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Abstract—This paper investigates a new type of typicality for
sequences, termed Supremus typical sequences, in both the strong
and the weak senses. It is seen that Supremus typicality is
a condition stronger than classic typicality in both the strong
and the weak senses. Even though Supremus typical sequences
form a (often strictly smaller) subset of classic typical sequences,
the Asymptotic Equipartion Property is still valid for Supremus
typical sequences. Furthermore, Supremus typicality leads to a
generalized typicality lemma that is more accessible and easier
to analyze than its classic counterpart.

I. INTRODUCTION

The idea of typical sequence [1] has become an almost

un-replaceable part of most asymptotical achievability results

in information theory (in a narrow sense). This concept is

mainly defined in either a strong sense or a weak sense

(cf. [2]). However, regardless its presented form, the main

features are captured by the Asymptotic Equipartion Property

(AEP) and related lemmata, e.g. the typicality lemma and

the packing lemma. These properties/lemmata illustrate the

ergodic behaviours of the dynamical system (a random process

is a dynamical system [3]) modelling a set of sources and/or

several communication channels. For example, the AEP is in

some sense the Shannon–McMillan–Breiman (SMB) Theorem

[4], [5], [6] (the original SMB Theorem is for stationary

systems, please refer to [7] for the one for asymptotically mean

stationary (a.m.s.) systems which include stationary systems as

special cases).

A classic typical sequence is usually defined to be a

sequence reflecting the ergodic behaviour of an a.m.s. random

process. For instance, a typical sequence admits an empirical

distribution that is “close” enough to the genuine distribution.

By the SMB Theorem, a randomly generated sequence by the

source(s) is typical in probability close to 1. However, we

will see that this classic definition is not strong enough in the

sense that it includes a class of sequences that will occur in

probability close to 0. Hence, it makes sense to exclude those

sequences from consideration.

This paper studies a new concept that we call Supremus

typical sequence, in both a strong sense and a weak sense.

Roughly speaking, a sequence is Supremus typical if all of

its reduced subsequences admit empirical distributions resem-

bling the genuine distributions of the corresponding reduced
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random processes1, respectively. It is easy to see that Supremus

typical sequences are classic typical. However, the converse

statement is not true as seen later. Supremus typical sequences

form a strictly smaller subset in general. Nevertheless, the

AEP still holds for Supremus typical sequences if the random

process is a.m.s.. This follows from the fact that the SMB

Theorem holds simultaneously for all the reduced random

processes of an a.m.s. random process [8]. Other than pos-

sessing AEP, advantages have been seen when comparing the

generalized typicality lemma of Supremus typicality, Lemma

II.6, to the one of classic typicality, Lemma II.7. It is seen

that the one of Supremus typical sequence is more accessible,

while the one of classic typical sequence is usually hard to

analyze (see Subsection II-C for more details).

The organization of this paper is as follows. We will intro-

duce Supremus typicality in the strong sense in Section II. In

order to clearly present the main idea, we will assume that the

source is irreducible Markov but not necessarily stationary in

this section. Supremus typicality in the weak sense is studied

in Section III after a short introduction on related results from

ergodic theory. Because of space limitation, jointly typical

sequence will not be considered in this paper.

II. SUPREMUS TYPICALITY IN THE STRONG SENSE

In this section, we will focus on investigating Supremus

typicality in the strong sense in the setting of Markov sources.

Unless otherwise specified, all Markov chains/processes con-

sidered in this work are homogeneous, finite-state and irre-

ducible, while their initial distributions are unknown. Assume

that P = [pi,j ]i,j∈X is the transition matrix of some Markov

process M with state space X , then one can prove that

M has a unique invariant distribution π = [pj ]j∈X
, i.e.

πP = π, since M is finite-state and irreducible. However, π
is not necessarily the initial distribution of M , thus M is not

necessarily stationary2. For convenience, defined H(P|π) =
−
∑

i,j∈X
pipi,j log pi,j . It is easily seen that H(P|π) is the

entropy rate of M .

Recall that the classic Markov typical sequence in the strong

sense is defined as follows.

Definition II.1 (Strong Markov Typicality (cf. [9], [10])). Let

M =
{

X(n)
}

be an irreducible Markov chain with state space

1In some literature, a reduced random process is called an induced random
process, because it is described by an induced transformation [8].

