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On Linear Coding over Finite Rings and

Applications to Computing

Sheng Huang, Mikael Skoglund, Senior Member, IEEE

Abstract

This paper presents a coding theorem for linear coding over finite rings, in the setting of the Slepian–Wolf

source coding problem. This theorem covers corresponding achievability theorems of Elias [1] and Csiszár [2] for

linear coding over finite fields as special cases. In addition, it is shown that, for any set of finite correlated discrete

memoryless sources, there always exists a sequence of linear encoders over some finite non-field rings which achieves

the data compression limit, the Slepian–Wolf region. Hence, the optimality problem regarding linear coding over finite

non-field rings for data compression is closed with positive confirmation with respect to existence.

For application, we addressed the problem of source coding for computing, where the decoder is interested in

recovering a discrete function of the data generated and independently encoded by several correlated i.i.d. random

sources. We propose linear coding over finite rings as an alternative solution to this problem. Results in Körner–

Marton [3] and Ahlswede–Han [4, Theorem 10] are generalized to cases for encoding (pseudo) nomographic functions

(over rings). Since a discrete function with a finite domain always admits a nomographic presentation, we conclude

that both generalizations universally apply for encoding all discrete functions of finite domains. Based on these, we

demonstrate that linear coding over finite rings strictly outperforms its field counterpart in terms of achieving better

coding rates and reducing the required alphabet sizes of the encoders for encoding infinitely many discrete functions.

Index Terms

Linear Coding, Source Coding, Ring, Field, Source Coding for Computing.

I. INTRODUCTION

The problem of source coding for computing can be defined as follows.

Problem 1 (Source Coding for Computing). Given S = {1, 2, · · · , s} and (X1, X2, · · · , Xs) ∼ p. Let ti (i ∈ S) be

a discrete memoryless source that randomly generates i.i.d. discrete data X
(1)
i , X

(2)
i , · · · , X

(n)
i , · · · , where X

(n)
i has

a finite sample space Xi and
[

X
(n)
1 , X

(n)
2 , · · · , X(n)

s

]

∼ p, ∀ n ∈ N+. For a discrete function g :
∏

i∈S

Xi → Ω, what

is the largest region R[g] ⊂ Rs, such that, ∀ (R1, R2, · · · , Rs) ∈ R[g] and ∀ ǫ > 0, there exists an N0 ∈ N+, such
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that for all n > N0, there exist s encoders φi : X
n
i →

[

1, 2nRi
]

, i ∈ S, and one decoder ψ :
∏

i∈S

[

1, 2nRi
]

→ Ωn,

with

Pr {~g (Xn
1 , · · · , X

n
s ) 6= ψ [φ1 (X

n
1 ) , · · · , φs (X

n
s )]} < ǫ,

where Xn
i =

[

X
(1)
i , X

(2)
i , · · · , X

(n)
i

]

and

~g (Xn
1 , · · · , X

n
s ) =











g
(

X
(1)
1 , · · · , X(1)

s

)

...

g
(

X
(n)
1 , · · · , X(n)

s

)











∈ Ωn?

The region R[g] is called the achievable coding rate region for computing g. A rate tuple R ∈ Rs is said to

be achievable for computing g (or simply achievable) if and only if R ∈ R[g]. A region R ⊂ Rs is said to be

achievable for computing g (or simply achievable) if and only if R ⊆ R[g].

If g is an identity function, the computing problem, Problem 1, is known as the Slepian–Wolf (SW) source coding

problem. R[g] is then the SW region [5], namely

R[X1, X2, · · · , Xs] =
{

(R1, R2, · · · , Rs) ∈ Rs
∣

∣

∣

∑

j∈T

Rj > H(XT |XT c), ∀ ∅ 6= T ⊆ S
}

,

where T c is the complement of T in S and XT (XT c) is the random variable array
∏

j∈T

Xj





∏

j∈T c

Xj



. However,

from [5] it is hard to draw conclusions regarding the structure of the optimal encoders, as the corresponding

mappings are chosen randomly among all feasible mappings. This limits the scope of their potential applications.

