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Linear Source Coding over Finite Field / Ring (I)

Consider the Slepian–Wolf Source Network:
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Linear Source Coding over Finite Field / Ring (I)

Consider the Slepian–Wolf Source Network:

1 [Elias(1955), Csiszár(1982)] propose to use linear mappings (over
finite field) as encoders for Slepian–Wolf data compression;

2 Linear coding over finite field (LCoF) is optimal, i.e. achieves the
Slepian–Wolf region [Slepian and Wolf(1973)].
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Linear Source Coding over Finite Field / Ring (II)

How about linear coding over finite ring (LCoR)?

Definition 1

The tuple [R,+, ·] is called a ring if the following criteria are met:

1 [R,+] is an Abelian group;

2 There exists a multiplicative identity 1 ∈ R, namely, 1 · a = a · 1 = a,
∀ a ∈ R;

3 ∀ a, b, c ∈ R, a · b ∈ R and (a · b) · c = a · (b · c);

4 ∀ a, b, c ∈ R, a · (b+ c) = (a · b)+ (a · c) and (b+ c) · a = (b · a)+ (c · a).
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Linear Source Coding over Finite Field / Ring (II)

How about linear coding over finite ring (LCoR)?

Definition 1

The tuple [R,+, ·] is called a ring if the following criteria are met:

1 [R,+] is an Abelian group;

2 There exists a multiplicative identity 1 ∈ R, namely, 1 · a = a · 1 = a,
∀ a ∈ R;

3 ∀ a, b, c ∈ R, a · b ∈ R and (a · b) · c = a · (b · c);

4 ∀ a, b, c ∈ R, a · (b+ c) = (a · b)+ (a · c) and (b+ c) · a = (b · a)+ (c · a).

† Why ring in particular?

† Will LCoR be optimal as LCoF for Slepian–Wolf coding?

† What is the benefit?
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Motivation: Source Coding for Computing (I)

Source Coding for Computing g (a discrete function):

First considered by [Körner and Marton(1979), Ahlswede and Han(1983)]
for g being the modulo-two sum.
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Motivation: Source Coding for Computing (I)

Source Coding for Computing g (a discrete function):

First considered by [Körner and Marton(1979), Ahlswede and Han(1983)]
for g being the modulo-two sum.

One trick: Let Z (n) = g
(

X
(n)
1 ,X

(n)
2 , · · · ,X (n)

s

)

and φ be a linear encoder

(over some field / ring) such that

ǫ >Pr {ψ (φ (Z n)) 6= Z n}
(a)
= Pr {ψ (~g (φ (X n

1 ) , φ (X
n
2 ) , · · · , φ (X n

s ))) 6= Z n} ,

where (a) holds when g is a linear function over some field / ring.
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Motivation: Source Coding for Computing (II)

Facts:

1 Very discrete function over a finite domain is equivalent to a
restriction of some polynomial function over a finite field / ring
[Huang and Skoglund(2013a), conclusion of Fermat’s little theorem
or Galios theory];

Sheng Huang and Mikael Skoglund ISIT2013



Introduction Achievability Non-field Ring vs Field vs Other Algebraic Structures Thanks / References

Motivation: Source Coding for Computing (II)

Facts:

1 Very discrete function over a finite domain is equivalent to a
restriction of some polynomial function over a finite field / ring
[Huang and Skoglund(2013a), conclusion of Fermat’s little theorem
or Galios theory];

2 The characteristic of a non-field ring is not necessary a prime: linear
coding over ring strictly outperforms its field (any finite field)
counterpart in terms of achieving larger achievable region for
computing (infinite) many g ’s [Huang and Skoglund(Submitted)];
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Motivation: Source Coding for Computing (II)

Facts:

1 Very discrete function over a finite domain is equivalent to a
restriction of some polynomial function over a finite field / ring
[Huang and Skoglund(2013a), conclusion of Fermat’s little theorem
or Galios theory];