2In most literature, random processes are often assumed to be stationary,
while irreducibility is a weaker condition.



X , and P = [pi,j ]i,j∈X and π = [pj ]j∈X
be its transition

matrix and invariant distribution, respectively. For any ǫ > 0,

a sequence x ∈ X n of length n (≥ 2) is said to be strongly

Markov ǫ-typical with respect to P if














∣

∣

∣

∣

N(i, j;x)

N(i;x)
− pi,j

∣

∣

∣

∣

< ǫ;
∣

∣

∣

∣

N(i;x)

n
− pi

∣

∣

∣

∣

< ǫ,
∀ i, j ∈ X , (1)

where N(i, j;x) denotes the number of occurrences of sub-

sequence [i, j] in x and N(i;x) =
∑

j∈X
N(i, j;x). The set

of all strongly Markov ǫ-typical sequences with respect to P

in X n is denoted by Tǫ(n,P).

It is well-known that the AEP holds for strongly Markov

typical sequences. We soon will see that this definition can be

strengthen to obtain refined properties.

Some background is needed before proceeding.

A. Stochastic Complement

Given a Markov chain M =
{

X(n)
}

with state space X

and a non-empty subset A of X , let

TA,l =











inf
{

n > 0|X(n) ∈ A
}

; l = 1,

inf
{

n > TA,l−1|X
(n) ∈ A

}

; l > 1,

sup
{

n < TA,l+1|X(n) ∈ A
}

; l < 1.

It is well-known that MA =
{

X(TA,l)
}

is Markov by the

strong Markov property [11, Theorem 1.4.2]. In particular,

if M is irreducible, so is MA. To be more precise, if M

is irreducible with invariant distribution π = [pi]i∈X and

transition matrix

P =

[

PA,A PA,Ac

PAc,A PAc,Ac

]

,

respectively, then

SA = PA,A +PA,Ac (1−PAc,Ac)
−1

PAc,A,

is the transition matrix of MA [12, Theorem 2.1 and Section

3]. πA =

[

pi
∑

j∈A pj

]

i∈A

is an invariant distribution of MA,

i.e. πASA = πA [12, Theorem 2.2]. Since MA inherits

irreducibility from M [12, Theorem 2.3], πA is unique. The

matrix SA is termed the stochastic complement of PA,A in

P, while MA is named a reduced Markov chain (or reduced

Markov process) of M . It has state space A obviously.

B. Supremus Typicality in the Strong Sense and AEP

Definition II.2 (Supremus Typicality in the Strong Sense).

Following the notation defined above, given ǫ > 0 and a

sequence x =
[

x(1), x(2), · · · , x(n)
]

∈ X n of length n
(≥ 2 |X |), let xA be the subsequence of x formed by all

those x(l)’s that belong to A in the original ordering. x is said

to be Supremus ǫ-typical with respect to P if xA is strongly

Markov ǫ-typical with respect to SA for all feasible non-empty

subset A of X .

In Definition II.2, the set of all Supremus ǫ-typical se-

quences with respect to P in X n is denoted as Sǫ(n,P).
xA is called a reduced subsequence (with respect to A) of x.

It follows immediately from this definition that

Proposition II.3. Every reduced subsequence of a Supremus

ǫ-typical sequence is Supremus ǫ-typical.

However, the above proposition does not hold for strongly

Markov ǫ-typical sequences. In other words, a reduced sub-

sequence of a strongly Markov ǫ-typical sequence is not

necessarily strongly Markov ǫ-typical.

Example II.4. Let {α, β, γ} be the state space of an i.i.d.

process with a uniform distribution, i.e.

P =





1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3



 ,

and x = (α, β, γ, α, β, γ, α, β, γ). It is easy to verify that

x is a strongly Markov 5/12-typical sequence. However, the

reduced subsequence x{α,γ} = (α, γ, α, γ, α, γ) is no long

a strongly Markov 5/12-typical sequence, because S{α,γ} =
[

0.5 0.5
0.5 0.5

]

and

∣

∣

∣

∣

the number of subsequence (α, α)’s in x{α,γ}

6
− 0.5

∣

∣

∣

∣

= |0− 0.5| > 5/12.