As a completion, linear coding over finite fields (LCoF), namely Xi’s are injectively mapped into some subsets

of some finite fields and the φi’s are chosen as linear mappings over these fields, is considered. It is shown that

LCoF achieves the same encoding limit, the SW region [1], [2]. Although it seems straightforward to study linear

mappings over rings (non-field rings in particular), it has not been proved (nor denied) that linear encoding over

non-field rings can be equally optimal.

For an arbitrary discrete function g, Problem 1 remains open in general, and R[X1, X2, · · · , Xs] ⊆ R[g]

obviously. Making use of Elias’ theorem on binary linear codes [1], Körner–Marton [3] shows that R[⊕2] (“⊕2”

is the modulo-two sum) contains the region

R⊕2 =
{

(R1, R2) ∈ R2 | R1, R2 > H(X1 ⊕2 X2)
}

.

This region is not contained in the SW region for certain distributions. In other words, R[⊕2] ) R[X1, X2].

Combining the standard random coding technique and Elias’ result, [4] shows that R[⊕2] can be strictly larger than

the convex hull of the union R[X1, X2] ∪ R⊕2 . However, the functions considered in these works are relatively

simple. With a polynomial approach, [6], [7] generalize the result of Ahlswede–Han [4, Theorem 10] to the scenario

of g being arbitrary. Making use of the fact that a discrete function is essentially a polynomial function (see Definition

II.2) over some finite field, an achievable region is given for computing an arbitrary discrete function. Such a region

contains and can be strictly larger (depending on the precise function and distribution under consideration) than the
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SW region. Conditions under which R[g] is strictly larger than the SW region are presented in [8] and [6] from

different perspectives, respectively.

The present work proposes replacing the linear encoders over finite fields from Elias [1] and Csiszár [2] with

linear encoders over finite rings in the case of the problems accounted for above. Achievability theorems related to

linear coding over finite rings (LCoR) for SW data compression are presented, covering the results in [1], [2] as

special cases in the sense of characterizing the achievable region. In addition, it is proved that there always exists

a sequence of linear encoders over some finite non-field rings that achieves the SW region for any scenario of SW.

Therefore, the issue of optimality of linear coding over finite non-field rings for data compression is closed with

respect to existence. Furthermore, we also consider LCoR as an alternative technique for the general computing

problem, Problem 1. Results from Körner–Marton [3], Ahlswede–Han [4, Theorem 10] and [7] are generalized to

corresponding ring versions for encoding (pseudo) nomographic functions (over rings). Since any discrete function

with a finite domain admits a nomographic presentation, we conclude that our results universally apply for encoding

all discrete functions of finite domains. Finally, it is shown that our ring approach dominates its field counterpart

in terms of achieving better coding rates and reducing alphabet sizes of the encoders for encoding some discrete

function. The proof is done by taking advantage of the fact that the characteristic of a ring can be any positive

integer while the characteristic of a field must be a prime. From this observation used in the proof, it is seen that

there are actually infinite many such functions.

II. RINGS, IDEALS AND LINEAR MAPPINGS

We start by introducing some fundamental algebraic concepts and related properties. Readers who are already

familiar with this material may still choose to go through quickly to identify our notation.

Definition II.1. The touple [R,+, ·] is called a ring if the following criteria are met:

1) [R,+] is an Abelian group;

2) There exists a multiplicative identity1 1 ∈ R, namely, 1 · a = a · 1 = a, ∀ a ∈ R;

3) ∀ a, b, c ∈ R, a · b ∈ R and (a · b) · c = a · (b · c);

4) ∀ a, b, c ∈ R, a · (b + c) = (a · b) + (a · c) and (b + c) · a = (b · a) + (c · a).

We often write R for [R,+, ·] when the operations considered are known from the context. The operation “·” is

usually written by juxtaposition, ab for a · b, for all a, b ∈ R.

A ring [R,+, ·] is said to be commutative if ∀ a, b ∈ R, a · b = b · a. In Definition II.1, the identity of the group

[R,+], denoted by 0, is called the zero. A ring [R,+, ·] is said to be finite if the cardinality |R| is finite, and |R|

is called the order of R. The set Zq of integers modulo q is a commutative finite ring with respect to the modular

arithmetic. For any ring R, the set of all polynomials of s indeterminants over R is an infinite ring.

