		Non-field Ring vs Field vs Other Algebraic Structures	Thanks / References
0000	000000	00	000

On Achievability of Linear Source Coding over **Finite Rings**

Sheng Huang and Mikael Skoglund

Communication Theory Electrical Engineering KTH Royal Institute of Technology Stockholm, Sweden

> July 11, 2013 Istanbul, Turkey

- **4** 🗗 🕨

- N -∢∃≯ э

Introduction	Achievability	Non-field Ring vs Field vs Other Algebraic Structures	Thanks / References
0000	0000000	00	000
Outline			

Linear Source Coding over Finite Field / Ring

Motivation: Source Coding for Computing

2 Achievability

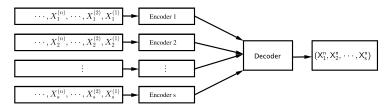
- Random Linear Mapping over Ring
- A Generalized Conditional Typicality Lemma
- Achievability Theorem
- Analysis of Error Probability

3 Non-field Ring vs Field vs Other Algebraic Structures

- Non-field Ring vs Field
- Other Algebraic Structures
- 4 Thanks / References
 - Thanks
 - Bibliography

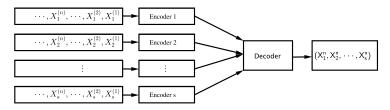
A B M A B M

Consider the Slepian-Wolf Source Network:



◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへぐ

Consider the Slepian–Wolf Source Network:



- [Elias(1955), Csiszár(1982)] propose to use linear mappings (over finite field) as encoders for Slepian–Wolf data compression;
- Linear coding over finite field (LCoF) is optimal, i.e. achieves the Slepian–Wolf region [Slepian and Wolf(1973)].

イロト イポト イヨト イヨト 二日

How about linear coding over finite ring (LCoR)?

Definition 1

The tuple $[\mathfrak{R}, +, \cdot]$ is called a *ring* if the following criteria are met:

- $\textcircled{0} [\mathfrak{R}, +] \text{ is an Abelian group;}$
- There exists a multiplicative identity 1 ∈ ℜ, namely, 1 · a = a · 1 = a, ∀ a ∈ ℜ;

(日) (同) (三) (三) (三) (○)

How about linear coding over finite ring (LCoR)?

Definition 1

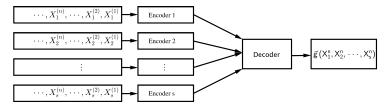
The tuple $[\mathfrak{R}, +, \cdot]$ is called a *ring* if the following criteria are met:

- $(\mathfrak{R}, +]$ is an Abelian group;
- 2 There exists a multiplicative identity $1 \in \mathfrak{R}$, namely, $1 \cdot a = a \cdot 1 = a$, $\forall a \in \mathfrak{R}$:
- $\forall a, b, c \in \mathfrak{R}, a \cdot (b+c) = (a \cdot b) + (a \cdot c) \text{ and } (b+c) \cdot a = (b \cdot a) + (c \cdot a).$
 - [†] Why ring in particular?
 - † Will LCoR be optimal as LCoF for Slepian–Wolf coding?
 - [†] What is the benefit?

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 _ ����

Motivation: Source Coding for Computing (I)

Source Coding for Computing g (a discrete function):

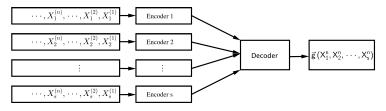


First considered by [Körner and Marton(1979), Ahlswede and Han(1983)] for g being the modulo-two sum.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 _ ����

Motivation: Source Coding for Computing (I)

Source Coding for Computing g (a discrete function):



First considered by [Körner and Marton(1979), Ahlswede and Han(1983)] for g being the modulo-two sum.

One trick: Let $Z^{(n)} = g\left(X_1^{(n)}, X_2^{(n)}, \cdots, X_s^{(n)}\right)$ and ϕ be a linear encoder (over some field / ring) such that

$$\epsilon > \Pr \left\{ \psi \left(\phi \left(Z^{n} \right) \right) \neq Z^{n} \right\}$$

$$\stackrel{(a)}{=} \Pr \left\{ \psi \left(\vec{g} \left(\phi \left(X_{1}^{n} \right), \phi \left(X_{2}^{n} \right), \cdots, \phi \left(X_{s}^{n} \right) \right) \right) \neq Z^{n} \right\},$$

where (a) holds when g is a linear function over some field / ring.