Proposition II.5 (AEP of Strong Supremus Typicality). Let

M =
{

X(n)
}

be an irreducible Markov chain with state space

X , and P = [pi,j ]i,j∈X and π = [pj]j∈X
be its transition

matrix and invariant distribution, respectively. For any η > 0,

there exist ǫ0 > 0 and N0 ∈ N
+, such that, ∀ ǫ0 > ǫ > 0,

∀ n > N0 and ∀ x =
[

x(1), x(2), · · · , x(n)
]

∈ Sǫ(n,P),

1) exp2 [−n (H(P|π) + η)] < Pr{[X(1), X(2), · · · , X(n)]
= x} < exp2 [−n (H(P|π)− η)] ;

2) Pr
{[

X(1), X(2), · · · , X(n)
]

/∈ Sǫ(n,P)
}

< η; and

3) |Sǫ(n,P)| < exp2 [n (H(P|π) + η)].

Sketch of the Proof 3: 1) and 3) follow from the fact that

a Supremus typical sequence (in the strong sense) is Strongly

Markov typical. Let X =
[

X(1), X(2), · · · , X(n)
]

. Since MA

is irreducible with transition matrix SA for any non-empty sub-

set A of the state space, Pr {XA /∈ Tǫ(n,SA)} <
η

2|X | − 1
if ǫ0 is small enough and N0 is large enough. Henceforth, 2)

follows, because

{X /∈ Sǫ(n,P)} =
⋃

∅6=A⊆X

{XA /∈ Tǫ(n,SA)}

by Proposition II.3.

Remark 1. From Proposition II.5, one sees that Sǫ(n,P)
has probability close to 1, as it is also the case for Tǫ(n,P)
even though Sǫ(n,P) is always smaller than Tǫ(n,P). As a

consequence, although a coding procedure makes mistakes in

3A complete proof is found in [13].



encoding/decoding sequences in Tǫ(n,P)\Sǫ(n,P), the error

is negligible as for non-typical sequences.

The idea of “ignoring Tǫ(n,P) \ Sǫ(n,P)” has already

been used in [14], [15], even though the concept of Supremus

typicality was never mentioned in these works. In fact, these

works consider only i.i.d. scenarios allowing some tricks to

be played and sparing them the introduction of this concept.

Unfortunately, the situation changes as soon as we move away

from the i.i.d. condition (as many real communication systems

do). More elaboration on this is given in the next subsection.

C. The Generalized Typicality Lemmata

Given a set X , a partition
∐

k∈K
Ak of X is a disjoint

union of X , i.e. Ak′ ∩Ak′′ 6= ∅ ⇔ k′ = k′′,
⋃

k∈K
Ak = X

and Ak’s are not empty.

By the AEPs, an efficient coding system must ensure

that all the Supremus/classic typical sequences are decoded

correctly. An error occurs mainly because a typical sequence

is confused with other typical sequences. In some specially-

designed coding systems, the decoders will only confuse the

correct message, say x, with a subset of typical sequences of

certain sequential pattern, say

Sǫ(x) =
{ [

y(1), y(2), · · · , y(n)
]

∈ Sǫ(n,P)
∣

∣

∣

y(l) ∈ Ak ⇔ x(l) ∈ Ak, ∀ 1 ≤ l ≤ n, ∀ 1 ≤ k ≤ m
}

or

Tǫ(x) =
{ [

y(1), y(2), · · · , y(n)
]

∈ Tǫ(n,P)
∣

∣

∣

y(l) ∈ Ak ⇔ x(l) ∈ Ak, ∀ 1 ≤ l ≤ n, ∀ 1 ≤ k ≤ m
}

,

where
∐m
k=1 Ak is some partition. Therefore, determining

the sizes and upper bounds of Sǫ(x) and Tǫ(x) becomes

important. An example of such a specially-designed system

is the ring linear coding scheme from [14], [15], [13], with

Ak’s being cosets of some left (right) ideal in a ring.

