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Linear Source Coding over Finite Fields / Rings (I)

Consider the Slepian–Wolf Source Network:

1 [Elias(1955), Csiszár(1982)] propose to use linear mappings (over
finite fields) as encoders for Slepian–Wolf data compression;

2 Linear coding over finite fields (LCoF) is optimal, i.e. achieves the
Slepian–Wolf region [Slepian and Wolf(1973)].
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Linear Source Coding over Finite Fields / Rings (II)

How about linear coding over finite rings (LCoR)?

Definition 1

The tuple [R,+, ·] is called a ring if the following criteria are met:

1 [R,+] is an Abelian group;

2 There exists a multiplicative identity 1 ∈ R, namely, 1 · a = a · 1 = a,
∀ a ∈ R;

3 ∀ a, b, c ∈ R, a · b ∈ R and (a · b) · c = a · (b · c);

4 ∀ a, b, c ∈ R, a · (b+ c) = (a · b)+ (a · c) and (b+ c) · a = (b · a)+ (c · a).

Examples: real (complex) numbers R (C), integers, Zq (q is any positive
integer), polynomials, matrices and etc. R, C, Zp (p is a prime),
invertible matrices are fields.
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Linear Source Coding over Finite Fields / Rings (II)

How about linear coding over finite rings (LCoR)?

Definition 1

The tuple [R,+, ·] is called a ring if the following criteria are met:

1 [R,+] is an Abelian group;

2 There exists a multiplicative identity 1 ∈ R, namely, 1 · a = a · 1 = a,
∀ a ∈ R;

3 ∀ a, b, c ∈ R, a · b ∈ R and (a · b) · c = a · (b · c);

4 ∀ a, b, c ∈ R, a · (b+ c) = (a · b)+ (a · c) and (b+ c) · a = (b · a)+ (c · a).

Examples: real (complex) numbers R (C), integers, Zq (q is any positive
integer), polynomials, matrices and etc. R, C, Zp (p is a prime),
invertible matrices are fields.

† Will LCoR be optimal as LCoF for Slepian–Wolf coding?

† What is the benefit?
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Achievability Theorem (I)

Definition 2

A subset I of a ring [R,+, ·] is said to be a left ideal of R, denoted by

I ≤l R, if and only if

1 [I,+] is a subgroup of [R,+];

2 ∀ x ∈ I and ∀ a ∈ R, a · x ∈ I.

{0} is a trivial left ideal, usually denoted by 0.

Examples: all even numbers of integers, {0, 2} of Z4, the ring itself.

Sheng Huang and Mikael Skoglund ITW2013



Introduction Optimality: Data Compression Application: Source Coding for Computing Conclusion Thanks / References

Achievability Theorem (I)

Definition 2

A subset I of a ring [R,+, ·] is said to be a left ideal of R, denoted by

I ≤l R, if and only if

1 [I,+] is a subgroup of [R,+];

2 ∀ x ∈ I and ∀ a ∈ R, a · x ∈ I.

{0} is a trivial left ideal, usually denoted by 0.

Examples: all even numbers of integers, {0, 2} of Z4, the ring itself.

Definition 3

Given a finite ring R and one of its left ideal I, the coset R/I is the set

{r1 + I, r2 + I, · · · , rm + I} ,

where m = |R| / |I|, ri ∈ R for all feasible i and ri + I ∩ rj + I = ∅ ⇔ i 6= j .
R/I forms a left module over R.
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Achievability Theorem (II)

Assume that the sample space of Xi (1 ≤ i ≤ s) is a finite set Xi , and write

XT =
∏

i∈T

Xi , RT =
∏

i∈T

Ri

for ∅ 6= T ⊆ {1, 2, · · · , s} and IT =
∏

i∈T

Ii where Ii ≤l Ri .

Let Φ = {Φ1,Φ2, · · · ,Φs}, where Φi : Xi → Ri is any injective mapping.
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Achievability Theorem (II)

Assume that the sample space of Xi (1 ≤ i ≤ s) is a finite set Xi , and write

XT =
∏

i∈T

Xi , RT =
∏

i∈T

Ri

for ∅ 6= T ⊆ {1, 2, · · · , s} and IT =
∏

i∈T

Ii where Ii ≤l Ri .

