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Irreducible Markov Chains

Definition 1

Given a homogeneous Markov chain M =
{

X (n)
}∞

−∞
with a countable

state space X , the transition matrix of M is defined to be the

stochastic matrix P = [pi ,j ]i ,j∈X , where pi ,j = Pr
{

X (2) = j

∣

∣

∣
X (1) = i

}

.

Moreover, M is said to be irreducible if and only if P is irreducible,
namely, there exists no ∅ 6= A ( X such that
PA,Ac = [pi ,j ]i∈A,j∈Ac = 0. M is said to be finite-state if X is finite.

Example 2








.8142 .1773 .0042 .0042

.0042 .9873 .0042 .0042

.0042 .1773 .8142 .0042

.0042 .1773 .0042 .8142









,









1 0 0 0
.0127 .9873 0 0
.0042 .1773 .8142 .0042
.0042 .1773 .0042 .8142









The first stochastic matrix is irreducible, while the second one is not.
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Strong Markov Property and Reduced Chains

Theorem 3 (Strong Markov Property [Norris(1998)])

Given a Markov chain M =
{

X (n)
}∞

−∞
and a random stopping time

−∞ < T < ∞, Pr {XT+1|XT ,XT−1, · · · ,X0, · · ·} = Pr {XT+1|XT} .

Example 4

Given a Markov chain M =
{

X
(n)
}∞

−∞
with state space X and a

non-empty subset A of X , let

TA,l =



















inf
{

n > 0|X (n) ∈ A
}

; l = 1,

inf
{

n > TA,l−1|X
(n) ∈ A

}

; l > 1,

sup
{

n < TA,l+1|X
(n) ∈ A

}

; l < 1.

By the strong Markov property, MA =
{

X
(TA,l )

}∞

−∞
is Markov.
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Invariant Distributions

Theorem 5

A finite-state irreducible Markov chain with transition matrix P

admits a unique invariant distribution π, i.e. πP = π.

Proved by [Breuer and Baum(2005), Theorem 2.31] and [Norris(1998),
Theorem 1.7.7].

Problem 6

In Theorem 5, how to compute π given P efficiently for very large sized

P?

Problem 7

In Example 4, if the M is finite-state and irreducible, will MA be

irreducible? If yes, what are the transition matrix and the invariant

distribution of MA?
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Stochastic Complements

Assumption: all Markov chains considered hereafter are homogeneous
and finite-state unless specify. They are not necessarily stationary or their
initial distributions are unknown.

Definition 8 (Definition 2.1 [Meyer(1989)])

In Example 4, assume that

P =

[

PA,A PA,Ac

PAc ,A PAc ,Ac

]

, where PA,B = [pi ,j ]i∈A,j∈B for A,B ⊆ X ,

is the transition matrix of M , the stochastic complement of PA,A in P

is defined to be

SA = PA,A + PA,Ac (1− PAc ,Ac )−1
PAc ,A.
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The Uncoupling Theorem

Theorem 9

In Definition 8, if P (M ) is irreducible, then

1 SA is stochastic [Meyer(1989), Theorem 2.1];

2 SA is irreducible [Meyer(1989), Theorem 2.3];

3 SA is the transition matrix of MA [Meyer(1989), Section 3];

4 Let π = [pi ]i∈X be the invariant distribution of P (M ). The
invariant distribution of SA is

[

pi
∑

j∈A pj

]

i∈A

[Meyer(1989), Theorem 2.2].

Remark 1

One is kindly referred to [Norris(1998), Chapter 1] for the case that
M is not finite-state and other interested subchains of M .
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The Coupling Theorem

Theorem 10 (Theorem 4.1 of [Meyer(1989)])

In Definition 8, if P (M ) is irreducible, let πA and πAc be the invariant
distribution of SA and SAc (guaranteed by Theorem 9), respectively.
We have that the invariant distribution π of P is given by

π = [ξ1πA, ξ2πAc ] ,

where
ξ = [ξ1, ξ2]

is the unique unitary vector such that

ξC = ξ,C =

[

πAPA,Ae πAPA,Ace

πAcPAc ,Ae πAcPAc ,Ace

]

. (1)

C is named the coupling matrix, and ξA and ξAc are termed the
coupling factors.
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Strongly Markov Typicality

Definition 11 (Strongly Markov Typicality)

Let M =
{

X
(n)
}∞

−∞
be an irreducible Markov chain with state space X ,

and P = [pi,j ]i,j∈X and π = [pj ]j∈X
be its transition matrix and invariant

distribution, respectively. For any ǫ > 0, a sequence x ∈ X
n of length n

(≥ 2) is said to be strongly Markov ǫ-typical with respect to P if















∣

∣

∣

∣

N(i , j ; x)

N(i ; x)
− pi,j

∣

∣

∣

∣

< ǫ;
∣

∣

∣

∣

N(i ; x)

n
− pi

∣

∣

∣

∣

< ǫ,
∀ i , j ∈ X , (2)

where N(i , j ; x) is the occurrences of sub-sequence [i , j] in x and

N(i ; x) =
∑

j∈X

N(i , j ; x). The set of all strongly Markov ǫ-typical sequences

with respect to P in X
n is denoted by Tǫ(n,P) or Tǫ for simplicity.
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Supremus Typicality