2 The characteristic of a non-field ring is not necessary a prime: linear
coding over ring strictly outperforms its field (any finite field)
counterpart in terms of achieving larger achievable region for
computing (infinite) many g ’s [Huang and Skoglund(Submitted)];

3 Some non-field rings contain zero divisors: functions are not
classified (the classification results of [Han and Kobayashi(1987)]),
e.g. polynomial function over ring R = Z6 × Z6

(X1 + X2)X3,

where X1 ∈ {(0, 2), (2, 0)}, X2 ∈ {(0, 0), (2, 2)} and
X3 ∈ {(1, 3), (3, 1)}.
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Random Linear Mapping over Ring

Definition 2

A (left) linear mapping φ : Rn → R
k is defined as

φ : x 7→ Ax,∀ x ∈ R
n.

Sheng Huang and Mikael Skoglund ISIT2013



Introduction Achievability Non-field Ring vs Field vs Other Algebraic Structures Thanks / References

Random Linear Mapping over Ring

Definition 2

A (left) linear mapping φ : Rn → R
k is defined as

φ : x 7→ Ax,∀ x ∈ R
n.

Lemma 3 ([Huang and Skoglund(2013b)])

Let R be a finite ring and choose uniformly at random a linear mapping

φ : Rn → R
k .

Given x, y ∈ R
n with y − x = [a1, a2, · · · , an]t , we have

Pr {φ(y) = φ(x)} = |I|−k
,

where I = 〈a1, a2, · · · , an〉l =
{

n
∑

i=1

riai

∣

∣

∣

∣

∣

ri ∈ R

}

.
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Proof of Lemma 3 for k = 1

Define linear function f : Rn → R by

f : φ 7→ φ(y − x), ∀ φ ∈ R
n.

It is obvious that the image

f (Rn) = I

by definition. Moreover, ∀ r1 6= r2 ∈ I, the pre-images

f −1(r1) ∩ f −1(r2) = ∅

and
∣

∣f −1(r1)
∣

∣ =
∣

∣f −1(r2)
∣

∣ = |f −1(0)|.
Therefore, |I|

∣

∣f −1(0)
∣

∣ = |R|n, i.e.
∣

∣f −1(0)
∣

∣

|R|n =
1

|I| .
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A Generalized Conditional Typicality Lemma (I)

Definition 4

Let X ∼ pX be a discrete random variable with sample space X . The set
Tǫ(n,X ) of strongly ǫ-typical sequences of length n with respect to X is
defined to be

{

x ∈ X
n

∣

∣

∣

∣

∣

∣

∣

∣

N(x ; x)

n
− pX (x)

∣

∣

∣

∣

≤ ǫ, ∀ x ∈ X

}

,

where N(x ; x) is the number of occurrences of x in the sequence x.
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A Generalized Conditional Typicality Lemma (I)

Definition 4

Let X ∼ pX be a discrete random variable with sample space X . The set
Tǫ(n,X ) of strongly ǫ-typical sequences of length n with respect to X is
defined to be

{

x ∈ X
n

∣

∣

∣

∣

∣

∣

∣

∣

N(x ; x)

n
− pX (x)

∣

∣

∣

∣

≤ ǫ, ∀ x ∈ X

}

,

where N(x ; x) is the number of occurrences of x in the sequence x.

Definition 5

Given a finite ring R and one of its left ideal I, the coset R/I is the set

{r1 + I, r2 + I, · · · , rm + I} ,

where m =
|R|

|I|
, ri ∈ R for all feasible i and ri + I ∩ rj + I = ∅ ⇔ i 6= j .
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A Generalized Conditional Typicality Lemma (II)

Lemma 6 ([Huang and Skoglund(2013b)])

Let (X1,X2) ∼ p be a jointly random variable whose sample space is a

finite ring R = R1 ×R2. For any η > 0, there exists ǫ > 0, such that,

∀ (x1, x2)
t ∈ Tǫ(n, (X1,X2)) and for any left ideal I of R1,

|Dǫ(x1, I|x2)| < 2n[H(X1|X2)−H(YR1/I
|X2)+η], (1)

where

Dǫ(x1, I|x2) =
{

(y, x2)
t ∈ Tǫ(n, (X1,X2))

