is isomorphic to either

Q a field, i.e. \mathfrak{R}_i contains no proper non-trivial left (right) ideal; or

a ring containing one and only one proper non-trivial left ideal \mathfrak{I}_{0i} and $|\mathfrak{I}_{0i}| = \sqrt{|\mathfrak{R}_i|}$,

for all feasible i, then the convex hull of $\bigcup \mathcal{R}_{\Phi}$ coincides with the

Slepian–Wolf region.

Examples: All finite fields, \mathbb{Z}_{p^2} (p is a prime) and

$$\mathbb{M}_{L,p} = \bigg\{ egin{bmatrix} a & 0 \ b & a \end{bmatrix} a, b \in \mathbb{Z}_p \bigg\}.$$

Proof of Theorem 5 (for Single Source): There is nothing to prove if \mathfrak{R}_1 is a field. Assume that \mathfrak{R}_1 is a non-field ring. Then $\bigcup_{\Phi} \mathcal{R}_{\Phi}$ is the Slepian–Wolf region if and only if there exists $\tilde{\Phi}_1 : \mathscr{X}_1 \to \mathfrak{R}_1$ such that

$$\frac{\log |\mathfrak{R}_1|}{\log |\mathfrak{I}_{01}|} [H(X_1) - H(\tilde{\Phi}_1 + \mathfrak{I}_{01})] \le H(X_1)$$

$$(2)$$

イロト イポト イヨト イヨト

$$\Leftrightarrow H(X_1) \le 2H(\Psi_1 + J_{01})$$
 (since $\sqrt{|\mathcal{H}_1|} = |J_{01}|$). (3)

The existence of such a injection $\tilde{\Phi}_1$ is guaranteed by Lemma 6.

Introduction	Optimality: Data Compression	Application: Source Coding for Computing	Conclusion	Thanks / References
0000	○○●○		O	000
Exist C	Optimal Linear	Encoders over Non-	field Rin	gs (III)

Lemma 6 ([Huang and Skoglund(2012)])

Let \mathfrak{R} be a finite ring, X and Y be two correlated discrete random variables, and \mathscr{X} be the sample space of X with $|\mathscr{X}| \leq |\mathfrak{R}|$. If \mathfrak{R} contains one and only one proper non-trivial left ideal \mathfrak{I} and $|\mathfrak{I}| = \sqrt{|\mathfrak{R}|}$, then there exists injection $\tilde{\Phi} : \mathscr{X} \to \mathfrak{R}$ such that

$$H(X|Y) \le 2H(\tilde{\Phi}(X) + \Im|Y). \tag{4}$$

3

Lemma 6 ([Huang and Skoglund(2012)])

Let \mathfrak{R} be a finite ring, X and Y be two correlated discrete random variables, and \mathscr{X} be the sample space of X with $|\mathscr{X}| \leq |\mathfrak{R}|$. If \mathfrak{R} contains one and only one proper non-trivial left ideal \mathfrak{I} and $|\mathfrak{I}| = \sqrt{|\mathfrak{R}|}$, then there exists injection $\tilde{\Phi} : \mathscr{X} \to \mathfrak{R}$ such that

$$H(X|Y) \le 2H(\tilde{\Phi}(X) + \Im|Y). \tag{4}$$

・ロン ・四と ・ヨン ・ヨン

Sketch of the Proof: Let $\tilde{\Phi} = \arg \max_{\Phi} H(\Phi(X) + \mathfrak{I}|Y)$. By the grouping rule for entropy, there exists $\overline{\Phi} : \mathscr{X} \to \mathfrak{R}$ such that

$$H(X|Y) - H(\tilde{\Phi}(X) + \Im|Y) = H(\overline{\Phi}(X) + \Im|Y).$$

Since

$$H(ilde{\Phi}(X) + \Im|Y) \geq H(\overline{\Phi}(X) + \Im|Y)$$

by definition, the statement follows.

Introduction	Optimality: Data Compression	Application: Source Coding for Computing	Conclusion	Thanks / References
0000	○○○●		O	000
Other R	Rings			

Example 7

Consider the single source scenario, where $X_1 \sim p$ and $\mathscr{X}_1 = \mathbb{Z}_6$, specified as follows.

