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On Existence of Optimal Linear Encoders over

Non-field Rings for Data Compression

Sheng Huang, Mikael Skoglund, Senior Member, IEEE

Abstract

This note proves that, for any set of finite correlated discrete memoryless sources, there exists a sequence of

linear encoders over some finite non-field rings which achieves the data compression limit, the Slepian–Wolf region.
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I. INTRODUCTION

Let ti (i ∈ S = {1, 2, · · · , s}) be a discrete memoryless source generating i.i.d. random data

X
(1)
i , X

(2)
i , · · · , X

(n)
i , · · · ,

where X
(n)
i ∈ Xi and

[

X
(n)
1 , X

(n)
2 , · · · , X(n)

s

]

∼ p for all i ∈ S and n ∈ N
+. It is well known that the limit for

compressing data generated by t1, t2, · · · , ts with independent encoders is illustrated by the Slepian–Wolf region

[1]. Even thought it is guaranteed by [1] that there always exist encoders achieving the data compression limit.

The structures of the encoders are unclear, which confines the scope of their applications. Fortunately, [2], [3]

proves that linear encoders over finite fields achieve the same limit, i.e. the Slepian–Wolf region. In addition, the

linear structure of the linear encoder (over field) offers strict benefit to other problems, e.g. encoding functions

of correlated sources (also known as source coding for computing) [4], [5], [6], [7]. However, special constraints

are casted upon the algebraic structures of finite fields, for instance, the size of a finite field must be a power of

a prime, the characteristic of a finite field has to be a prime and a field contains no zero divisor. They limit the

performance of linear encoders over fields. As a consequence, linear encoders over finite rings are proposed [8].

Demonstrated in [8], linear encoders over non-field rings achieve the data compression limit, i.e. the Slepian–

Wolf region, in many circumstances as well. The ring versions are also recommended because the arithmetic of

lots of non-field rings (e.g. modulo integer rings) is substantially easier to implement than the one for fields. Most

importantly, it is shown that the ring version strictly outperforms its field counterpart in the source coding for
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computing problem [8, Problem 1]. It is proved that linear encoders over non-field rings achieve strictly larger

achievable region with strictly smaller alphabet size in some computing problem [9].

Although verified in various scenarios, it has not been proved (neither denied) that linear encoders over non-field

rings are always optimal in the Slepian–Wolf problem, namely achieving the Slepian–Wolf region. This article is

to prove that there always exist linear encoders over non-field rings that achieve the data compression limit, the

Slepian–Wolf region, in any scenario. In other words, the achievable region (2) [8, (8)] is indeed the Slepian–Wolf

region. Therefore, the optimality issue is closed on this regard.

II. LINEAR SOURCE CODING OVER FINITE RINGS

Generally speaking, the data generated by a source is not necessarily associated with any specific algebraic

structure. In order to apply the linear encoders (over ring), we assume that there exists a set Φ = {Φ1,Φ2, · · · ,Φs}

of injections Φi : Xi → Ri mapping Xi to a finite ring Ri of order |Ri| ≥ |Xi| for all i ∈ S = {1, 2, · · · , s}.

Thus, Xi can be seen as a subset of Ri for a fixed Φ. To facilitate our discussion, we define Φ(xT ) = {Φi(xi)}i∈T ,

where xT =
∏

i∈T

xi ∈
∏

i∈T

Xi, for any ∅ 6= T ⊆ S. Let RT be the ring
∏

i∈T

Ri (direct product) for ∅ 6= T ⊆ S. It is

well known that I is a left ideal of RT if and only if I =
∏

i∈T

Ii and Ii is a left ideal of Ri [8, Proposition II.4].

Similarly, we often write IT for the left ideal
∏

i∈T

Ii. Meanwhile, I ≤l R is used to indicate that the subset I is a

left ideal of the ring R, R/I for the quotient group R mod I. Let [X1, X2, · · · , Xs] ∼ p and

RΦ =

{

[R1, R2, · · · , Rs] ∈ R
s

∣

∣

∣

∣

∣

∑

i∈T

Ri log |Ii|

log |Ri|
> H(XT |XT c)−H(YRT /IT

|XT c),

∀ ∅ 6= T ⊆ S, ∀ 0 6= Ii ≤l Ri

}

, (1)

where T c = S \ T , XT is the random variable array
∏

i∈T

Xi and YRT /IT
= Φ(XT ) + IT is a random variable

with sample space RT /IT . It is proved in [8, Theorem IV.1] that RΦ is achievable with linear encoders over