Introduction	Achievability	Non-field Ring vs Field vs Other Algebraic Structures	Thanks / References
○○○●	0000000	00	000
Motivation.	Source Coo	ding for Computing (II)	

Facts:

 Very discrete function over a finite domain is equivalent to a restriction of some polynomial function over a finite field / ring [Huang and Skoglund(2013a), conclusion of Fermat's little theorem or Galios theory];

(*) *) *) *)

	~	~		~	~	. (11)	
0000	0000000		00				000
Introduction				ld Ring vs		er Algebraic Structures	Thanks / Reference

Motivation: Source Coding for Computing (II)

Facts:

- Very discrete function over a finite domain is equivalent to a restriction of some polynomial function over a finite field / ring [Huang and Skoglund(2013a), conclusion of Fermat's little theorem or Galios theory];
- The characteristic of a non-field ring is not necessary a prime: linear coding over ring strictly outperforms its field (any finite field) counterpart in terms of achieving larger achievable region for computing (infinite) many g's [Huang and Skoglund(Submitted)];

・ 何 ト ・ ヨ ト ・ ヨ ト

Introduction		Non-field Ring vs Field vs Other Algebraic Structures	Thanks / Referen
0000	0000000	00	000

Motivation: Source Coding for Computing (II)

Facts:

- Very discrete function over a finite domain is equivalent to a restriction of some polynomial function over a finite field / ring [Huang and Skoglund(2013a), conclusion of Fermat's little theorem or Galios theory];
- The characteristic of a non-field ring is not necessary a prime: linear coding over ring strictly outperforms its field (any finite field) counterpart in terms of achieving larger achievable region for computing (infinite) many g's [Huang and Skoglund(Submitted)];
- Some non-field rings contain *zero divisors*: functions are not classified (the classification results of [Han and Kobayashi(1987)]), e.g. polynomial function over ring ℜ = ℤ₆ × ℤ₆

$$(X_1+X_2)X_3,$$

where $X_1 \in \{(0,2), (2,0)\}$, $X_2 \in \{(0,0), (2,2)\}$ and $X_3 \in \{(1,3), (3,1)\}$.

イロト 不得 とくき とくき とうき

Pandam I	linoar Mar	ping over Ding	
0000		00	000
Introduction	Achievability	Non-field Ring vs Field vs Other Algebraic Structures	Thanks / References

Random Linear Mapping over King

Definitio<u>n 2</u>

A (left) linear mapping $\phi : \mathfrak{R}^n \to \mathfrak{R}^k$ is defined as

 $\phi: \mathbf{x} \mapsto \mathbf{A}\mathbf{x}, \forall \ \mathbf{x} \in \mathfrak{R}^n.$

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへぐ

Introducti 0000		vability 0000	Non OO	field Ring vs Field vs Other Algebraic Structures	Thanks / References 000
D	1.1	N 4		D'	

Random Linear Mapping over Ring

Definition 2

A (left) linear mapping $\phi : \mathfrak{R}^n \to \mathfrak{R}^k$ is defined as

$$\phi: \mathbf{x} \mapsto \mathbf{A}\mathbf{x}, \forall \ \mathbf{x} \in \mathfrak{R}^n.$$

Lemma 3 ([Huang and Skoglund(2013b)])

Let \mathfrak{R} be a finite ring and choose uniformly at random a linear mapping

 $\phi:\mathfrak{R}^n\to\mathfrak{R}^k.$

Given $\mathbf{x}, \mathbf{y} \in \mathfrak{R}^n$ with $\mathbf{y} - \mathbf{x} = [a_1, a_2, \cdots, a_n]^t$, we have

$$\Pr\left\{\phi(\mathbf{y}) = \phi(\mathbf{x})\right\} = \left|\mathfrak{I}\right|^{-k},$$

where
$$\mathfrak{I} = \langle a_1, a_2, \cdots, a_n \rangle_I = \left\{ \sum_{i=1}^n r_i a_i \middle| r_i \in \mathfrak{R} \right\}.$$