Lemma II.6. Given an irreducible Markov chain M =
{

X(n)
}

with finite state space X , transition matrix P and

invariant distribution π = [pj ]j∈X
. Let

∐m
k=1 Ak be any

partition of X . For any η > 0, there exist ǫ0 > 0 and

N0 ∈ N
+, such that, ∀ ǫ0 > ǫ > 0, ∀ n > N0 and

∀ x =
[

x(1), x(2), · · · , x(n)
]

∈ Sǫ(n,P),

|Sǫ(x)| < exp2







n





m
∑

k=1

∑

j∈Ak

pjH(Sk|πk) + η











(2)

=exp2 {n [H(S|π) + η]} (3)

where Sk is the stochastic complement of PAk,Ak
in P, πk =

[pi]i∈Ak
∑

j∈Ak
pj

is the invariant distribution of Sk and

S = diag
{

{Sk}1≤k≤m

}

.

Proof: Let

xAk
=
[

x(n1), x(n2), x(nmk
)
]

be the subsequence of x formed by all those x(l)’s belonging

to Ak in the original ordering. Obviously,
∑m

k=1mk =

n and

∣

∣

∣

mk

n
−
∑

j∈Ak
pj

∣

∣

∣
< |Ak| ǫ +

1

n
. For any y =

[

y(1), y(2), · · · , y(n)
]

∈ Sǫ(x),

yAk
=
[

y(n1), y(n2), y(nmk
)
]

∈ Amk

k

is a strongly Markov ǫ-typical sequence of length mk with re-

spect to Sk by Proposition II.3, since y is Supremus ǫ-typical.

Additionally, by the AEP of strongly Markov typicality, there

exist ǫk > 0 and positive integer Mk such that the number of

strongly Markov ǫ-typical sequences of length mk is upper

bounded by exp2 {mk [H(Sk|πk) + η/2]} if 0 < ǫ < ǫk
and mk > Mk. Therefore, if 0 < ǫ < min1≤k≤m ǫk and

n > M = max
1≤k≤m







1 +Mk
∣

∣

∣

∑

j∈Ak
pj − |Ak| ǫ

∣

∣

∣







(this guarantees

that mk > Mk for all 1 ≤ k ≤ m), then

|Sǫ(x)| ≤ exp2

{

m
∑

k=1

mk [H(Sk|πk) + η/2]

}

=exp2

{

n

[

m
∑

k=1

mk

n
H(Sk|πk) + η/2

]}

.

Furthermore, choose 0 < ǫ0 ≤ min1≤k≤m ǫk and N0 ≥ M

such that
mk

n
<
∑

j∈Ak
pj +

η

2
∑m
k=1H(Sk|πk)

for all 0 <

ǫ < ǫ0 and n > N0 and 1 ≤ k ≤ m, we have

|Sǫ(x)| < exp2







n





m
∑

k=1

∑

j∈Ak

pjH(Sk|πk) + η











,

(2) is established. Direct calculation yields (3).

Lemma II.7. In Lemma II.6, define Γ(x) = l ⇔ x ∈ Al. We

have that

|Sǫ(x)| ≤ |Tǫ(x)| < exp2

{

n

[

H(P|π)

− lim
w→∞

1

w
H
(

Y (w), Y (w−1), · · · , Y (1)
)

+ η

]}

, (4)

where Y (w) = Γ
(

X(w)
)

.

Proof: |Sǫ(x)| ≤ |Tǫ(x)| is trivial. Let

y =
[

Γ
(

x(1)
)

,Γ
(

x(2)
)

, · · · ,Γ
(

x(n)
)]

.

By definition,

[

Γ
(

y(1)
)

,Γ
(

y(2)
)

, · · · ,Γ
(

y(n)
)]

= y,

for any y =
[

y(1), y(2), · · · , y(n)
]

∈ Sǫ(x). y is jointly typical

[16] with y with respect to the process

· · · ,

(

X(1)

Y (1)

)

,

(

X(2)

Y (2)

)

, · · · ,

(

X(n)

Y (n)

)

, · · ·



Therefore, there exist ǫ0 > 0 and N0 ∈ N
+, such that, ∀ ǫ0 >

ǫ > 0 and ∀ n > N0,

|Sǫ(x)| < exp2

{

n

[

lim
w→∞

1

w
H
(

X(w), X(w−1), · · · , X(1)
)

− lim
w→∞

1

w
H
(

Y (w), Y (w−1), · · · , Y (1)
)

+ η

]}

=exp2

{

n

[

H (P|π)

− lim
w→∞

1

w
H
(

Y (w), Y (w−1), · · · , Y (1)
)

+ η

]}

,

where the equality follows from the fact that

limw→∞
1

w
H
(

X(w), X(w−1), · · · , X(1)
)

= H (P |π )

because M is irreducible Markov.