R1,R2, · · · ,Rs (or achievable for simplicity). In exact terms, ∀ ǫ > 0, there exists N0 ∈ N
+, for all n > N0, there

exist linear encoders (left linear mappings [8, Definition II.5] to be more precise) φi : Φ(Xi)
n → R

ki

i (i ∈ S) and

a decoder ψ, such that

Pr

{

ψ

(

∏

i∈S

φi (Xi)

)

6=
∏

i∈S

Xi

}

< ǫ,

where Xi =
[

Φ
(

X
(1)
i

)

,Φ
(

X
(2)
i

)

, · · · ,Φ
(

X
(n)
i

)]t

, as long as

[

k1 log |R1|

n
,
k2 log |R2|

n
, · · · ,

ks log |Rs|

n

]

∈

RΦ. By simple time sharing argument, it is noticeable that

Rl = cov

(

⋃

Φ∈M

RΦ

)

, (2)

where M is the family of all possible Φ’s and cov(A) is the convex hull of a set A ⊆ R
s, is also achievable. For

convenience, a coding rate R ∈ R
s is said to be achievable with linear encoders over R1,R2, · · · ,Rs if R ∈ Rl.
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However, R is said to be directly achievable with linear encoders over R1,R2, · · · ,Rs if R ∈ RΦ for some fixed

Φ ∈ M .

It is not difficult to see that (1), as well as (2), coincides with the Slepian–Wolf region, if R1,R2, · · · ,Rs are

fields [8]. We claim existence of optimal linear encoders over non-field rings for any data compression scenario of

Slepian–Wolf, i.e. Rl is indeed the Slepian–Wolf region

R[X1, X2, · · · , Xs] =

{

[R1, R2, · · · , Rs] ∈ R
s

∣

∣

∣

∣

∣

∑

j∈T

Rj > H(XT |XT c), ∀ ∅ 6= T ⊆ S

}

.

Proofs of this are presented in the Section III and Section IV.

III. EXISTENCE THEOREM I: SINGLE SOURCE

For any single source scenario, the assertion that there always exists a finite ring R1, such that Rl is in fact the

Slepian–Wolf region

R[X1] = {R1 ∈ R|R1 > H(X1)},

is equivalent to there always exists a finite ring R1 and an injection Φ1 : X1 → R1, such that

max
06=I1≤lR1

log |R1|

log |I1|

[

H(X1)−H(YR1/I1
)
]

= H(X1), (3)

where YR1/I1
= Φ1 (X1) + I1.

Theorem III.1. Let R1 be a finite ring of order |R1| ≥ |X1|. If R1 contains one and only one proper non-trivial

left ideal I0 and |I0| =
√

|R1|, then region (2) coincides with the Slepian–Wolf region, i.e. there exists an injection

Φ1 : X1 → R1, such that (3) holds.

Remark 1. Examples of such a ring R1 in the above theorem include ML,p =











x 0

y x





∣

∣

∣

∣

∣

∣

x, y ∈ Zp







and Zp2 ,

where p is any prime. For any single source scenario, one can always choose R1 to be either ML,p or Zp2 .

Consequently, optimality is attained.

Proof of Theorem III.1: Notice that the random variable YR1/I0
depends on the injection Φ1, so does its

entropy H(YR1/I0
). Obviously H(YR1/R1

) = 0, since the sample space of the random variable YR1/R1
contains

only one element. Therefore,

log |R1|

log |R1|

[

H(X1)−H(YR1/R1
)
]

= H(X1).

Henceforth, (3) is equivalent to

log |R1|

log |I0|

[

H(X1)−H(YR1/I0
)
]

≤ H(X1)

⇔H(X1) ≤ 2H(YR1/I0
), (4)

since |I0| =
√

|R1|. By Lemma A.1, there exists injection Φ̃1 : X1 → R1 such that (4) holds if Φ1 = Φ̃1. The

statement follows.
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Up to isomorphism, there are exactly 4 distinct rings of order p2 for a given prime p. They include 3 non-field

rings, Zp × Zp, ML,p and Zp2 , in addition to the field1
Fp2 . It has been proved that, using linear encoders over

the last three, optimality can always be achieved in the single source scenario. Actually, the same holds true for all

multiple sources scenarios.