1Sometimes a ring without a multiplicative identity is considered. Such a structure has been called a rng. We consider rings with multiplicative

identities in this paper. However, similar results remain valid when considering rngs instead. Although we will occasionally comment on such

results, they are not fully considered in the present work.
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Definition II.2. A polynomial function2 of k variables over a finite ring R is a function g : Rk → R of the form

g(x1, x2, · · · , xk) =
m
∑

j=0

ajx
m1j

1 x
m2j

2 · · ·x
mkj

k , (1)

where aj ∈ R and m and mij ’s are non-negative integers. The set of all the polynomial functions of k variables

over ring R is designated by R[k].

Remark 1. Polynomial and polynomial function are sometimes only defined over a commutative ring [9], [10].

It is a very delicate matter to define them over a non-commutative ring [11], [12], due to the fact that x1x2 and

x2x1 can become different objects. We choose to define “polynomial functions” with formula (1) because those

functions are within the scope of this paper’s interest.

Proposition II.3. Given s rings R1,R2, · · · ,Rs, for any non-empty set T ⊆ {1, 2, · · · , s}, the Cartesian product

(see [9]) RT =
∏

i∈T

Ri forms a new ring [RT ,+, ·] with respect to the component-wise operations defined as

follows:

a′ + a′′ =
[

a′1 + a′′1 , a
′
2 + a′′2 , · · · , a

′
|T | + a′′|T |

]

,

a′ · a′′ =
[

a′1a
′′
1 , a

′
2a

′′
2 , · · · , a

′
|T |a

′′
|T |

]

,

∀ a′ =
[

a′1, a
′
2, · · · , a

′
|T |

]

, a′′ =
[

a′′1 , a
′′
2 , · · · , a

′′
|T |

]

∈ RT .

Remark 2. In Proposition II.3, [RT ,+, ·] is called the direct product of {Ri|i ∈ T }. It can be easily seen that

[0, 0, · · · , 0] and [1, 1, · · · , 1] are the zero and the multiplicative identity of [RT ,+, ·], respectively.

Definition II.4. A non-zero element a of a ring R is said to be invertible, if and only if there exists b ∈ R, such

that ab = ba = 1. b is called the inverse of a, denoted by a−1. An invertible element of a ring is called a unit.

Remark 3. It can be proved that the inverse of a unit is unique. By definition, the multiplicative identity is the

inverse of itself.

Let R∗ = R \ {0}. The ring [R,+, ·] is a field if and only if [R∗, ·] is an Abelian group. In other words, all

non-zero elements of R are invertible. All fields are commutative rings. Zq is a field if and only if q is a prime. All

finite fields of the same order are isomorphic to each other [13, pp. 549]. This “unique” field of order q is denoted

by Fq. It is necessary that q is a power of a prime. More details regarding finite fields can be found in [13, Ch.

14.3].

Theorem II.5 (Wedderburn’s little theorem c.f. Theorem 7.13 of [9]). Let R be a finite ring. R is a field if and

only if all non-zero elements of R are invertible.

2Polynomial and polynomial function are distinct concepts.
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Remark 4. Wedderburn’s little theorem guarantees commutativity for a finite ring if all of its non-zero elements

are invertible. Hence, a finite ring is either a field or at least one of its elements has no inverse. However, a finite

commutative ring is not necessary a field, e.g. Zq is not a field if q is not a prime.

Definition II.6 (c.f. [13]). The characteristic of a finite ring R is defined to be the smallest positive integer m,

such that

m
∑

j=1

1 = 0, where 0 and 1 are the zero and the multiplicative identity of R, respectively. The characteristic

of R is often denoted by Char(R).

Remark 5. Clearly, Char(Zq) = q. For a finite field Fq, Char(Fq) is always the prime q0 such that q = qn0 for

some integer n [9, Proposition 2.137].

Proposition II.7. Let Fq be a finite field. For any 0 6= a ∈ Fq, m = Char(Fq) if and only if m is the smallest

positive integer such that

m
∑

j=1

a = 0.

Proof: Since a 6= 0,

m
∑

j=1

a = 0 ⇒ a−1
m
∑

j=1

a = a−1 · 0 ⇒
m
∑

j=1

1 = 0 ⇒
m
∑

j=1

a = 0

The statement is proved.

Definition II.8. A subset I of a ring [R,+, ·] is said to be a left ideal of R, denoted by I ≤l R, if and only if

1) [I,+] is a subgroup of [R,+];

2) ∀ x ∈ I and ∀ a ∈ R, a · x ∈ I.