Remark 2. From the proof, it is seen that Lemma II.6 (Lemma

II.7) establishes an upper bound for Sǫ(x) (Tǫ(x)) based on the

Supremus typicality argument (classic typicality argument).

One sees that evaluating the bound (2) is rather straightfor-

ward. However, (4) is in general very hard to assess, because

the entropy rate of {Y (w)} is hard to evaluate. In particular,

given the initial distribution unknown, it is likely that {Y (w)}
is no longer Markov [17]. This is why [13] is able to draw

the optimal conclusion of the ring linear coding scheme based

on Lemma II.6, but not Lemma II.7, for compressing Markov

sources with unknown initial distributions.

III. SUPREMUS TYPICALITY IN THE WEAK SENSE

From Section II, we can see that irreducibility is a recursive

property of irreducible Markov process [12, Theorem 2.1].

This is the observation that leads to the discovery of the

concept Supremus typicality in the strong sense. In fact,

this recursive phenomenon is only a special realization of

some more universal results in ergodic theory [8]. We will

investigate Supremus typicality in the weak sense based on

these results.

Careful readers might have foreseen the definition of Supre-

mus typicality in the weak sense, but it is the proof of the

related AEP that involves certain amount of background from

ergodic theory.

A. Asymptotically Mean Stationary

Given a probability space (Ω,F , µ) and a measurable

transformation T : Ω → Ω (not necessarily probability

preserving), the dynamical system (Ω,F , µ, T ) is said to be

asymptotically mean stationary (a.m.s.) 4 [7] if there exists a

measure µ on (Ω,F ) satisfying

µ(B) = lim
m→∞

1

m

m
∑

i=0

µ(T−iB), ∀ B ∈ F .

Obviously, if (Ω,F , µ, T ) is stationary, i.e. µ(B) =
µ(T−1B), then it is a.m.s.. In addition, (Ω,F , µ, T ) is said

to be ergodic if T−1B = B =⇒ µ(B) = 0 or µ(B) = 1.

4The a.m.s. condition is interesting because it is a sufficient and necessary
condition for the Point-wise Ergodic Theorem to hold [7, Theorem 1].

Let X : Ω → X (X is always assumed to be finite from

now on) be a measurable function. Then {X(n)} = {X(T n)}
defines a random process with state space X . Actually, every

random process can be realized as a process so defined. For

instance, T can be taken as time shift, Ω =
∏∞
i=−∞ X , while

X is the coordinate function

X : (· · · , x(−1), x(0), x(1), · · · ) 7→ x(0).

The joint distribution p is defined as

p
(

x(0), x(1), · · · , x(n−1)
)

= µ

(

n−1
⋂

i=0

T−i
(

X−1
(

x(i)
))

)

.

The random process {X(n)} = {X(T n)} is said to be

a.m.s. (stationary/ergodic) if (Ω,F , µ, T ) is a.m.s. (station-

ary/ergodic).

By [7], if {X(n)} = {X(T n)} is a.m.s. and ergodic, then

the SMB Theorem holds. In exact terms,

−
1

n
log p(X(0), X(1), · · · , X(n−1)) → H with probability 1,

where H is the entropy rate of {X(n)}. Let

Tǫ(n, {X
(n)}) =

{ (

x(0), x(1), · · · , x(n−1)
)

∈ X
n
∣

∣

∣

n(H − ǫ) < − log p
(

x(0), x(1), · · · , x(n−1)
)

< n(H + ǫ)
}

.

Tǫ(n, {X(n)}) is known to be the set of classic typical

sequences in the weak sense. Moreover, the AEP holds for

these sequences.

B. Induced Transformation

Definition III.1. A dynamical system (Ω,F , µ, T ) is said to

be recurrent (conservative) if µ
(

B −
⋂∞
i=0

⋃∞
j=i T

−jB
)

=

0, ∀ B ∈ F .

Remark 3. Poincaré’s Recurrence Theorem says that a sta-

tionary system is always recurrent. However, generally even

an a.m.s. system is not necessarily recurrent [3].