∣

∣ y − x1 ∈ I
n
}

and YR1/I = X1 + I is a random variable with sample space R1/I.
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A Generalized Conditional Typicality Lemma (II)

Lemma 6 ([Huang and Skoglund(2013b)])

Let (X1,X2) ∼ p be a jointly random variable whose sample space is a

finite ring R = R1 ×R2. For any η > 0, there exists ǫ > 0, such that,

∀ (x1, x2)
t ∈ Tǫ(n, (X1,X2)) and for any left ideal I of R1,

|Dǫ(x1, I|x2)| < 2n[H(X1|X2)−H(YR1/I
|X2)+η], (1)

where

Dǫ(x1, I|x2) =
{

(y, x2)
t ∈ Tǫ(n, (X1,X2))

∣

∣ y − x1 ∈ I
n
}

and YR1/I = X1 + I is a random variable with sample space R1/I.

Remark 1

If I = R1, then Dǫ(x1, I|x2) is the set of all ǫ-typical sequences

(y, x2) ∈ Tǫ(n, (X1,X2)). Obviously, |Dǫ(x1, I|x2)| < 2n[H(X1|X2)+η].
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A Generalized Conditional Typicality Lemma (III)

Example 7 (Single Source)

Let R = {0, 1, a, b} and I = {0, a} be a left ideal of R. Then

R/I = {I, {1, b}}

R/R = {R} .

For strongly ǫ-typical sequences

x1 :1− 0− b − a − a − 0− 1− a − b − 1− 0− 1

y
′ :b − a− 1− a− 0− a − b − 0− 1− 1− 0− b

y
′′ :0− a − 1− b − 0− a − b − 0− 1− 1− 0− a.

We have y
′ ∈ Dǫ(x1, I), when y

′′ /∈ Dǫ(x1, I) but y
′, y′′ ∈ Dǫ(x1,R).
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A Generalized Conditional Typicality Lemma (III)

Example 7 (Single Source)

Let R = {0, 1, a, b} and I = {0, a} be a left ideal of R. Then

R/I = {I, {1, b}}

R/R = {R} .

For strongly ǫ-typical sequences

x1 :1− 0− b − a − a − 0− 1− a − b − 1− 0− 1

y
′ :b − a− 1− a− 0− a − b − 0− 1− 1− 0− b

y
′′ :0− a − 1− b − 0− a − b − 0− 1− 1− 0− a.

We have y
′ ∈ Dǫ(x1, I), when y

′′ /∈ Dǫ(x1, I) but y
′, y′′ ∈ Dǫ(x1,R).

Remark 2

The above typicality lemma is a special case of the typicality lemma of
Supremus typicality sequences [Huang and Skoglund(2013a)].
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Achievability Theorem

Assume that the sample space of Xi (1 ≤ i ≤ s) is a finite ring Ri , and let

XT =
∏

i∈T

Xi and RT =
∏

i∈T

Ri for ∅ 6= T ⊆ {1, 2, · · · , s}.
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Achievability Theorem

Assume that the sample space of Xi (1 ≤ i ≤ s) is a finite ring Ri , and let

XT =
∏

i∈T

Xi and RT =
∏

i∈T

Ri for ∅ 6= T ⊆ {1, 2, · · · , s}.

Theorem 8 ([Huang and Skoglund(2013b)])

The coding rate (R1,R2, · · · ,Rs) ∈ R
s
satisfying

∑

i∈T

Ri log |Ii |

log |Ri |
>H(XT |XT c )− H(YRT/IT

|XT c ),

∀ ∅ 6= T ⊆ {1, 2, · · · , s} and for all left ideal IT of RT ,

where YRT /IT
= XT +IT , is achievable with linear coding over R1,R2, · · · ,Rs .
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Achievability Theorem

Assume that the sample space of Xi (1 ≤ i ≤ s) is a finite ring Ri , and let

XT =
∏

i∈T

Xi and RT =
∏

i∈T

Ri for ∅ 6= T ⊆ {1, 2, · · · , s}.