If condition 2) is replaced by

3) ∀ x ∈ I and ∀ a ∈ R, x · a ∈ I,

then I is called a right ideal of R, denoted by I ≤r R. {0} is a trivial left (right) ideal, usually denoted by 0.

The cardinality |I| is called the order of a finite left (right) ideal I.

Remark 6. Let {a1, a2, · · · , an} be a non-empty set of elements of some ring R. It is easy to verify that

〈a1, a2, · · · , an〉r =

{ n
∑

i=1

aibi

∣

∣

∣

∣

bi ∈ R, ∀ 1 ≤ i ≤ n

}

is a right ideal and 〈a1, a2, · · · , an〉l =

{ n
∑

i=1

biai

∣

∣

∣

∣

bi ∈

R, ∀ 1 ≤ i ≤ n

}

is a left ideal. Furthermore, 〈a1, a2, · · · , an〉r = R and 〈a1, a2, · · · , an〉l = R if ai is a unit for

some 1 ≤ i ≤ n.

It is well-known that if I ≤l R, then R is divided into disjoint cosets which are of equal size (cardinality). For

any coset J, J = x + I = {x+ y|y ∈ I}, ∀ x ∈ J. The set of all cosets forms a left module over R, denoted by

R/I. Similarly, R/I becomes a right module over R if I ≤r R [14]. Of course, R/I can also be considered as a

quotient group [9, Ch. 1.6 and Ch. 2.9]. However, its structure is well richer than simply being a quotient group.
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Proposition II.9. Let Ri (1 ≤ i ≤ s) be a ring and R =

s
∏

i=1

Ri. For any A ⊆ R, A ≤l R (or A ≤r R) if and

only if A =
s
∏

i=1

Ai and Ai ≤l Ri (or Ai ≤r Ri), ∀ 1 ≤ i ≤ s.

Proof: It suffices to complete the proof for ≤l only. Let πi (1 ≤ i ≤ s) be the coordinate function assigning

every element in R its ith component. Then A ⊆
s
∏

i=1

Ai, where Ai = πi(A). Moreover, for any

x = (π1(x1), π2(x2), · · · , πs(xs)) ∈
s
∏

i=1

Ai,

where xi ∈ A for all feasible i, we have that

x =
s
∑

i=1

eixi,

where ei ∈ R has the ith coordinate being 1 and others being 0. If A ≤l R, then x ∈ A by definition. Therefore,
s
∏

i=1

Ai ⊆ A. Consequently, A =

s
∏

i=1

Ai. Since πi is a homomorphism, we also have that Ai ≤l Ri for all feasible

i. The other direction is easily verified by definition.

Remark 7. It is worthwhile to point out that Proposition II.9 does not hold for infinite index set, namely, R =
∏

i∈I

Ri,

where I is not finite.

For any ∅ 6= T ⊆ S, Proposition II.9 states that any left (right) ideal of RT is a Cartesian product of some left

(right) ideals of Ri, i ∈ T . Let Ii be a left (right) ideal of ring Ri (1 ≤ i ≤ s). We define IT to be the left (right)

ideal
∏

i∈T

Ii of RT .

Definition II.10. A mapping f : Rn → Rm given as:

f(x1, x2, · · · , xn) =

(

n
∑

j=1

a1,jxj , · · · ,
n
∑

j=1

am,jxj

)t

, ∀ (x1, x2, · · · , xn) ∈ Rn, (2)

where t stands for transposition and ai,j ∈ R for all feasible i and j, is called a left linear mapping over ring R.

Similarly,

f(x1, x2, · · · , xn) =

(

n
∑

j=1

xja1,j , · · · ,
n
∑

j=1

xjam,j

)t

, ∀ (x1, x2, · · · , xn) ∈ Rn,

defines a right linear mapping over ring R. If m = 1, then f is called a left (right) linear function over R.

From now on, left linear mapping (function) or right linear mapping (function) are simply called linear mapping

(function). This will not lead to any confusion since the intended use can usually be clearly distinguished from the

context.