Definition 12 (Supremus Typicality [Huang and Skoglund(2013)])

Follow the notation defined above. Given ǫ > 0 and a sequence

x =
[

x (1), x (2), · · · , x (n)
]

∈ X
n of length n (≥ 2 |X |), let xA be the

subsequence of x formed by all those x (l)’s belong to A ⊆ X in the
original ordering. x is said to be Supremus ǫ-typical with respect to P,
if and only if xA is strongly Markov ǫ-typical with respect to SA for all
feasible non-empty subset A of X . The set of all Supremus ǫ-typical
sequences with respect to P in X

n is designated by Sǫ(n,P) or Sǫ for
simplicity.

Let X = {0, 1, 2}.

00102− 02210− 02112− 01022− 01102 ∈ Sǫ(25,P) ⊆ Tǫ(25,P),

=⇒

{

0002− 0220− 022− 0022− 002 ∈ Tǫ(18,S{0,2});

0010− 010− 011− 010− 0110 ∈ Tǫ(17,S{0,1}).
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AEP of Supremus Typical Sequences I

Notation:

1 Given a set X , a partition
∐

k∈K

Ak of X is a disjoint union of X , i.e.

Ak′ ∩ Ak′′ 6= ∅ ⇔ k
′ = k

′′,
⋃

k∈K

Ak = X and Ak ’s are not empty.

2 For discrete random variables X and Y with sample spaces X and Y ,
respectively, X ∼ [pi ]i∈X and (X ,Y ) ∼ [pi ]i∈X [pi,j ]i∈X ,j∈Y state for

Pr {X = i} = pi and Pr {X = i ,Y = j} = pipi,j ,

for all i ∈ X and j ∈ Y , respectively.

3 Given a unitary vector π and a stochastic matrix P (not necessary that
πP = π), we write

H(P|π) = H(Y |X ),

for (X ,Y ) ∼ πP.
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AEP of Supremus Typical Sequences II

Theorem 13 (AEP of Supremus Typicality [Huang and Skoglund(2013)])

Let M =
{

X
(n)
}∞

−∞
be an irreducible Markov chain with state space X ,

and P = [pi,j ]i,j∈X and π = [pj ]j∈X
be its transition matrix and invariant

distribution, respectively. For any η > 0, there exist ǫ0 > 0 and N0 ∈ N
+,

such that, ∀ ǫ0 > ǫ > 0, ∀ n > N0 and ∀ x =
[

x
(1), x (2), · · · , x (n)

]

∈ Sǫ(n,P),

1 exp2 [−n (H(P|π) + η)] < Pr
{[

X
(1),X (2), · · · ,X (n)

]

= x

}

<

exp2 [−n (H(P|π)− η)];

2 Pr {X /∈ Sǫ(n,P)} < η, where X =
[

X
(1),X (2), · · · ,X (n)

]

; and

3 |Sǫ(n,P)| < exp2 [n (H(P|π) + η)].

Sheng Huang and Mikael Skoglund Internal Senimar



Stochastic Complementation and the Uncoupling-Coupling Theorems Supremus Typicality Applications and Generalisations Thanks / References

Typicality Lemmata of Supremus Typical Sequences I

Lemma 14 (Lemma D.1 of [Huang and Skoglund(2013)])

Given an irreducible Markov chain M =
{

X
(n)
}∞

−∞
with finite state space

X , transition matrix P and invariant distribution π = [pj ]j∈X
. Let

m
∐

k=1

Ak

be any partition of X . For any η > 0, there exist ǫ0 > 0 and N0 ∈ N
+, such

that, ∀ ǫ0 > ǫ > 0, ∀ n > N0 and ∀ x =
[

x
(1), x (2), · · · , x (n)

]

∈ Sǫ(n,P),

|Sǫ(x)| < exp2

{

n
[

H
(

diag
{

{Sk}1≤k≤m

}
∣

∣

∣
π
)

+ η
]}

, (3)

where

Sǫ(x) =
{ [

y
(1), y (2), · · · , y (n)

]

∈ Sǫ(n,P)
∣

∣

∣y
(l) ∈ Ak ⇔ x

(l) ∈ Ak ,

∀ 1 ≤ l ≤ n, ∀ 1 ≤ k ≤ m
}

,

and Sk is the stochastic complement of PAk ,Ak
in P.
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Typicality Lemmata of Supremus Typical Sequences II

Lemma 15 (Lemma D.2 of [Huang and Skoglund(2013)])

In Lemma 14, define Γ(x) = l ⇔ x ∈ Al . We have that

|Sǫ(x)| < exp2

{

n

[

H(P|π)− lim
w→∞

1

w
H
(

Y
(w), · · · ,Y (1)

)

+ η

]}

, (4)

where Y
(w) = Γ

(

X
(w)

)

.