IV. EXISTENCE THEOREM II: MULTIPLE SOURCES

Theorem IV.1. Let R1,R2, · · · ,Rs be s finite rings with |Ri| ≥ |Xi|. If Ri is isomorphic to either

1) a field, i.e. Ri contains no proper non-trivial left (right) ideal; or

2) a ring containing one and only one proper non-trivial left ideal I0i and |I0i| =
√

|Ri|,

for all feasible i, then (2) coincides with the Slepian–Wolf region R[X1, X2, · · · , Xs].

Remark 2. Obvious that Theorem IV.1 includes Theorem III.1 as a special case. In fact, its proof resembles the one

of Theorem III.1. Examples of Ri’s include all finite fields, ML,p and Zp2 , where p is a prime. However, Theorem

IV.1 does not guarantee that all rates, except the vertexes, in the polytope of the Slepian–Wolf region are directly

achievable for the multiple sources case. A time sharing scheme is required in our current proof. Nevertheless, all

rates are directly achievable if Ri’s are fields or if s = 1. This is partially the reason that the two theorems are

stated separately.

Proof of Theorem IV.1: It suffices to prove that, for any R = [R1, R2, · · · , Rs] ∈ R
s satisfies

Ri > H(Xi|Xi−1, Xi−2, · · · , X1), ∀ 1 ≤ i ≤ s,

R ∈ RΦ for some set of injections Φ = {Φ1,Φ2, · · · ,Φs}, where Φi : Xi → Ri. Let Φ̃ = {Φ̃1, Φ̃2, · · · , Φ̃s} be

the set of injections, where, if

(i) Ri is a field, Φ̃i is any injection;

(ii) Ri satisfies 2), Φ̃i is the injection such that

H(Xi|Xi−1, Xi−2, · · · , X1) ≤2H(YRi/I0i
|Xi−1, Xi−2, · · · , X1),

when Φi = Φ̃i. The existence of Φ̃i is guaranteed by Lemma A.1.

If Φ = Φ̃, then

log |Ii|

log |Ri|
H(Xi|Xi−1, Xi−2, · · · , X1)

≥H(Xi|Xi−1, Xi−2, · · · , X1)−H(YRi/Ii
|Xi−1, Xi−2, · · · , X1)

=H(Xi|YRi/Ii
, Xi−1, Xi−2, · · · , X1),

1The finite field of order q is often denoted by Fq in this paper.
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for all 1 ≤ i ≤ s and 0 6= Ii ≤l Ri. As a consequence,

∑

i∈T

Ri log |Ii|

log |Ri|
>
∑

i∈T

log |Ii|

log |Ri|
H(Xi|Xi−1, Xi−2, · · · , X1)

≥
∑

i∈T

[

H(Xi|YRi/Ii
, Xi−1, Xi−2, · · · , X1)

]

≥
∑

i∈T

[

H(Xi|YRT /IT
, XT c , Xi−1, Xi−2, · · · , X1)

]

≥H
(

XT

∣

∣YRT /IT
, XT c

)

=H (XT |XT c)−H
(

YRT /IT
|XT c

)

,

for all ∅ 6= T ⊆ {1, 2, · · · , s}. Thus, R ∈ RΦ̃.

By Theorem III.1 and Theorem IV.1, we draw the conclusion that

Corollary IV.2. For any scenario of SW, there always exists a sequence of linear encoders over rings (fields,

non-field rings) which achieves the data compression limit, the SW region.

In fact, linear encoder over ring can be optimal for even scenarios beyond those stated in the above theorems.

We classify some of these scenarios in the rest of this section.

Theorem IV.3. Let Rl1,Rl2, · · · ,Rls (l = 1, 2) be a set of finite rings of equal size, and Ri = R1i ×R2i for all

feasible i. If the coding rate R ∈ R
s is achievable with linear encoders over Rl1,Rl2, · · · ,Rls (l = 1, 2), then R

is achievable with linear encoders over R1,R2, · · · ,Rs.