Remark 8. The mapping f in Definition II.10 is called linear in accordance with the definition of linear mapping

(function) over field. In fact, the two structures have several similar properties. Moreover, (2) is equivalent to

f(x1, x2, · · · , xn) = A (x1, x2, · · · , xn)
t
, ∀ (x1, x2, · · · , xn) ∈ Rn, (3)
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where A is an m×n matrix over R and [A]i,j = ai,j for all feasible i and j. A is named the coefficient matrix. It

is easy to prove that a linear mapping is uniquely determined by its coefficient matrix, and vice versa. The linear

mapping f is said to be trivial, denoted by 0, if A is the zero matrix, i.e. [A]i,j = 0 for all feasible i and j.

Let A be an m× n matrix over ring R and f(x) = Ax, ∀ x ∈ Rn. For the system of linear equations

f(x) = Ax = 0, where 0 = (0, 0, · · · , 0)t ∈ Rm,

let S(f) be the set of all solutions, namely S(f) = {x ∈ Rn|f(x) = 0}. It is obvious that S(f) = Rn if f is

trivial, i.e. A is the zero matrix. If R is a field, then S(f) is a subspace of Rn. We conclude this section with a

lemma regarding the cardinalities of Rn and S(f) in the following.

Lemma II.11. For a finite ring R and a linear function

f :x 7→ (a1, a2, · · · , an)x

(

f :x 7→ xt(a1, a2, · · · , an)
t
)

, ∀ x ∈ Rn,

we have

|S(f)|

|R|n
=

1

|I|
,

where I = 〈a1, a2, · · · , an〉r (I = 〈a1, a2, · · · , an〉l). In particular, if ai is invertible for some 1 ≤ i ≤ n, then

|S(f)| = |R|n−1
.

Proof: It is obvious that the image f(Rn) = I by definition. Moreover, ∀ x 6= y ∈ I, the pre-images f−1(x)

f−1(y) satisfy f−1(x) ∩ f−1(y) = ∅ and
∣

∣f−1(x)
∣

∣ =
∣

∣f−1(y)
∣

∣ = |S(f)|. Therefore, |I| |S(f)| = |R|n, i.e.
|S(f)|

|R|n
=

1

|I|
. Moreover, if ai is a unit, then I = R, thus, |S(f)| = |R|n / |R| = |R|n−1

.

III. LINEAR CODING OVER FINITE RINGS

In this section, we will present a coding rate region achieved with LCoR for the SW source coding problem, i.e.

g is an identity function in Problem 1. This region is exactly the SW region if all the rings considered are fields.

However, being field is not necessary as seen in Section V, where the issue of optimality is addressed.

Before proceeding, a subtlety needs to be cleared out. It is assumed that a source, say ti, generates data taking

values from a finite sample space Xi, while Xi does not necessarily admit any algebraic structure. We have to

either assume that Xi is with a certain algebraic structure, for instance Xi is a ring, or injectively map elements

of Xi into some algebraic structure. In our subsequent discussions, we assume that Xi is mapped into a finite ring

Ri of order at least |Xi| by some injection Φi. Hence, Xi can simply be treated as a subset Φi (Xi) ⊆ Ri for a

fixed Φi. When required, Φi can also be selected to obtain desired outcomes.

To facilitate our discussion, the following notation is used. For ∅ 6= T ⊆ S, XT (xT and XT resp.) is defined

to be the Cartesian product

∏

i∈T

Xi

(

∏

i∈T

xi and
∏

i∈T

Xi resp.

)

,
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where xi ∈ Xi is a realization of Xi. If (X1, X2, · · · , Xs) ∼ p, we denote the marginal of p with respect to XT

by pXT , i.e. XT ∼ pXT , define

H(pXT ) =H(XT ) and

supp(pXT ) = {xT ∈ XT | pXT (xT ) > 0} .

For simplicity, M (XS ,RS) is defined to be

{ [Φ1,Φ2, · · · ,Φs]|Φi : Xi → Ri is injective, ∀ i ∈ S}

(|Ri| ≥ |Xi| is implicitly assumed), and Φ(xT ) =
∏

i∈T

Φi(xi) for any Φ ∈ M (XS ,RS) and xT ∈ XT . For any

Φ ∈ M (XS ,RS), let

RΦ =

{

[R1, R2, · · · , Rs] ∈ Rs

∣

∣

∣

∣

∣

∑

i∈T

Ri log |Ii|

log |Ri|
> r (T, IT ) ,

∀ ∅ 6= T ⊆ S, ∀ 0 6= Ii ≤l Ri

}

, (4)

where r (T, IT ) = H(XT |XT c) − H(YRT /IT
|XT c) = H(XT |YRT /IT

, XT c) and YRT /IT
= Φ(XT ) + IT is a

random variable with sample space RT /IT .