Lemma 15 can be easily generalised to jointly ergodic processes [Cover(1975)]

M =

{[

X
(n)

Y
(n)

]}∞

−∞

to obtained related conditional typicality lemma. Please refer to
[Huang and Skoglund(Submitted), Lemma III.5] for a special case that M is
i.i.d..
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Typicality Lemmata of Supremus Typical Sequences III

Remark 2

If in Lemma 14 m = 1, then both (3) and (4) are equivalent to

|Sǫ(x)| < exp2 [n (H (P|π) + η)] .

Or, if M in Lemma 14 is i.i.d., then both (3) and (4) are equivalent to

|Sǫ(x)| < exp2

[

n
(

H
(

X
(1)
)

− H
(

Y
(1)
)

+ η
)]

,

which is a special case of the generalized conditional typicality lemma

[Huang and Skoglund(Submitted), Lemma III.5]. However, it is hard to
determine which bound of these two is tighter in general. Nevertheless, (3)
is seemingly easier to analyze, while (4) is more complicated for associating

with the entropy rate of the ergodic process
{

Y
(n)
}∞

−∞
.
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Typicality Lemmata of Supremus Typical Sequences IV

Remark 3

In Lemma 15, if P = c1U+ (1− c1)1 with all rows of U being identical, 1 is

an identity matrix and 0 ≤ c1 ≤ 1, then M
′ =

{

Y
(n)
}∞

−∞
is Markovian by

[Huang and Skoglund(2013), Lemma C.1]. As a conclusion,

|Sǫ(x)| < exp2

{

n
[

H (P|π)− lim
w→∞

H
(

Y
(w)

∣

∣

∣
Y

(w−1)
)

+ η
]}

(5)

= exp2
{

n
[

H (P|π)− H
(

P
′|π′

)

+ η
]}

,

where P
′ and π′ are the transition matrix and the invariant distribution of

M
′ that can be easily calculated from P. However, in general M

′ is
ergodic, but not Markovian. Its entropy rate is difficult to obtain.
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Typicality Lemmata of Supremus Typical Sequences V

Remark 4

In Lemma 14 and Lemma 15, if

1 X is a finite ring R, then all costs R/I over a left (right) ideal I give
raise to a partition of R = X ; and

2 X is a finite dimension vector space (module) over a finite field (ring)
R

n (n ∈ N
+), then all affine subspaces (submodule) “parallel” to a

given subspace (submodule) create a partition of Rn = X ; and

3 X is a finite group G , then all costs G/H over some subgroup H

present a partition of G = X ; and etc.

From this, we see that the typicality lemmata can be tailored for specific
situations.
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Linear Coding over Ring for Irreducible Markov Sources

Theorem 16 ([Huang and Skoglund(2013)])

Let R be a finite ring, and
{

X
(n)
}∞

−∞
be an irreducible Markov source with

state space R, transition matrix P and invariant distribution π. For any
ǫ > 0, there exists N0 ∈ N

+, such that there exist a linear encoder
φ : Rn → R

k and a decoder ψ : Rk → R
n for all n > N0 with

Pr {ψ (φ (X n)) 6= X
n} < ǫ,

provided that

k > max
06=I≤lR

n

log |I|
min

{

H(SR/I|π),

H (P|π)− lim
w→∞

1

w
H
(

Y
(w)
R/I,Y

(w−1)
R/I , · · · ,Y (1)

R/I

)}

,

where SR/I = diag
{

{SA}A∈R/I

}

with SA being the stochastic complement

of PA,A in P and Y
(i)

R/I = X
(i) + I.
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Applications: Coding over Algebraic Structures

The (conditional) typicality lemmata can be tailored to specific versions
regarding certain algebraic structures (group, field, ring, rng, vector
space, module and algebra). Based the these, related algebraic coding
schemes can be developed. For instance, ring specials are found in
[Huang and Skoglund(Submitted), Lemma III.5] and
[Huang and Skoglund(2013), Lemma III.3 and Lemma III.4], and linear
source coding techniques have been introduced in the previous works.
These algebraic coding techniques are useful because

1 It proves that linear coding over field is not optimal in a generalised
problem ([Huang and Skoglund(2013), Problem 2]) of
Körner–Marton [Körner and Marton(1979)]. The ring version can
strictly outperform its field counterpart (in case of sources
with/without memory);

2 They help in proving that the Han–Kobayashi conjecture
[Han and Kobayashi(1987), the converse of Theorem 2] is not valid
when the number of sources is larger than or equal to 3.
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Generalisations

1 It is possible to consider defining “Supremus typical sequences” on
multivariate Markov chains [Fung et al.(2002)] or general jointly
ergodic processes [Cover(1975)];

2 Related stochastic properties (AEP, (conditional) typicality lemmata
and etc) regarding the above generalisations;

3 Define Supremus Type resembling other classic types
[Csiszar(1998)], e.g. Markov type [Davisson et al.(1981)], in order
to analyse the error exponents of related coding schemes (e.g. linear
coding scheme over ring);
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