Let Φ = {Φ1,Φ2, · · · ,Φs}, where Φi : Xi → Ri is any injective mapping.

Theorem 4 ([Huang and Skoglund(2013a)])

The region RΦ containting coding rate (R1,R2, · · · ,Rs) ∈ R
s that satisfies

∑

i∈T

Ri log |Ii |

log |Ri |
> H(XT |XT c )− H(YRT /IT

|XT c ), (1)

∀ ∅ 6= T ⊆ {1, 2, · · · , s} and for all 0 6= Ii ≤l Ri ,

where YRT /IT
=

∏

i∈T

Φi (Xi ) + IT (which has sample space RT/IT ), is

achievable with linear coding over R1,R2, · · · ,Rs .
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Exist Optimal Linear Encoders over Non-field Rings (I)

Theorem 5 ([Huang and Skoglund(2013b)])

Let R1,R2, · · · ,Rs be s finite rings with |Ri | ≥ |Xi |. If Ri is isomorphic
to either

1 a field, i.e. Ri contains no proper non-trivial left (right) ideal; or

2 a ring containing one and only one proper non-trivial left ideal I0i
and |I0i | =

√

|Ri |,
for all feasible i , then the convex hull of

⋃

Φ

RΦ coincides with the

Slepian–Wolf region.

Examples: All finite fields, Zp2 (p is a prime) and

ML,p =

{[

a 0
b a

]

a, b ∈ Zp

}

.
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Exist Optimal Linear Encoders over Non-field Rings (II)

Proof of Theorem 5 (for Single Source): There is nothing to prove if R1

is a field. Assume that R1 is a non-field ring. Then
⋃

Φ

RΦ is the

Slepian–Wolf region if and only if there exists Φ̃1 : X1 → R1 such that

log |R1|
log |I01|

[H(X1)− H(Φ̃1 + I01)] ≤ H(X1) (2)

⇔H(X1) ≤ 2H(Φ̃1 + I01) (since
√

|R1| = |I01|). (3)

The existence of such a injection Φ̃1 is guaranteed by Lemma 6.
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Exist Optimal Linear Encoders over Non-field Rings (III)

Lemma 6 ([Huang and Skoglund(2012)])

Let R be a finite ring, X and Y be two correlated discrete random
variables, and X be the sample space of X with |X | ≤ |R|. If R
contains one and only one proper non-trivial left ideal I and |I| =

√

|R|,
then there exists injection Φ̃ : X → R such that

H(X |Y ) ≤ 2H(Φ̃ (X ) + I|Y ). (4)
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Exist Optimal Linear Encoders over Non-field Rings (III)

Lemma 6 ([Huang and Skoglund(2012)])

Let R be a finite ring, X and Y be two correlated discrete random
variables, and X be the sample space of X with |X | ≤ |R|. If R
contains one and only one proper non-trivial left ideal I and |I| =

√

|R|,
then there exists injection Φ̃ : X → R such that

H(X |Y ) ≤ 2H(Φ̃ (X ) + I|Y ). (4)

Sketch of the Proof: Let Φ̃ = argmax
Φ

H(Φ(X ) + I|Y ). By the grouping

rule for entropy, there exists Φ : X → R such that

H(X |Y )− H(Φ̃ (X ) + I|Y ) = H(Φ(X ) + I|Y ).

Since
H(Φ̃ (X ) + I|Y ) ≥ H(Φ(X ) + I|Y )

by definition, the statement follows.
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Other Rings

Example 7

Consider the single source scenario, where X1 ∼ p and X1 = Z6,

specified as follows.