Theorem 8 ([Huang and Skoglund(2013b)])

The coding rate (R1,R2, · · · ,Rs) ∈ R
s
satisfying

∑

i∈T

Ri log |Ii |

log |Ri |
>H(XT |XT c )− H(YRT/IT

|XT c ),

∀ ∅ 6= T ⊆ {1, 2, · · · , s} and for all left ideal IT of RT ,

where YRT /IT
= XT +IT , is achievable with linear coding over R1,R2, · · · ,Rs .

Example: linear coding over Z6 is optimal for the scenario that R1 = Z6 and
X1 ∼ p satisfying

X1 0 1 2 3 4 5

p(X1) 0.05 0.1 0.15 0.2 0.2 0.3
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Analysis of Error Probability

For simplicity, assume single source scenario and X ∈ Tǫ(n,X1) is the
encoded data. Let L be the set of all non-trivial left ideals of R1.
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Analysis of Error Probability

For simplicity, assume single source scenario and X ∈ Tǫ(n,X1) is the
encoded data. Let L be the set of all non-trivial left ideals of R1.

Pr {Error} ≤
∑

x∈Tǫ(n,X1)\{X}

Pr {φ(x) = φ(X)} + δ

=
∑

I1∈L

∑

x∈Dǫ(X,I1)

Pr {φ(x) = φ(X)}+ δ

=
∑

I1∈L

∑

x∈Dǫ(X,I1)

|I1|−k
+ δ

<
∑

I1∈L

2n[H(X1)−H(YR1/I1
)+η] |I1|−k

+ δ.
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Analysis of Error Probability

For simplicity, assume single source scenario and X ∈ Tǫ(n,X1) is the
encoded data. Let L be the set of all non-trivial left ideals of R1.

Pr {Error} ≤
∑

x∈Tǫ(n,X1)\{X}

Pr {φ(x) = φ(X)} + δ

=
∑

I1∈L

∑

x∈Dǫ(X,I1)

Pr {φ(x) = φ(X)}+ δ

=
∑

I1∈L

∑

x∈Dǫ(X,I1)

|I1|−k
+ δ

<
∑

I1∈L

2n[H(X1)−H(YR1/I1
)+η] |I1|−k

+ δ.

If R1 =
k log |R1|

n
>

log |R1|
log |I1|

[

H(X1)− H(YR1/I1
)
]

, then

Pr {Error} → 0 as n → ∞.
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Non-field Ring vs Field

field non-field ring properties
Slepian–Wolf √ exist optimal

inverse
coding encoders for all

& typicality lemma
(side information) scenarios
Slepian–Wolf √ not yet proved,

inverse
coding optimal shown

& typicality lemma
(memory) by examples
Implementation √ polynomial long
Complexity division algorithm
Alphabet sizes √

prime subfield
of encoders
Coding for √ characteristic
Computing & zero divisor
Coding for √ characteristic
Computing

& zero divisor
(memory)
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Other Algebraic Structures

† “A ring is a group” – exact words from many math textbooks.

† Is LCoR a subclass of “group coding”? NO! Because our arguments
actually involve properties, e.g. inverse, characteristic, zero divisor
and etc, which are defined based on the multiplicative operation.

† The mathematicians mean that consider the base set R of a ring
[R,+, ·] with its operation +, some conclusion follows.

† It is out of context to draw a conclusion based on the sentence

“a ring is a group”.

† An algebraic structure needs to be understood based on its
associated operation(s).

Z2 can be either a set of two symbols, a semi-group, a group, the binary
field, a ring, a vector space, a module or an algebra over a field.
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Thanks!
S. Huang and M. Skoglund, On Existence of Optimal Linear Encoders

over Non-field Rings for Data Compression with Application to

Computing, in Proc. IEEE ITW September 2013. Available:
http://www.ee.kth.se/~sheng11 or
http://people.kth.se/~sheng11

will be presented in Seville, Spain.
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