Theorem III.1. RΦ is achievable with linear coding over the finite rings R1,R2, · · · ,Rs. In exact terms, ∀ ǫ > 0,

there exists N0 ∈ N+, for all n > N0, there exist linear encoders (left linear mappings to be more precise)

φi : Φ(Xi)
n → R

ki

i (i ∈ S) and a decoder ψ, such that

Pr

{

ψ

(

∏

i∈S

φi (Xi)

)

6=
∏

i∈S

Xi

}

< ǫ,

where Xi =
[

Φ
(

X
(1)
i

)

,Φ
(

X
(2)
i

)

, · · · ,Φ
(

X
(n)
i

)]t

, as long as

[

k1 log |R1|

n
,
k2 log |R2|

n
, · · · ,

ks log |Rs|

n

]

∈ RΦ.

Proof: The proof is given in Section IV.

The following is a concrete example helping to interpret this theorem.

Example III.2. Consider the single source scenario, where X1 ∼ p and X1 = Z6, specified as follows.

X1 0 1 2 3 4 5

p(X1) 0.05 0.1 0.15 0.2 0.2 0.3

By Theorem III.1,

R = {R1 ∈ R|R1 > max{2.40869, 2.34486, 2.24686}}

= {R1 ∈ R|R1 > 2.40869 = H(X1)}

is achievable with linear coding over ring Z6. Obviously, R is just the SW region R[X1]. Optimality is claimed.
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Besides, we would like to point out that some of the inequalities defining (4) are not active for specific scenarios.

Two classes of these scenarios are discussed in the following theorems.

Theorem III.3. Suppose Ri (1 ≤ i ≤ s) is a (finite) product ring

ki
∏

l=1

Rl,i of finite rings Rl,i’s, and the sample

space Xi satisfies |Xi| ≤ |Rl,i| for all feasible i and l. Given injections Φl,i : Xi → Rl,i and let

Φ = [Φ1,Φ2, · · · ,Φs],

where Φi =

ki
∏

l=1

Φl,i is defined as

Φi : xi 7→ (Φ1,i(xi),Φ2,i(xi), · · · ,Φki,i(xi)) ∈ Ri, ∀ xi ∈ Xi.

We have that

RΦ,prod =

{

[R1, R2, · · · , Rs] ∈ Rs

∣

∣

∣

∣

∣

∑

i∈T

Ri log |Ii|

log |Ri|
> H(XT |YRT /IT

, XT c),

∀ ∅ 6= T ⊆ S, ∀ Ii =

ki
∏

l=1

Il,i with 0 6= Il,i ≤l Rl,i

}

, (5)

where YRT /IT
= Φ(XT ) + IT , is achievable with linear coding over R1,R2, · · · ,Rs. Moreover, RΦ ⊆ RΦ,prod.

Proof: The proof is found in Section IV.

Let R be a finite ring and

ML,R,m =















































a1 0 0

a2 a1 0

. . .

am am−1 a1

















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1, a2, · · · , am ∈ R































,

where m is a positive integer. It is easy to verify that ML,R,m is a ring with respect to matrix operations. Moreover,

I is a left ideal of ML,R,m if and only if

I =















































a1 0 0

a2 a1 0

. . .

am am−1 a1

















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

aj ∈ Ij ≤l R, ∀ 1 ≤ j ≤ m;

Ij ⊆ Ij+1, ∀ 1 ≤ j < m































.

Let O(ML,R,m) be the set of all left ideals of the form















































a1 0 0

a2 a1 0

. . .

am am−1 a1

















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

aj ∈ Ij ≤l R, ∀ 1 ≤ j ≤ m;

Ij ⊆ Ij+1, ∀ 1 ≤ j < m;

Ii = 0 for some 1 ≤ i ≤ m































.
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Theorem III.4. Let Ri (1 ≤ i ≤ s) be a finite ring such that |Xi| ≤ |Ri|. For any injections Φ′
i : Xi → Ri, let

Φ = [Φ1,Φ2, · · · ,Φs],

where Φi : Xi → ML,Ri,mi is defined as

Φi : xi 7→

















Φ′
i(xi) 0 0

Φ′
i(xi) Φ′

i(xi) 0

. . .