X_1	0	1	2	3	4	5
$p(X_1)$	0.05	0.1	0.15	0.2	0.2	0.3

By Theorem 4,

 $\mathcal{R} = \{R_1 \in \mathbb{R} | R_1 > \max\{2.40869, 2.34486, 2.24686\}\}$ $= \{R_1 \in \mathbb{R} | R_1 > 2.40869 = H(X_1)\}$

is achievable with linear coding over ring $\mathbb{Z}_6 \simeq \mathbb{Z}_2 \times \mathbb{Z}_3$. Obviously, \mathcal{R} is just the Slepian–Wolf region. Optimality is claimed.

<ロ> (四) (四) (三) (三) (三) (三)

Sourco	Coding for Com	puting		
0000	0000	000		000
Introduction	Optimality: Data Compression	Application: Source Coding for Computing	Conclusion	Thanks / References

Source Coding for Computing

Source Coding for Computing g (a discrete function):

First considered by [Körner and Marton(1979), Ahlswede and Han(1983)] for g being the modulo-two sum/binary sum.

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Course	Coding for Con	aputing		
0000	0000	000		000
Introduction	Optimality: Data Compression	Application: Source Coding for Computing	Conclusion	Thanks / References

Source Coding for Computing

Source Coding for Computing g (a discrete function):

First considered by [Körner and Marton(1979), Ahlswede and Han(1983)] for g being the modulo-two sum/binary sum. One trick: Let $Z^{(n)} = g\left(X_1^{(n)}, X_2^{(n)}, \cdots, X_s^{(n)}\right)$ and ϕ be a linear encoder (over some field / ring) such that

$$\epsilon > \Pr \left\{ \psi \left(\phi \left(Z^{n} \right) \right) \neq Z^{n} \right\}$$

$$\stackrel{(a)}{=} \Pr \left\{ \psi \left(\vec{g} \left(\phi \left(X_{1}^{n} \right), \phi \left(X_{2}^{n} \right), \cdots, \phi \left(X_{s}^{n} \right) \right) \right) \neq Z^{n} \right\},$$

where (a) holds when g is a linear function over some field / ring.

Optimality: Data Compression Application: Source Coding for Computing Introduction Conclusion Thanks / References 000 LCoF is not optimal in the Sense of [Körner and Marton(1979)] (I)

Consider linear function over \mathbb{Z}_4

g(x, y, z) = x + 2y + 3z defined on the domain $\{0, 1\}^3 \subseteq \mathbb{Z}^3_4$.

g can also be presented as polynomial function

 $\hat{h}(x+2y+4z)$ defined on domain $\{0,1\} \subseteq \mathbb{Z}_5^3$,

where

$$\hat{h}(x) = \sum_{a \in \mathbb{Z}_5} a \left[1 - (x - a)^4 \right] - \left[1 - (x - 4)^4 \right]$$

is not injective. Linear coding (LC) techniques (over non-field ring \mathbb{Z}_4 or field \mathbb{Z}_5) are used for encoding g. However, the achievable region $\mathcal{R}_{\mathbb{Z}_4}$ achieved linear LC over \mathbb{Z}_4 always dominates the one $\mathcal{R}_{\mathbb{Z}_5}$ achieved by LC over \mathbb{Z}_5 . In fact, $\mathcal{R}_{\mathbb{Z}_4}$ dominates the region achieved by LC over each and every finite field for encoding g.

◆□▶ ◆□▶ ★ □▶ ★ □▶ - □ - つへで

 Introduction
 Optimality: Data Compression
 Application: Source Coding for Computing
 Conclusion
 Thanks / References

 LCoF is not optimal in the Sense of
 [Körner and Marton(1979)] (II)

Definition 8

The *characteristic* of a finite ring \Re is defined to be the smallest positive integer m, such that $\sum_{j=1}^{m} 1 = 0$, where 0 and 1 are the zero and the multiplicative identity of \Re , respectively.