The physical interpretation of recurrence (conservativeness)

states that an event of positive probability is expected to repeat

itself infinitely often during the lifetime of the dynamical

system. Because of this physical meaning, recurrence is often

assumed for ergodic systems in literature [18].

Given a recurrent system (Ω,F , µ, T ) and A ∈ F

(µ(A) > 0), one can define a new transformation TA on

(A0,A , µ|A ), where A0 = A ∩
⋂∞
i=0

⋃∞
j=i T

−jA and A =
{A0 ∩B|B ∈ F}, such that

TA(x) = Tψ
(1)
A

(x)(x), ∀ x ∈ A0,

where

ψ
(1)
A (x) = min

{

i ∈ N
+|T i(x) ∈ A0

}

is the first return time function. It is easy to see that

(A0,A , µ|A , TA) forms a new dynamical system. Such a

transformation TA is called an induced transformation of

(Ω,F , µ, T ) with respect to A [19].



Theorem III.2 ([8]). If (Ω,F , µ, T ) is recurrent a.m.s., then

(A0,A , µ|A , TA) is a.m.s. for all A ∈ F (µ(A) > 0).

Let {X(n)} be a random process with state space X . A

reduced process
{

X
(k)
Y

}

of {X(n)} with sub-state space Y ⊆

X is defined to be
{

X
(k)
Y

}

=
{

X(nk)
}

, where

nk =

{

min{n ≥ 0|X(n) ∈ Y }; k = 0,

min{n > nk−1|X(n) ∈ Y }; k > 0.

Assume that {X(n)} = {X(T n)}, where (Ω,F , µ, T ) is

recurrent a.m.s. ergodic and X : Ω → X is measurable, and

let A = X−1(Y ). It is easily seen that
{

X
(k)
Y

}

is essentially

the random process
{

X
(

T kA
)}

defined on the system
(

A0, A0 ∩ F ,
1

µ(A)
µ|A0∩F , TA

)

,

which is also a.m.s. (by Theorem III.2) and ergodic (by [18,

Proposition 1.5.2]). As a conclusion, the SMB Theorem holds

for the reduced process
{

X
(k)
Y

}

as well [7].

C. Supremus Typicality in the Weak Sense and AEP

Based on the preliminaries introduced above, we state the

definition of Supremus typicality in the weak sense as follows.

Definition III.3 (Supremus Typicality in the Weak Sense). Let

{X(n)} be a recurrent a.m.s. ergodic process with state space

X . A sequence x ∈ X n is said to be Supremus ǫ-typical

with respect to {X(n)} for some ǫ > 0, if ∀ ∅ 6= Y ⊆ X ,

|xY | (HY − ǫ) < − log pY (xY ) < |xY | (HY + ǫ),

where pY and HY are the joint distribution and entropy rate

of the reduced process
{

X
(k)
Y

}

of {X(n)} with sub-state space

Y , respectively. The set of all Supremus ǫ-typical sequences

with respect to {X(n)} in X n is denoted by Sǫ(n, {X(n)}).

Obviously, Proposition II.3 is also valid for Supremus

typical sequences in the weak sense. In addition,

Sǫ(n, {X
(n)}) ⊆ Tǫ(n, {X

(n)}).

Proposition III.4 (AEP of Weak Supremus Typicality). In

Definition III.3,

1)
∣

∣Sǫ(n, {X(n)})
∣

∣ < exp2 [n (HX + ǫ)]; and

2) ∀ η > 0, there exists some positive integer N0, such that

Pr
{[

X(1), X(2), · · · , X(n)
]

/∈ Sǫ(n, {X
(n)})

}

< η,

for all n > N0.

Proof: First of all,
∣

∣Sǫ(n, {X(n)})
∣

∣ ≤
∣

∣Tǫ(n, {X(n)})
∣

∣ <
exp2 [n (HX + ǫ)]. Let X =

[

X(1), X(2), · · · , X(n)
]

. Then
{

X /∈ Sǫ(n, {X
(n)})

}

=
⋃

∅6=Y ⊆X

{

XY /∈ Tǫ(n, {X
(k)
Y

})
}

.