X1 0 1 2 3 4 5
p(X1) 0.05 0.1 0.15 0.2 0.2 0.3

By Theorem 4,

R = {R1 ∈ R|R1 > max{2.40869, 2.34486, 2.24686}}
= {R1 ∈ R|R1 > 2.40869 = H(X1)}

is achievable with linear coding over ring Z6 ≃ Z2 × Z3. Obviously, R
is just the Slepian–Wolf region. Optimality is claimed.
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Source Coding for Computing

Source Coding for Computing g (a discrete function):

First considered by [Körner and Marton(1979), Ahlswede and Han(1983)]
for g being the modulo-two sum/binary sum.

Sheng Huang and Mikael Skoglund ITW2013



Introduction Optimality: Data Compression Application: Source Coding for Computing Conclusion Thanks / References

Source Coding for Computing

Source Coding for Computing g (a discrete function):

First considered by [Körner and Marton(1979), Ahlswede and Han(1983)]
for g being the modulo-two sum/binary sum.

One trick: Let Z (n) = g
(

X
(n)
1 ,X

(n)
2 , · · · ,X (n)

s

)

and φ be a linear encoder

(over some field / ring) such that

ǫ >Pr {ψ (φ (Z n)) 6= Z n}
(a)
= Pr {ψ (~g (φ (X n

1 ) , φ (X
n
2 ) , · · · , φ (X n

s ))) 6= Z n} ,

where (a) holds when g is a linear function over some field / ring.
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LCoF is not optimal in the Sense of

[Körner and Marton(1979)] (I)

Consider linear function over Z4

g(x , y , z) = x + 2y + 3z defined on the domain {0, 1}3 ( Z3
4.

g can also be presented as polynomial function

ĥ(x + 2y + 4z) defined on domain {0, 1} ( Z3
5,

where
ĥ(x) =

∑

a∈Z5

a
[

1− (x − a)4
]

−
[

1− (x − 4)4
]

is not injective. Linear coding (LC) techniques (over non-field ring Z4 or
field Z5) are used for encoding g .
However, the achievable region RZ4 achieved linear LC over Z4 always
dominates the one RZ5 achieved by LC over Z5. In fact, RZ4 dominates
the region achieved by LC over each and every finite field for encoding g .
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LCoF is not optimal in the Sense of

[Körner and Marton(1979)] (II)

Definition 8

The characteristic of a finite ring R is defined to be the smallest positive

integer m, such that

m∑

j=1

1 = 0, where 0 and 1 are the zero and the

multiplicative identity of R, respectively.
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LCoF is not optimal in the Sense of

[Körner and Marton(1979)] (II)

Definition 8

The characteristic of a finite ring R is defined to be the smallest positive

integer m, such that

m∑

j=1

1 = 0, where 0 and 1 are the zero and the

multiplicative identity of R, respectively.

The essential reason for the “domination” to happen is due to the fact
that:

1 the characteristic of a finite field much be a prime (by the theory of
splitting field);

2 the characteristic of a finite ring can be any integer ≥ 2.
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LCoF is not optimal in the Sense of

[Körner and Marton(1979)] (II)

Definition 8

The characteristic of a finite ring R is defined to be the smallest positive

integer m, such that

m∑

j=1

1 = 0, where 0 and 1 are the zero and the

multiplicative identity of R, respectively.

The essential reason for the “domination” to happen is due to the fact
that:

1 the characteristic of a finite field much be a prime (by the theory of
splitting field);

2 the characteristic of a finite ring can be any integer ≥ 2.

Basic on this fact, one can construct infinitely many functions, say g ,
such that LC over a finite field is always suboptimal (in the sense of
[Körner and Marton(1979)]) for encoding g .
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Non-field Ring vs Field

field non-field ring properties
Slepian–Wolf √ exist optimal

inverse
coding encoders for all

& typicality lemma
(side information) scenarios
Slepian–Wolf √ not yet proved,

inverse
coding optimal shown

& typicality lemma
(memory1) by examples
Implementation √ polynomial long
Complexity division algorithm
Alphabet sizes √

prime subfield
of encoders
Coding for √ characteristic
Computing & zero divisor
Coding for √ characteristic
Computing

& zero divisor
(memory)

1Please kindly refer to [Huang and Skoglund(2013c)] for details.
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