Proof: By definition, R is a convex combination of coding rates which are directly achieved by different linear

encoding schemes over Rl1,Rl2, · · · ,Rls (l = 1, 2), respectively. To be more precise, there exist R1,R2, · · · ,Rm ∈

R
s and positive numbers w1, w2, · · · , wm with

m
∑

j=1

wj = 1, such that R =

m
∑

j=1

wjRj . Moreover, there exist

injections Φl = {Φl1,Φl2, · · · ,Φls} (l = 1, 2), where Φli : Xi → Rli, such that

Rj ∈ RΦl
=

{

[R1, R2, · · · , Rs] ∈ R
s

∣

∣

∣

∣

∣

∑

i∈T

Ri log |Ili|

log |Rli|
> H(XT |XT c)−H(YRlT /IlT

|XT c),

∀ ∅ 6= T ⊆ S, ∀ 0 6= Ili ≤l Rli

}

, (5)

where RlT =
∏

i∈T

Rli, IlT =
∏

i∈T

Ili and YRlT /IlT
= Φl(XT ) + IlT is a random variable with sample space

RlT /IlT . To show that R is achievable with linear encoders over R1,R2, · · · ,Rs, it suffices to prove that Rj

is achievable with linear encoders over R1,R2, · · · ,Rs for all feasible j. Let Rj = [Rj1, Rj2, · · · , Rjs]. For all

∅ 6= T ⊆ S and 0 6= Ii = I1i × I2i ≤l Ri with 0 6= Ili ≤l Rli (l = 1, 2), we have

∑

i∈T

Rji log |Ii|

log |Ri|
=
∑

i∈T

Rji log |I1i|

log |R1i|

c1
c1 + c2

+
∑

i∈T

Rji log |I2i|

log |R2i|

c2
c1 + c2

,
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where cl = log |Rl1|. By (5), it can be easily seen that

∑

i∈T

Rji log |Ii|

log |Ri|
>H(XT |XT c)−

1

c1 + c2

2
∑

l=1

clH(YRlT /IlT
|XT c).

Meanwhile, let RT =
∏

i∈T

Ri, IT =
∏

i∈T

Ii, Φ = {Φ11 × Φ21,Φ12 × Φ22, · · · ,Φ1s × Φ2s} (Note:

Φ1,i × Φ2,i : xi 7→ (Φ1,i(xi),Φ2,i(xi)) ∈ Ri

for all xi ∈ Xi.) and YRT /IT
= Φ(XT ) + IT . It can be verified that YRlT /IlT

(l = 1, 2) is a function of YRT /IT
,

hence, H(YRT /IT
|XT c) ≥ H(YRlT /IlT

|XT c). Consequently,

∑

i∈T

Rji log |Ii|

log |Ri|
> H(XT |XT c)−H(YRT /IT

|XT c),

which implies that Rj ∈ RΦ,prod by Theorem B.1. We therefore conclude that Rj is achievable with linear encoder

over R1,R2, · · · ,Rs for all feasible j, so is R.

Obviously, R1,R2, · · · ,Rs in Theorem IV.3 are of the same size. Inductively, one can verify the following

without any difficulty.

Theorem IV.4. Let L be any finite index set, Rl1,Rl2, · · · ,Rls (l ∈ L ) be a set of finite rings of equal size, and

Ri =
∏

l∈L

Rli for all feasible i. If the coding rate R ∈ R
s is achievable with linear encoders over Rl1,Rl2, · · · ,Rls

(l ∈ L ), then R is achievable with linear encoders over R1,R2, · · · ,Rs.

Remark 3. The situation Theorem IV.4 (Theorem IV.3) illustrates is delicate. Let Xi (1 ≤ i ≤ s) be the set of

all symbols generated by the ith source. The hypothesis of Theorem IV.4 (Theorem IV.3) implicitly implies the

constraint |Xi| ≤ |Rli| for all feasible i and l. As a consequence, Theorem IV.4 (Theorem IV.3) does not imply

that linear encoders over ML,p ×Zp2 (p is a prime) always achieve the Slepian–Wolf region (since linear encoders

over ML,p and Zp2 always achieve the Slepian–Wolf region by Theorem IV.1). The correct statement is that linear

encoders over ML,p × Zp2 always achieve the Slepian–Wolf region if |Xi| ≤ p2 for all feasible i.