Φ′
i(xi) Φ′

i(xi) Φ′
i(xi)

















, ∀ xi ∈ Xi.

We have that

RΦ,m =

{

[R1, R2, · · · , Rs] ∈ Rs

∣

∣

∣

∣

∣

∑

i∈T

Ri log |Ii|

log |Ri|
> H(XT |YRT /IT

, XT c),

∀ ∅ 6= T ⊆ S, ∀ Ii ≤l ML,Ri,mi and Ii /∈ O(ML,Ri,mi)

}

, (6)

where YRT /IT
= Φ(XT ) + IT , is achievable with linear coding over ML,R1,m1 ,ML,R2,m2 , · · · ,ML,Rs,ms .

Moreover, RΦ ⊆ RΦ,m.

Proof: The proof is found in Section IV.

Remark 9. The difference between (4), (5) and (6) lies in their restrictions defining Ii’s, respectively, as highlighted

in the proofs given in Section IV.

Remark 10. Without much effort, one can see that RΦ (RΦ,prod and RΦ,m, resp.) in Theorem III.1 (Theorem III.3

and Theorem III.4, resp.) depends on Φ via random variables YRT /IT
’s whose distributions are determined by Φ.

For each i ∈ S, there exist
|Ri|!

(|Ri| − |Xi|)!
distinct injections from Xi to a ring Ri of order at least |Xi|. Let

cov(A) be the convex hull of a set A ⊆ Rs. By a straightforward time sharing argument, we have that

Rl = cov





⋃

Φ∈M (XS ,RS)

RΦ



 (7)

is achievable with linear coding over R1,R2, · · · ,Rs.

Remark 11. From Theorem V.1, one will see that (4) and (7) are the same when all the rings are fields. Actually,

both are identical to the SW region. However, (7) can be strictly larger than (4) (see Section V), when not all the

rings are fields. This implies that, in order to achieve the desired rate, a suitable injection is required. However, be

reminded that taking the convex hull in (7) is not always needed for optimality as shown in Example III.2. A more

sophisticated elaboration on this issue is found in Section V.

The rest of this section provides key supporting lemmata and concepts used to prove Theorem III.1, Theorem

III.3 and Theorem III.4. The final proofs are presented in Section IV.
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Lemma III.5. Let x,y ∈ Rn be two distinct sequences, where R is a finite ring, and assume that y − x =

(a1, a2, · · · , an)
t
. If f : Rn → Rk is a random linear mapping chosen uniformly at random, i.e. generate the k×n

coefficient matrix A of f by independently choosing each entry of A from R uniformly at random, then

Pr {f(x) = f(y)} = |I|−k, (8)

where I = 〈a1, a2, · · · , an〉l.

Proof: Let f = (f1, f2, · · · , fk)
t, where fi : R

n → R is a random linear function. Then

Pr{f(x) = f(y)} =Pr

{

k
⋂

i=1

{fi(x) = fi(y)}

}

=

k
∏

i=1

Pr {fi(x− y) = 0} ,

since the fi’s are independent from each other. The statement follows from Lemma II.11 which assure that

Pr {fi(x− y) = 0} = |I|−1.

Remark 12. In Lemma III.5, if R is a field and x 6= y, then I = R because every non-zero ai is a unit. Thus,

Pr {f(x) = f(y)} = |R|−k.

Definition III.6 (c.f. [15]). Let X ∼ pX be a discrete random variable with sample space X . The set Tǫ(n,X)

of strongly ǫ-typical sequences of length n with respect to X is defined to be

{

x ∈ X
n

∣

∣

∣

∣

∣

∣

∣

∣

N(x;x)

n
− pX(x)

∣

∣

∣

∣

≤ ǫ, ∀ x ∈ X

}

,

where N(x;x) is the number of occurrences of x in the sequence x.

The notation Tǫ(n,X) is sometimes replaced by Tǫ when the length n and the random variable X referred to

are clear from the context.