Proof of Lemma 3 for k = 1

Define linear function $f : \mathfrak{R}^n \to \mathfrak{R}$ by

$$f:\phi\mapsto\phi(\mathbf{y}-\mathbf{x}),orall\,\phi\in\mathfrak{R}^n.$$

It is obvious that the image

$$f(\mathfrak{R}^n) = \mathfrak{I}$$

by definition. Moreover, $\forall r_1 \neq r_2 \in \mathfrak{I}$, the pre-images

$$f^{-1}(r_1)\cap f^{-1}(r_2)=\emptyset$$

and

$$|f^{-1}(r_1)| = |f^{-1}(r_2)| = |f^{-1}(0)|.$$

Therefore, $|\Im| |f^{-1}(0)| = |\Re|^n$, i.e.

$$\frac{\left|f^{-1}(0)\right|}{\left|\mathfrak{R}\right|^{n}} = \frac{1}{\left|\mathfrak{I}\right|}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 ののの

 Introduction
 Achievability
 Non-field Ring vs Field vs Other Algebraic Structures
 Thanks / References

 0000
 00
 000
 000
 000

A Generalized Conditional Typicality Lemma (I)

Definition 4

Let $X \sim p_X$ be a discrete random variable with sample space \mathscr{X} . The set $\mathcal{T}_{\epsilon}(n, X)$ of strongly ϵ -typical sequences of length n with respect to X is defined to be

$$\left\{\mathbf{x}\in\mathscr{X}^n\left|\left|\frac{N(x;\mathbf{x})}{n}-p_X(x)\right|\leq\epsilon,\forall\ x\in\mathscr{X}\right\},\right.$$

where $N(x; \mathbf{x})$ is the number of occurrences of x in the sequence \mathbf{x} .

イロト イポト イヨト イヨト 二日

Non-field Ring vs Field vs Other Algebraic Structures Introduction Achievability 0000000

<u>A Generalized Conditional Typicality Lemma (I)</u>

Definition 4

Let $X \sim p_X$ be a discrete random variable with sample space \mathscr{X} . The set $\mathcal{T}_{\epsilon}(n, X)$ of strongly ϵ -typical sequences of length n with respect to X is defined to be

Thanks / References

$$\left\{\mathbf{x}\in\mathscr{X}^n\left|\left|\frac{N(x;\mathbf{x})}{n}-p_X(x)\right|\leq\epsilon,\forall\ x\in\mathscr{X}\right\},\right.$$

where $N(x; \mathbf{x})$ is the number of occurrences of x in the sequence \mathbf{x} .

Definition 5

Given a finite ring \mathfrak{R} and one of its left ideal \mathfrak{I} , the coset $\mathfrak{R}/\mathfrak{I}$ is the set

$$\{r_1+\mathfrak{I}, r_2+\mathfrak{I}, \cdots, r_m+\mathfrak{I}\},\$$

where
$$m = \frac{|\mathfrak{R}|}{|\mathfrak{I}|}, r_i \in \mathfrak{R}$$
 for all feasible *i* and $r_i + \mathfrak{I} \cap r_j + \mathfrak{I} = \emptyset \Leftrightarrow i \neq j$.

イロン イロン イヨン イヨン

 Introduction
 Achievability
 Non-field Ring vs Field vs Other Algebraic Structures
 Thanks / References

 0000
 0000000
 00
 000
 000

A Generalized Conditional Typicality Lemma (II)

Lemma 6 ([Huang and Skoglund(2013b)])

Let $(X_1, X_2) \sim p$ be a jointly random variable whose sample space is a finite ring $\mathfrak{R} = \mathfrak{R}_1 \times \mathfrak{R}_2$. For any $\eta > 0$, there exists $\epsilon > 0$, such that, $\forall (\mathbf{x}_1, \mathbf{x}_2)^t \in \mathcal{T}_{\epsilon}(n, (X_1, X_2))$ and for any left ideal \mathfrak{I} of \mathfrak{R}_1 ,

$$|D_{\epsilon}(\mathbf{x}_{1}, \mathfrak{I}|\mathbf{x}_{2})| < 2^{n\left[H(X_{1}|X_{2}) - H(Y_{\mathfrak{R}_{1}/\mathfrak{I}}|X_{2}) + \eta\right]},\tag{1}$$

