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Introduction
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Linear Source Coding over Finite Field / Ring (I)

Consider the Slepian—-Wolf Source Network:

| -,XE”]., ---,X{z),Xil)H Encoder 1
| Sxm xR x }——I Encoder 2
| Decoder  —af (X1, X3, - -+, X7)
| ---,Xj"), . "1X12)~X«51>}_’I Encoder s
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Linear Source Coding over Finite Field / Ring (I)

Consider the Slepian—-Wolf Source Network:

| ---,XE”].,---,X{D,X;UH Encoder 1

| X .1x,§2>‘x§”}—>| Encoder 2
Decoder  —af (X1, X3, - -+, X7)

| cee ,X‘E”J, ceey X‘iz)‘X‘EU H Encoder s

Q [Elias(1955), Csiszar(1982)] propose to use linear mappings (over
finite field) as encoders for Slepian-Wolf data compression;

Q Linear coding over finite field (LCoF) is optimal, i.e. achieves the
Slepian—Wolf region [Slepian and Wolf(1973)].
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Linear Source Coding over Finite Field / Ring (1)

How about linear coding over finite ring (LCoR)?

The tuple [R, +, ] is called a ring if the following criteria are met:

Q [R, +] is an Abelian group;

@ There exists a multiplicative identity 1 € R, namely, 1-a=a-1= a,
Vaeh;

Q VabceR a-beRand (a-b)-c=a-(b-c);
Q VabceR a(b+tc)=(a-b)+(a-c)and (b+c)-a=(b-a)+(c-a).

4
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Linear Source Coding over Finite Field / Ring (1)

How about linear coding over finite ring (LCoR)?

The tuple [R, +, ] is called a ring if the following criteria are met:

Q [R, +] is an Abelian group;

@ There exists a multiplicative identity 1 € R, namely, 1-a=a-1= a,
Vaeh;

Q VabceR a-beRand (a-b)-c=a-(b-c);
Q VabceR a(b+tc)=(a-b)+(a-c)and (b+c)-a=(b-a)+(c-a).

4

1 Why ring in particular?
1 Will LCoR be optimal as LCoF for Slepian-Wolf coding?
1 What is the benefit?
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Motivation: Source Coding for Computing (1)

Source Coding for Computing g (a discrete function):

| ---,XE”].,---,X{D,X;UH Encoder 1

| "'>X§”]’ __.1X,£2)‘X§])}—>| Encoder 2
Decoder  f—u& (X7, X3, - -, X7)

| ---,Xj"), ---,Xiz)‘Xfl)}—bI Encoder s

First considered by [K&rner and Marton(1979), Ahlswede and Han(1983)]
for g being the modulo-two sum.
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Motivation: Source Coding for Computing (1)

Source Coding for Computing g (a discrete function):

.. -,XE”]., .- -,X{z),Xil)H Encoder 1

| X .1x,§2>‘x§”}—>| Encoder 2
Decoder  f—u& (X7, X3, - -, X7)

.- -,Xf"], .- -,Xiz)‘xfnl—bl Encoder s

First considered by [K&rner and Marton(1979), Ahlswede and Han(1983)]
for g being the modulo-two sum.

One trick: Let Z(" = g (Xl(”), N ,Xs(”)) and 6 be a linear encoder
(over some field / ring) such that
e>Pr{Y(6(27) £ 27}
@ = n n n n
=Pr{y(g(o(X),0(X7), -, 0(X]))) # 2"},

where (a) holds when g is a linear function over some field / ring.
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Motivation: Source Coding for Computing (I1)

Facts:

@ Very discrete function over a finite domain is equivalent to a
restriction of some polynomial function over a finite field / ring

[Huang and Skoglund(2013a), conclusion of Fermat's little theorem
or Galios theory];
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Motivation: Source Coding for Computing (I1)

Facts:

@ Very discrete function over a finite domain is equivalent to a
restriction of some polynomial function over a finite field / ring
[Huang and Skoglund(2013a), conclusion of Fermat's little theorem
or Galios theory];

© The characteristic of a non-field ring is not necessary a prime: linear
coding over ring strictly outperforms its field (any finite field)
counterpart in terms of achieving larger achievable region for
computing (infinite) many g's [Huang and Skoglund(Submitted)];
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Motivation: Source Coding for Computing (I1)

Facts:

@ Very discrete function over a finite domain is equivalent to a
restriction of some polynomial function over a finite field / ring
[Huang and Skoglund(2013a), conclusion of Fermat's little theorem
or Galios theory];

© The characteristic of a non-field ring is not necessary a prime: linear
coding over ring strictly outperforms its field (any finite field)
counterpart in terms of achieving larger achievable region for
computing (infinite) many g's [Huang and Skoglund(Submitted)];

© Some non-field rings contain zero divisors: functions are not
classified (the classification results of [Han and Kobayashi(1987)]),
e.g. polynomial function over ring SR = Zg X Zg

(Xl + XQ)X3,

where X; € {(0,2),(2,0)}, Xz € {(0,0),(2,2)} and
X3 € {(17 3)7 (37 1)}
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Random Linear Mapping over Ring

Definition 2

A (left) linear mapping ¢ : R” — R* is defined as

¢ x— Ax,V x € R".
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Random Linear Mapping over Ring

Definition 2
A (left) linear mapping ¢ : R” — R* is defined as

¢ x— Ax,V x € R".