Assume that (Ω,F , µ, T ) and X are the recurrent a.m.s.

ergodic system and the measurable function define {X(n)},

i.e. {X(n)} = {X(T n))}. For any non-empty Y ⊆ X , we

have that
{

X
(k)
Y

}

=
{

X
(

T kA
)}

, where A = X−1(Y ) and

TA is an induced transformation of (Ω,F , µ, T ) with respect

to A. Furthermore, Theorem III.2 and [18, Proposition 1.5.2]

guarantee that
(

A0, A0 ∩ F ,
1

µ(A)
µ|A0∩F , TA

)

,

is a.m.s. ergodic. Consequently, the SMB Theorem holds [7].

This says, with probability 1,

−
1

n
log pY

(

X
(0)
Y
, X

(1)
Y
, · · · , X

(n−1)
Y

)

→ HY .

This implies that there exists a positive integer NY such that

Pr
{

XY /∈ Tǫ(n, {X
(k)
Y

})
}

<
η

2|X | − 1
, ∀ n > NY .

Let N0 = max
∅6=Y ⊆X

NY . One easily concludes that

Pr
{

X /∈ Sǫ(n, {X
(n)})

}

< η, ∀ n > N0.

The statement is proved.

REFERENCES

[1] C. E. Shannon and W. Weaver, The mathematical theory of communi-

cation. Urbana: University of Illinois Press, 1949.
[2] R. W. Yeung, A First Course in Information Theory. Springer, Mar.

2002.
[3] R. M. Gray, Probability, Random Processes, and Ergodic Properties.

Springer, 2nd ed., Aug. 2009.
[4] C. E. Shannon, “A mathematical theory of communication,” Bell System

Technical Journal, vol. 27, no. 3, pp. 379–423, 1984.
[5] B. McMillan, “The basic theorems of information theory,” The Annals

of Mathematical Statistics, vol. 24, pp. 196–219, 1953.
[6] L. Breiman, “The individual ergodic theorem of information theory,”

The Annals of Mathematical Statistics, vol. 31, pp. 809–801, 1960.
[7] R. M. Gray and J. C. Kieffer, “Asymptotically mean stationary mea-

sures,” The Annals of Probability, vol. 8, pp. 962–973, Oct. 1980.
[8] S. Huang and M. Skoglund, Induced Transformations of Recurrent

A.M.S. Dynamical Systems. KTH Royal Institute of Technology, October
2013. Available: http://people.kth.se/∼sheng11

[9] L. D. Davisson, G. Longo, and A. Sgarro, “The error exponent for the
noiseless encoding of finite ergodic Markov sources,” IEEE Transactions

on Information Theory, vol. 27, pp. 431–438, July 1981.
[10] I. Csiszár, “The method of types,” IEEE Transactions on Information

Theory, vol. 44, no. 6, pp. 2505–2523, 1998.
[11] J. R. Norris, Markov Chains. Cambridge University Press, July 1998.
[12] C. D. Meyer, “Stochastic complementation, uncoupling Markov chains,

and the theory of nearly reducible systems,” SIAM Rev., vol. 31, pp. 240–
272, June 1989.

[13] S. Huang and M. Skoglund, Encoding Irreducible Markovian Functions

of Sources: An Application of Supremus Typicality. KTH Royal Institute
of Technology, May 2013. Available: http://people.kth.se/∼sheng11

[14] S. Huang and M. Skoglund, On Linear Coding over Finite Rings and

Applications to Computing. KTH Royal Institute of Technology, October
2012. Available: http://people.kth.se/∼sheng11

[15] S. Huang and M. Skoglund, “On achievability of linear source coding
over finite rings,” in 2013 IEEE International Symposium on Information

Theory Proceedings (ISIT), pp. 1984–1988, 2013.
[16] T. M. Cover, “A proof of the data compression theorem of slepian and

wolf for ergodic sources,” IEEE Transactions on Information Theory,
vol. 21, pp. 226–228, Mar. 1975.

[17] C. J. Burke and M. Rosenblatt, “A Markovian function of a Markov
chain,” The Annals of Mathematical Statistics, vol. 29, pp. 1112–1122,
Dec. 1958.

[18] J. Aaronson, An Introduction to Infinite Ergodic Theory. Providence,
R.I.: American Mathematical Society, 1997.

[19] S. Kakutani, “Induced measure preserving transformations,” Proceedings

of the Imperial Academy, vol. 19, no. 10, pp. 635–641, 1943.