Optimality: Data Compression Application: Source Coding for Computing Thanks / References Introduction Conclusion 000 LCoF is not optimal in the Sense of [Körner and Marton(1979)] (II)

Definition 8

The *characteristic* of a finite ring \Re is defined to be the smallest positive integer m, such that $\sum 1=0,$ where 0 and 1 are the zero and the multiplicative identity of \mathfrak{R} , respectively.

The essential reason for the "domination" to happen is due to the fact that:

- the characteristic of a finite field much be a prime (by the theory of splitting field);
- 2 the characteristic of a finite ring can be any integer ≥ 2 .

 Introduction
 Optimality: Data Compression
 Application: Source Coding for Computing
 Conclusion
 Thanks / References

 OOO
 OO
 OO
 OO
 OO
 OO

 LCoF is not optimal in the Sense of
 [Körner and Marton(1979)] (II)

Definition 8

The *characteristic* of a finite ring \Re is defined to be the smallest positive integer m, such that $\sum_{j=1}^{m} 1 = 0$, where 0 and 1 are the zero and the multiplicative identity of \Re , respectively.

The essential reason for the "domination" to happen is due to the fact that:

 the characteristic of a finite field much be a prime (by the theory of splitting field);

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

2 the characteristic of a finite ring can be any integer ≥ 2 .

Basic on this fact, one can construct infinitely many functions, say g, such that LC over a finite field is always suboptimal (in the sense of [Körner and Marton(1979)]) for encoding g.

0000	0000	000	000

Non-field Ring vs Field

	field	non-field ring	properties
Slepian–Wolf coding (side information)	\checkmark	exist optimal encoders for all scenarios	inverse & typicality lemma
Slepian–Wolf coding (memory ¹)	\checkmark	not yet proved, optimal shown by examples	inverse & typicality lemma
Implementation Complexity		\checkmark	polynomial long division algorithm
Alphabet sizes of encoders		\checkmark	prime subfield
Coding for Computing		\checkmark	characteristic & zero divisor
Coding for Computing (memory)		\checkmark	characteristic & zero divisor

Introduction	Optimality: Data Compression	Application: Source Coding for Computing	Conclusion	Thanks / References
0000	0000		O	●○○
Thanks				

₅ ت Thanks!

Introduction	Optimality: Data Compression	Application: Source Coding for Computing	Conclusion	Thanks / References			
0000	0000	OOO	O	○●●			
Bibliography I							

- J. Körner and K. Marton, "How to encode the modulo-two sum of binary sources," *IEEE Transactions on Information Theory*, vol. 25, no. 2, pp. 219–221, Mar. 1979.
- P. Elias, "Coding for noisy channels," *IRE Conv. Rec.*, pp. 37–46, Mar. 1955.
- I. Csiszár, "Linear codes for sources and source networks: Error exponents, universal coding," *IEEE Transactions on Information Theory*, vol. 28, no. 4, pp. 585–592, Jul. 1982.
- D. Slepian and J. K. Wolf, "Noiseless coding of correlated information sources," *IEEE Transactions on Information Theory*, vol. 19, no. 4, pp. 471–480, Jul. 1973.
- S. Huang and M. Skoglund, "On achievability of linear source coding over finite rings," in *IEEE International Symposium on Information Theory*, July 2013.

Introduction	Optimality: Data Compression	Application: Source Coding for Computing	Conclusion	Thanks / References			
0000	0000	OOO	O	○●●			
Bibliography II							

- ——, "On existence of optimal linear encoders over non-field rings for data compression with application to computing," in IEEE Information Theory Workshop, September 2013.
- —, On Existence of Optimal Linear Encoders over Non-field Rings for Data Compression, KTH Royal Institute of Technology, December 2012. [Online]. Available: http://www.ee.kth.se/~sheng11
- R. Ahlswede and T. S. Han, "On source coding with side information via a multiple-access channel and related problems in multi-user information theory," IEEE Transactions on Information Theory, vol. 29, no. 3, pp. 396-411, May 1983.
- **S.** Huang and M. Skoglund, *Coding for Computing Irreducible* Markovian Functions of Sources with Memory, KTH Royal Institute of Technology, May 2013. [Online]. Available: http://www.ee.kth.se/~sheng11