Lemma 3 ([Huang and Skoglund(2013b)])

Let SR be a finite ring and choose uniformly at random a linear mapping
b R — KK
Given x,y € R" withy —x = [a1, a2, -+, a,]", we have

Pr{g(y) = ¢(x)} = 3|7,

r,-eiﬁ}.
y

Sheng Huang and Mikael Skoglund 1SIT2013

n
where J = (a1, a8z, ,an) = { E ria;
i=1
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Proof of Lemma 3 for k =1

Define linear function f : R" — R by

fio— Py —x),VeoeR.
It is obvious that the image
f(R") =73
by definition. Moreover, ¥ r; # r, € J, the pre-images
f ) NnfYr)=0

and
[f7H(n)| = |FH(r)] = [F1(0)].

Therefore, |7 |f71(0)| =|R]", ie.

—_

o) _ 1
|0
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A Generalized Conditional Typicality Lemma (1)

Definition 4

Let X ~ px be a discrete random variable with sample space 2. The set
Te(n, X) of strongly e-typical sequences of length n with respect to X is
defined to be

Neax) _ px(x)

SE,VXG%},
n

{xe.%”"

where N(x;x) is the number of occurrences of x in the sequence x.
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A Generalized Conditional Typicality Lemma (1)

Definition 4

Let X ~ px be a discrete random variable with sample space 2. The set
Te(n, X) of strongly e-typical sequences of length n with respect to X is
defined to be

Neax) _ px(x)

SE,VXG%},
n

{xe%"

where N(x;x) is the number of occurrences of x in the sequence x.

Definition 5
Given a finite ring R and one of its left ideal J, the coset R/J is the set

{n+3,n+3,--- ,rm+73},

wherem:%,rie,‘}ifor all feasible i and r; + TN +T =0 i # j.
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A Generalized Conditional Typicality Lemma (II)

Lemma 6 ([Huang and Skoglund(2013b)])

Let (X1, X2) ~ p be a jointly random variable whose sample space is a
finite ring SR = Ry X Ry. For any n > 0, there exists € > 0, such that,
V (x1,%2)" € Te(n, (X1, X2)) and for any left ideal 3 of R,

D01, Theg)| < 27O~ b, 1)

where

Dc(x1,3[x2) = { (y,%2)" € Te(n, (X1, X2))|y —x1 € 7"}

and Yy, /5 = X1 + T is a random variable with sample space R /7.

Sheng Huang and Mikael Skoglund 1SIT2013
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A Generalized Conditional Typicality Lemma (II)

Lemma 6 ([Huang and Skoglund(2013b)])

Let (X1, X2) ~ p be a jointly random variable whose sample space is a
finite ring SR = Ry X Ry. For any n > 0, there exists € > 0, such that,
V (x1,%2)" € Te(n, (X1, X2)) and for any left ideal 3 of R,

|De(x1, T|x2)| < 27[HOGX)=H(Yory 31X} tn] (1)
where

De(X1,3|X2) = {(y7X2)t S 72(”7 (X17X2))‘ y —Xi € jn}

and Yy, /5 = X1 + T is a random variable with sample space R /7.

| \

Remark 1

If 3 = Ry, then Dc(x1,T|x2) is the set of all e-typical sequences
(y,x2) € Te(n, (X1, X2)). Obviously, |De(x1, I|xz)| < 27HCaIX)+nl,

-
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A Generalized Conditional Typicality Lemma (III)

Example 7 (Single Source)

Let R = {0,1, a, b} and T = {0, a} be a left ideal of R. Then
%/3 = {3, {1, b}}
N/R = [N

For strongly e-typical sequences
x1:1-0—-b—a2a—a—-0-1-a—-b—-1-0-1
yb—a—-1—-a—0—a—b—0-1-1-0—5b
y'0-—a—-1-b—-0-a—b-0-1-1-0—a.

We have y' € Dc(x1,7), when y” ¢ Dc(x1,J) but y',y" € De(x1,R).

Sheng Huang and Mikael Skoglund 1SIT2013
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A Generalized Conditional Typicality Lemma (III)

Example 7 (Single Source)
Let R = {0,1, a, b} and T = {0, a} be a left ideal of R. Then

|/3 =1{7,{1,b}}
N/R = {N}.