Remark 4. Let R1,R2, · · · ,Rs be a set of finite rings each of which is isomorphic to either

1) a ring R containing one and only one proper non-trivial left ideal whose order is
√

|R|, e.g. ML,p and Zp2

(p is a prime); or

2) a ring of a finite product of finite field(s) and/or ring(s) satisfying 1), e.g. ML,p ×
m
∏

j=1

Zpj
(p and pj’s are

prime) and

m′

∏

i=1

ML,pi
×

m′′

∏

j=1

Fqj (m′ and m′′ are non-negative, pi’s are prime and qj’s are power of primes).

Theorem IV.1 and Theorem IV.4 ensure that linear encoders over ring R1,R2, · · · ,Rs are always optimal in any

applicable (subjected to the condition presented in related theorem) Slepian–Wolf coding scenario. As a very special

case, Zp×Zp, where p is a prime, is always optimal in any (single source or multiple sources) scenario with alphabet

size less than or equal to p. However, using product of rings or a field is not mandatory. As shown in Theorem III.1,
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neither ML,p nor Zp2 is (isomorphic to) a product of rings nor a field. It is also not required to have a restriction

on the alphabet size (see Theorem IV.1), even for product rings (see Example IV.5 for a case of Z2 × Z3).

Example IV.5. Consider the single source scenario, where X1 ∼ p and X1 = Z6, satisfying the follows.

X1 0 1 2 3 4 5

p(X1) 0.05 0.1 0.15 0.2 0.2 0.3

By [8, Theorem IV.1],

R = {R1 ∈ R|R1 > max{2.40869, 2.34486, 2.24686}}

= {R1 ∈ R|R1 > 2.40869 = H(X1)}

is achievable with linear coding over ring Z6. Obviously, R is just the SW region R[X1]. Optimality is claimed.

V. CONCLUSION

For any data compression problem of Slepian–Wolf, one can always select finite rings which can be (isomorphic

to) either ML,p, Zp2 (p is a prime), a field or a product ring of several previous rings. It is guaranteed that linear

encoders over these rings are optimal, respectively. Therefore, the optimality issue considered is closed on the regard

of existence. However, the ultimate target is to verify (or deny) that (2) is the Slepian–Wolf region for all possible

choices of rings. From this viewpoint, the problem remains open.
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APPENDIX A

A SUPPORTING LEMMA

Lemma A.1. Let R be a finite ring, X and Y be two correlated discrete random variables, and X be the sample

space of X with |X | ≤ |R|. If R contains one and only one proper non-trivial left ideal I and |I| =
√

|R|, then

there exists injection Φ̃ : X → R such that

H(X |Y ) ≤ 2H(Φ̃ (X) + I|Y ). (A.1)

Proof: Let

Φ̃ ∈ arg max
Φ∈M

H(Φ (X) + I|Y ),

where M is the set of all possible Φ’s (maximum can always be reached because |M | =
|R|!

(|R| − |X |)!
is finite,

but it is not uniquely attained by Φ̃ in general). Assume that Y is the sample space (not necessarily finite) of Y .
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Let q = |I|, I = {r1, r2, · · · , rq} and R/I = {a1 + I, a2 + I, · · · , aq + I}. We have that

H(X |Y ) =−
∑

y∈Y

q
∑

i,j=1

pi,j,y log
pi,j,y
py

and

H(Φ̃ (X) + I|Y ) =−
∑

y∈Y

q
∑

i=1

pi,y log
pi,y
py

,

where

pi,j,y =Pr
{

Φ̃(X) = ai + rj , Y = y
}

,

py =

q
∑

i,j=1

pi,j,y,

pi,y =

q
∑

j=1

pi,j,y.

(Note: Pr
{

Φ̃(X) = r
}

= 0 if r ∈ R \ Φ̃(X ). In addition, every element in R can be uniquely expressed as

ai + rj .) Therefore, (A.1) is equivalent to

−
∑

y∈Y

q
∑

i,j=1

pi,j,y log
pi,j,y
py

≤− 2
∑

y∈Y

q
∑

i=1

pi,y log
pi,y
py

⇔
∑

y∈Y

py

q
∑

i=1

pi,y
py

H

(

pi,1,y
pi,y

,
pi,2,y
pi,y

, · · · ,
pi,q,y
pi,y

)

≤
∑

y∈Y

pyH

(

p1,y
py

,
p2,y
py

, · · · ,
pq,y
py

)

, (A.2)

where H (v1, v2, · · · , vq) = −

q
∑

j=1

vj log vj . Let

A =
∑

y∈Y

pyH

(

q
∑

i=1

pi,1,y
py

,

q
∑

i=1

pi,2,y
py

, · · · ,

q
∑

i=1

pi,q,y
py

)

.