(ロ) (四) (三) (三) (三)

where

$$D_{\epsilon}(\mathbf{x}_1, \mathfrak{I}|\mathbf{x}_2) = \left\{ \left. (\mathbf{y}, \mathbf{x}_2)^t \in \mathcal{T}_{\epsilon}(n, (X_1, X_2)) \right| \mathbf{y} - \mathbf{x}_1 \in \mathfrak{I}^n
ight\}$$

and $Y_{\mathfrak{R}_1/\mathfrak{I}} = X_1 + \mathfrak{I}$ is a random variable with sample space $\mathfrak{R}_1/\mathfrak{I}$.

<u>A Generalized Conditional Typicality Lemma (II)</u>

Lemma 6 ([Huang and Skoglund(2013b)])

Let $(X_1, X_2) \sim p$ be a jointly random variable whose sample space is a finite ring $\mathfrak{R} = \mathfrak{R}_1 \times \mathfrak{R}_2$. For any $\eta > 0$, there exists $\epsilon > 0$, such that, $\forall (\mathbf{x}_1, \mathbf{x}_2)^t \in \mathcal{T}_{\epsilon}(n, (X_1, X_2))$ and for any left ideal \mathfrak{I} of \mathfrak{R}_1 ,

$$|D_{\epsilon}(\mathbf{x}_{1}, \mathfrak{I}|\mathbf{x}_{2})| < 2^{n\left[H(X_{1}|X_{2}) - H(Y_{\mathfrak{R}_{1}/\mathfrak{I}}|X_{2}) + \eta\right]}, \tag{1}$$

where

$$D_{\epsilon}(\mathbf{x}_1, \mathfrak{I}|\mathbf{x}_2) = \left\{ \left. (\mathbf{y}, \mathbf{x}_2)^t \in \mathcal{T}_{\epsilon}(n, (X_1, X_2)) \right| \mathbf{y} - \mathbf{x}_1 \in \mathfrak{I}^n
ight\}$$

and $Y_{\mathfrak{R}_1/\mathfrak{I}} = X_1 + \mathfrak{I}$ is a random variable with sample space $\mathfrak{R}_1/\mathfrak{I}$.

Remark 1

If $\mathfrak{I} = \mathfrak{R}_1$, then $D_{\epsilon}(\mathbf{x}_1, \mathfrak{I} | \mathbf{x}_2)$ is the set of all ϵ -typical sequences $(\mathbf{y}, \mathbf{x}_2) \in \mathcal{T}_{\epsilon}(n, (X_1, X_2)).$ Obviously, $|D_{\epsilon}(\mathbf{x}_1, \Im|\mathbf{x}_2)| < 2^{n[H(X_1|X_2)+\eta]}$

A Generalized Conditional Typicality Lemma (III)

Example 7 (Single Source)

Let $\mathfrak{R} = \{0, 1, a, b\}$ and $\mathfrak{I} = \{0, a\}$ be a left ideal of \mathfrak{R} . Then

 $\mathfrak{R}/\mathfrak{I} = \{\mathfrak{I}, \{1, b\}\}$ $\mathfrak{R}/\mathfrak{R} = \{\mathfrak{R}\}.$

For strongly ϵ -typical sequences

$$\mathbf{x}_1 : 1 - 0 - b - a - a - 0 - 1 - a - b - 1 - 0 - 1 \mathbf{y}' : b - a - 1 - a - 0 - a - b - 0 - 1 - 1 - 0 - b \mathbf{y}'' : 0 - a - 1 - b - 0 - a - b - 0 - 1 - 1 - 0 - a.$$

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ の Q ()

We have $\mathbf{y}' \in D_{\epsilon}(\mathbf{x}_1, \mathfrak{I})$, when $\mathbf{y}'' \notin D_{\epsilon}(\mathbf{x}_1, \mathfrak{I})$ but $\mathbf{y}', \mathbf{y}'' \in D_{\epsilon}(\mathbf{x}_1, \mathfrak{R})$.