For strongly e-typical sequences

x1:1—-0—-b—a—a—-0—-1—a—b—-1—-0—1
yb—a—-1—a—-0—a—-b—-0-1-1-0—5b
y' 0—a—-1—-b—0—-a—b—-0-1—-1-0—a.

We have y' € Dc(x1,7), when y” ¢ Dc(x1,J) but y',y" € De(x1,R).

Remark 2

The above typicality lemma is a special case of the typicality lemma of
Supremus typicality sequences [Huang and Skoglund(2013a)].
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Achievability Theorem

Assume that the sample space of X; (1 < i < s) is a finite ring R, and let

Xr=]]Xiand Rr=[[Rifor 0 # T C{1,2,---,s}.
ieT ieT
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Achievability Theorem

Assume that the sample space of X; (1 < i < s) is a finite ring R, and let
Xr=]]Xiand Rr=[[Rifor 0 # T C{1,2,---,s}.

ieT ieT

Theorem 8 ([Huang and Skoglund(2013b)])

The coding rate (Ry, Rz, -+ , Rs) € R® satisfying

Rilog |Ji|
>H(X7 | X1e) — H(Y: Xre
; log [9%] (X7|X7e) (Yo, /3| X7<),

VO#ATC{1,2,---,s} and for all left ideal 31 of R,

where Y, /5, = X7 +J71, is achievable with linear coding over R1,MRa, - -+, Rs.
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Achievability Theorem

Assume that the sample space of X; (1 < i < s) is a finite ring R, and let

Xr=]]Xiand Rr=[[Rifor 0 # T C{1,2,---,s}.
ieT ieT

Theorem 8 ([Huang and Skoglund(2013b)])

The coding rate (Ry, Rz, -+ , Rs) € R® satisfying

Rilog |Ji]
———— SH(X7|X7c) — H(Y: X7
; log [9%] >H(X1| X7e) (Yo, /3| X7<),

VO#ATC{1,2,---,s} and for all left ideal 31 of R,

where Y, /5, = X7 +J71, is achievable with linear coding over R1,MRa, - -+, Rs.

Example: linear coding over Z¢ is optimal for the scenario that 1 = Ze and
X1 ~ p satisfying

X 0 1 2 3] 45
p(X1) | 005 | 0.1 | 0156 | 02 | 0.2 | 0.3
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Analysis of Error Probability

For simplicity, assume single source scenario and X € T¢(n, Xy) is the
encoded data. Let L be the set of all non-trivial left ideals of fR;.
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Analysis of Error Probability

For simplicity, assume single source scenario and X € T¢(n, Xy) is the
encoded data. Let L be the set of all non-trivial left ideals of fR;.

Pr{Error} < > Pr{¢(x)=¢(X)} +4

x€Te(mXi)\{X}

=Y Pe{e) =600} +4

J1€L x€D.(X,T1)

=> Y w4

J1€L xeD(X,T1)

< Z on[H(X0)=H(Yor, y3,)+1] |71|_k +6.
J.€L
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Analysis of Error Probability

For simplicity, assume single source scenario and X € T¢(n, Xy) is the
encoded data. Let L be the set of all non-trivial left ideals of fR;.

Pr{Error} < > Pr{¢(x)=¢(X)} +4

x€Te(mXi)\{X}

=Y Pe{e) =600} +4

J1€L x€D.(X,T1)

=> Y w4

J1€L xeD(X,T1)

< Z on[H(X0)=H(Yor, y3,)+1] |71|_k +6.
J.€L

_ klog|%] < log |1

If R
! log |J4]

[H(Xl) — H(Y%l/jl)}’ then

Pr{Error} — 0 as n — .
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Non-field Ring vs Field

Non-field Ring vs Field vs Other Algebraic Structures

field | non-field ring properties
Slepian-Wolf exist optimal :

: inverse
coding v/ | encoders for all & tvpicality lemma
(side information) scenarios o B
Slepian-Wolf not yet proved, .

: . inverse
coding v/ | optimal shown & tvpicality lemma
(memory) by examples yp y
Implementation Ny polynomial long
Complexity division algorithm

Alphabet sizes
of encoders

prime subfield

i
Coding for Y characteristic
Computing & zero divisor
gg:]lnﬁ;zr Ny characteristic
pUting & zero divisor
(memory)
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Other Algebraic Structures

t “A ring is a group” — exact words from many math textbooks.

1 Is LCoR a subclass of “group coding”? NO! Because our arguments
actually involve properties, e.g. inverse, characteristic, zero divisor
and etc, which are defined based on the multiplicative operation.

t The mathematicians mean that consider the base set R of a ring
[, +, -] with its operation +, some conclusion follows.

T It is out of context to draw a conclusion based on the sentence
“a ring is a group”.
1 An algebraic structure needs to be understood based on its
associated operation(s).

Zy can be either a set of two symbols, a semi-group, a group, the binary
field, a ring, a vector space, a module or an algebra over a field.
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