The concavity of the function H implies that

∑

y∈Y

py

q
∑

i=1

pi,y
py

H

(

pi,1,y
pi,y

,
pi,2,y
pi,y

, · · · ,
pi,q,y
pi,y

)

≤ A. (A.3)

At the same time,
∑

y∈Y

pyH

(

p1,y
py

,
p2,y
py

, · · · ,
pq,y
py

)

= max
Φ∈M

H(Φ(X) + I|Y )

by the definition of Φ̃. We now claim that

A ≤ max
Φ∈M

H(Φ(X) + I|Y ). (A.4)

Suppose otherwise, i.e. A >
∑

y∈Y

pyH

(

p1,y
py

,
p2,y
py

, · · · ,
pq,y
py

)

. Let Φ′ : X → R be defined as

Φ′ : x 7→ aj + ri ⇔ Φ̃(x) = ai + rj .
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We have that

H(Φ′(X) + I|Y ) =
∑

y∈Y

pyH

(

q
∑

i=1

pi,1,y
py

,

q
∑

i=1

pi,2,y
py

, · · · ,

q
∑

i=1

pi,q,y
py

)

= A

>
∑

y∈Y

pyH

(

p1,y
py

,
p2,y
py

, · · · ,
pq,y
py

)

= max
Φ∈M

H(Φ(X) + I|Y ).

It is absurd that H(Φ′(X) + I|Y ) > max
Φ∈M

H(Φ(X) + I|Y )! Therefore, (A.2) is valid by (A.3) and (A.4), so is

(A.1).

APPENDIX B

ACHIEVABILITY THEOREM OF PRODUCT RINGS

Theorem B.1. Suppose Ri (1 ≤ i ≤ s) is a (finite) product ring

ki
∏

l=1

Rl,i of finite rings Rl,i’s, and the sample

space Xi satisfies |Xi| ≤ |Rl,i| for all feasible i and l. Given injections Φl,i : Xi → Rl,i and let

Φ = {Φ1,Φ2, · · · ,Φs},

where Φi =

ki
∏

l=1

Φl,i is defined as

Φi : xi 7→ (Φ1,i(xi),Φ2,i(xi), · · · ,Φki,i(xi)) ∈ Ri, ∀ xi ∈ Xi.

We have that

RΦ,prod =

{

[R1, R2, · · · , Rs] ∈ R
s

∣

∣

∣

∣

∣

∑

i∈T

Ri log |Ii|

log |Ri|
> H(XT |XTc

)−H(YRT /IT
|XT c),

∀ ∅ 6= T ⊆ S, ∀ Ii =

ki
∏

l=1

Il,i with 0 6= Il,i ≤l Rl,i

}

(B.1)

is directly achievable with linear coding over ring R1,R2, · · · ,Rs. Moreover, RΦ ⊆ RΦ,prod.

Proof: The proof follows almost the same as the one proving [8, Theorem IV.1], except that the analysis of

the performances (of the encoders and decoder) only focuses on sequences (ai,1, ai,2, · · · , ai,n) ∈ R
n
i (1 ≤ i ≤ s)

such that

ai,j =
(

Φ1,i

(

x
(j)
i

)

,Φ2,i

(

x
(j)
i

)

, · · · ,Φki,i

(

x
(j)
i

))

∈
ki
∏

l=1

Rl,i

for some x
(j)
i ∈ Xi. Let Xi,Yi be any two such sequences satisfying Xi −Yi ∈ I

n
i for some Ii ≤l Ri. Based

on the special structure of Xi and Yi, it is easy to verify that Ii 6= 0 ⇔ Ii =

ki
∏

l=1

Il,i and 0 6= Il,i ≤l Rl,i, for

all 1 ≤ l ≤ ki. (This causes the difference between (1) and (B.1).) In addition, it is obvious that RΦ ⊆ RΦ,prod by

their definitions.

Remark 5. The differences between (1) and (B.1) are in the restrictions of Ii’s, respectively. The reason causing

the differences is highlighted in the proof.
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