A Generalized Conditional Typicality Lemma (III)

Example 7 (Single Source)

Let $\mathfrak{R} = \{0, 1, a, b\}$ and $\mathfrak{I} = \{0, a\}$ be a left ideal of \mathfrak{R} . Then

 $\mathfrak{R}/\mathfrak{I} = \{\mathfrak{I}, \{1, b\}\}$ $\mathfrak{R}/\mathfrak{R} = \{\mathfrak{R}\}.$

For strongly ϵ -typical sequences

$$\mathbf{x}_1 : 1 - 0 - b - a - a - 0 - 1 - a - b - 1 - 0 - 1 \mathbf{y}' : b - a - 1 - a - 0 - a - b - 0 - 1 - 1 - 0 - b \mathbf{y}'' : 0 - a - 1 - b - 0 - a - b - 0 - 1 - 1 - 0 - a.$$

We have $\mathbf{y}' \in D_{\epsilon}(\mathbf{x}_1, \mathfrak{I})$, when $\mathbf{y}'' \notin D_{\epsilon}(\mathbf{x}_1, \mathfrak{I})$ but $\mathbf{y}', \mathbf{y}'' \in D_{\epsilon}(\mathbf{x}_1, \mathfrak{R})$.

Remark 2

The above typicality lemma is a special case of the typicality lemma of *Supremus typicality sequences* [Huang and Skoglund(2013a)].

くぼう くほう くほう

Achievability Theorem

Assume that the sample space of X_i $(1 \le i \le s)$ is a finite ring \mathfrak{R}_i , and let $X_T = \prod_{i \in T} X_i$ and $\mathfrak{R}_T = \prod_{i \in T} \mathfrak{R}_i$ for $\emptyset \ne T \subseteq \{1, 2, \cdots, s\}$.

<ロ> <回> <回> <三> <三> <三> <三</p>

Introduction	Achievability	Non-field Ring vs Field vs Other Algebraic Structures	Thanks / References
0000	○○○○○●○	00	000
	1.000		

Achievability Theorem

Assume that the sample space of X_i $(1 \le i \le s)$ is a finite ring \mathfrak{R}_i , and let $X_T = \prod_{i \in T} X_i$ and $\mathfrak{R}_T = \prod_{i \in T} \mathfrak{R}_i$ for $\emptyset \ne T \subseteq \{1, 2, \cdots, s\}$.

Theorem 8 ([Huang and Skoglund(2013b)])

The coding rate $(R_1, R_2, \cdots, R_s) \in \mathbb{R}^s$ satisfying

$$\sum_{i \in T} \frac{R_i \log |\mathfrak{I}_i|}{\log |\mathfrak{R}_i|} > H(X_T | X_{T^c}) - H(Y_{\mathfrak{R}_T / \mathfrak{I}_T} | X_{T^c}),$$

$$\forall \emptyset \neq T \subseteq \{1, 2, \cdots, s\} \text{ and for all left ideal } \mathfrak{I}_T \text{ of } \mathfrak{R}_T,$$

where $Y_{\mathfrak{R}_T/\mathfrak{I}_T} = X_T + \mathfrak{I}_T$, is achievable with linear coding over $\mathfrak{R}_1, \mathfrak{R}_2, \cdots, \mathfrak{R}_s$.

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Introduction	Achievability	Non-field Ring vs Field vs Other Algebraic Structures	Thanks / References
0000	0000000	00	000

Achievability Theorem

Assume that the sample space of X_i $(1 \le i \le s)$ is a finite ring \mathfrak{R}_i , and let $X_T = \prod_{i \in T} X_i$ and $\mathfrak{R}_T = \prod_{i \in T} \mathfrak{R}_i$ for $\emptyset \ne T \subseteq \{1, 2, \cdots, s\}$.

Theorem 8 ([Huang and Skoglund(2013b)])

The coding rate $(R_1, R_2, \cdots, R_s) \in \mathbb{R}^s$ satisfying

$$\begin{split} \sum_{i \in \mathcal{T}} \frac{\mathcal{H}_i \log |\mathfrak{I}_i|}{\log |\mathfrak{R}_i|} > & \mathcal{H}(X_{\mathcal{T}} | X_{\mathcal{T}^c}) - \mathcal{H}(Y_{\mathfrak{R}_{\mathcal{T}} / \mathfrak{I}_{\mathcal{T}}} | X_{\mathcal{T}^c}), \\ & \forall \ \emptyset \neq \mathcal{T} \subseteq \{1, 2, \cdots, s\} \text{ and for all left ideal } \mathfrak{I}_{\mathcal{T}} \text{ of } \mathfrak{R}_{\mathcal{T}}, \end{split}$$

where $Y_{\mathfrak{R}_T/\mathfrak{I}_T} = X_T + \mathfrak{I}_T$, is achievable with linear coding over $\mathfrak{R}_1, \mathfrak{R}_2, \cdots, \mathfrak{R}_s$.

Example: linear coding over \mathbb{Z}_6 is optimal for the scenario that $\mathfrak{R}_1 = \mathbb{Z}_6$ and $X_1 \sim p$ satisfying

X_1	0	1	2	3	4	5
$p(X_1)$	0.05	0.1	0.15	0.2	0.2	0.3

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Analysis of Error Probability

For simplicity, assume single source scenario and $\mathbf{X} \in \mathcal{T}_{\epsilon}(n, X_1)$ is the encoded data. Let *L* be the set of all non-trivial left ideals of \mathfrak{R}_1 .

Analysis of Error Probability

For simplicity, assume single source scenario and $\mathbf{X} \in \mathcal{T}_{\epsilon}(n, X_1)$ is the encoded data. Let *L* be the set of all non-trivial left ideals of \mathfrak{R}_1 .

$$\Pr \{ Error \} \leq \sum_{\mathbf{x} \in \mathcal{T}_{\epsilon}(n, X_{1}) \setminus \{\mathbf{X}\}} \Pr \{ \phi(\mathbf{x}) = \phi(\mathbf{X}) \} + \delta$$
$$= \sum_{\mathfrak{I}_{1} \in L} \sum_{\mathbf{x} \in D_{\epsilon}(\mathbf{X}, \mathfrak{I}_{1})} \Pr \{ \phi(\mathbf{x}) = \phi(\mathbf{X}) \} + \delta$$
$$= \sum_{\mathfrak{I}_{1} \in L} \sum_{\mathbf{x} \in D_{\epsilon}(\mathbf{X}, \mathfrak{I}_{1})} |\mathfrak{I}_{1}|^{-k} + \delta$$
$$< \sum_{\mathfrak{I}_{1} \in L} 2^{n \left[H(X_{1}) - H(Y_{\mathfrak{R}_{1}/\mathfrak{I}_{1}}) + \eta \right]} |\mathfrak{I}_{1}|^{-k} + \delta.$$

Analysis of Error Probability

For simplicity, assume single source scenario and $\mathbf{X} \in \mathcal{T}_{\epsilon}(n, X_1)$ is the encoded data. Let *L* be the set of all non-trivial left ideals of \mathfrak{R}_1 .

$$\Pr \{ Error \} \leq \sum_{\mathbf{x} \in \mathcal{T}_{\epsilon}(n, X_{1}) \setminus \{\mathbf{X}\}} \Pr \{ \phi(\mathbf{x}) = \phi(\mathbf{X}) \} + \delta$$
$$= \sum_{\mathfrak{I}_{1} \in L} \sum_{\mathbf{x} \in D_{\epsilon}(\mathbf{X}, \mathfrak{I}_{1})} \Pr \{ \phi(\mathbf{x}) = \phi(\mathbf{X}) \} + \delta$$
$$= \sum_{\mathfrak{I}_{1} \in L} \sum_{\mathbf{x} \in D_{\epsilon}(\mathbf{X}, \mathfrak{I}_{1})} |\mathfrak{I}_{1}|^{-k} + \delta$$
$$< \sum_{\mathfrak{I}_{1} \in L} 2^{n[H(X_{1}) - H(Y_{\mathfrak{R}_{1}/\mathfrak{I}_{1}}) + \eta]} |\mathfrak{I}_{1}|^{-k} + \delta.$$

If
$$R_1 = \frac{k \log |\mathfrak{R}_1|}{n} > \frac{\log |\mathfrak{R}_1|}{\log |\mathfrak{I}_1|} [H(X_1) - H(Y_{\mathfrak{R}_1/\mathfrak{I}_1})]$$
, then
 $\Pr \{ Error \} \to 0 \text{ as } n \to \infty.$

		Non-field Ring vs Field vs Other Algebraic Structures		References
0000	000000	•0	000	

field

Non-field Ring vs Field

(memory)

properties

characteristic

& zero divisor

Codin Computing Coding for Computing

Slepian–Wolf		exist optimal	inverse
coding	\checkmark	encoders for all	& typicality lemma
(side information)		scenarios	
Slepian–Wolf		not yet proved,	inverse
coding	\checkmark	optimal shown	& typicality lemma
(memory)		by examples	
Implementation		/	polynomial long
Complexity		V	division algorithm
Alphabet sizes		/	prime subfield
of encoders		V	prime subheiu
Coding for		/	characteristic
Computing		V	& zero divisor

non-field ring

Other Algebraic Structures

- † "A ring is a group" exact words from many math textbooks.
- † Is LCoR a subclass of "group coding"? NO! Because our arguments actually involve properties, e.g. inverse, characteristic, zero divisor and etc, which are defined based on the multiplicative operation.
- [†] The mathematicians mean that consider the base set \Re of a ring $[\Re, +, \cdot]$ with its operation +, some conclusion follows.
- $\dagger\,$ It is out of context to draw a conclusion based on the sentence

"a ring is a group".

▲□▶ ▲□▶ ▲■▶ ▲■▶ = ののの

† An algebraic structure needs to be understood based on its associated operation(s).

 \mathbb{Z}_2 can be either a set of two symbols, a semi-group, a group, the binary field, a ring, a vector space, a module or an algebra over a field.

Introduction	Achievability	Non-field Ring vs Field vs Other Algebraic Structures	Thanks / References
0000	0000000	00	●○○
Thanks			

₅,, Thanks!

S. Huang and M. Skoglund, On Existence of Optimal Linear Encoders over Non-field Rings for Data Compression with Application to Computing, in Proc. IEEE ITW September 2013. Available: http://www.ee.kth.se/~sheng11 or http://people.kth.se/~sheng11

will be presented in Seville, Spain.

< 同 > < 三 > < 三 >

Introduction	Achievability	Non-field Ring vs Field vs Other Algebraic Structures	Thanks / References
0000	0000000	OO	○●●
Bibliograph			

- P. Elias, "Coding for noisy channels," IRE Conv. Rec., pp. 37–46, Mar. 1955.
- I. Csiszár, "Linear codes for sources and source networks: Error exponents, universal coding," IEEE Transactions on Information Theory, vol. 28, no. 4, pp. 585–592, Jul. 1982.
- D. Slepian and J. K. Wolf, "Noiseless coding of correlated information sources," IEEE Transactions on Information Theory, vol. 19, no. 4, pp. 471–480, Jul. 1973.
- J. Körner and K. Marton. "How to encode the modulo-two sum of binary sources," IEEE Transactions on Information Theory, vol. 25, no. 2, pp. 219-221, Mar. 1979.
- R. Ahlswede and T. S. Han, "On source coding with side information via a multiple-access channel and related problems in multi-user information theory," IEEE Transactions on Information Theory, vol. 29, no. 3, pp. 396-411, May 1983.

イロト 不同下 イヨト イヨト

Introduction	Achievability	Non-field Ring vs Field vs Other Algebraic Structures	Thanks / References
0000	0000000	00	○●●
Bibliograph	ny II		

- S. Huang and M. Skoglund, Coding for Computing Irreducible Markovian Functions of Sources with Memory, KTH Royal Institute of Technology, May 2013. [Online]. Available: http://www.ee.kth.se/~sheng11
- , "On linear coding over finite rings and applications to computing," *IEEE Transactions on Information Theory*, Submitted. [Online]. Available: http://www.ee.kth.se/~sheng11
- T. S. Han and K. Kobayashi, "A dichotomy of functions f(x, y) of correlated sources (x, y) from the viewpoint of the achievable rate region," *IEEE Transactions on Information Theory*, vol. 33, no. 1, pp. 69–76, Jan. 1987.
- S. Huang and M. Skoglund, "On achievability of linear source coding over finite rings," in *IEEE International Symposium on Information Theory*, July 2013.

(日) (周) (王) (王) (王)