Now we conclude this section with the following lemma. It is a crucial part for our proofs of the achievability

theorems. It generalizes the classic conditional typicality lemma [16, Theorem 15.2.2], yet at the same time

distinguishes our argument from the one for the field version.

Lemma III.7. Let (X1, X2) ∼ p be a jointly random variable whose sample space is a finite ring R = R1 ×R2.

For any η > 0, there exists ǫ > 0, such that, ∀ (x1,x2)
t ∈ Tǫ(n, (X1, X2)) and ∀ I ≤l R1,

|Dǫ(x1, I|x2)| < 2n[H(X1|YR1/I,X2)+η], (9)

where

Dǫ(x1, I|x2) =
{

(y,x2)
t ∈ Tǫ

∣

∣y − x1 ∈ In
}

and YR1/I = X1 + I is a random variable with sample space R1/I.
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First Proof 3: Let R1/I = {a1 + I, a2 + I, · · · , am + I}, where m = |R1|/|I|. For arbitrary ǫ > 0 and

integer n, without loss of generality, assume that





x1

x2



 =





x1,1,x1,2, · · · ,x1,m

x2,1,x2,2, · · · ,x2,m



 =





x
(1)
1 , x

(2)
1 , · · · , x

(n)
1

x
(1)
2 , x

(2)
2 , · · · , x

(n)
2





and

zj =





x1,j

x2,j



 =





x
(
∑j−1

k=0 ck+1)
1 , x

(
∑j−1

k=0 ck+2)
1 , · · · , x

(
∑j

k=0 ck)
1

x
(
∑j−1

k=0 ck+1)
2 , x

(
∑j−1

k=0 ck+2)
2 , · · · , x

(
∑j

k=0 ck)
2



 ∈ (aj + I×R2)
cj ,

where c0 = 0 and cj =
∑

r∈aj+I×R2

N
(

r, (x1,x2)
t
)

, 1 ≤ j ≤ m. For any y =
[

y(1), y(2), · · · , y(n)
]

with

(y,x2)
t ∈ Dǫ(x1, I|x2), we have y(i) − x

(i)
1 ∈ I, ∀ 1 ≤ i ≤ n, by definition. Thus, y(i) and x

(i)
1 belong to the

same coset, i.e. y(
∑j−1

k=0 ck+1), y(
∑j−1

k=0 ck+2), · · · , y(
∑j

k=0 ck) ∈ aj + I, ∀ 1 ≤ j ≤ m. Furthermore, ∀ r ∈ R,

∣

∣N
(

r, (x1,x2)
t
)

/n− p(r)
∣

∣ ≤ ǫ and

∣

∣N
(

r, (y,x2)
t
)

/n− p(r)
∣

∣ ≤ ǫ

=⇒

∣

∣

∣

∣

N (r, (y,x2)
t)

n
−
N (r, (x1,x2)

t)

n

∣

∣

∣

∣

≤ 2ǫ,

since (x1,x2)
t, (y,x2)

t ∈ Tǫ. As a consequence,

z′j =





y(
∑j−1

k=0 ck+1), y(
∑j−1

k=0 ck+2), · · · , y(
∑j

k=0 ck)

x
(
∑j−1

k=0 ck+1)
2 , x

(
∑j−1

k=0 ck+2)
2 , · · · , x

(
∑j

k=0 ck)
2



 ∈ (aj + I×R2)
cj

is a strongly 2ǫ-typical sequence of length cj with respect to the random variable Zj ∼ pj = emp(zj) (the empirical

distribution of zj). The sample space of Zj is aj + I×R2. Therefore, the number of all possible z′j’s (namely, all

elements





w1

w2



 ∈ T2ǫ(cj , Zj) such that w2 = x2,j) is upper bounded by 2cj [H(pj)−H(pj,2)+2ǫ], where pj,2 is the

marginal of pj with respect to the second coordinate, by [15, Theorem 6.10]. Consequently,

|Dǫ(x1, I|x2)| ≤ 2
∑m

j=1 cj [H(pj)−H(pj,2)+2ǫ]. (10)

Direct computation yields

1

n

m
∑

j=1

cjH(pj) =
m
∑

j=1

cj
n

∑

r∈aj+I×R2

N (r, (x1,x2)
t)

cj
log

cj
N (r, (x1,x2)t)

=
∑

r∈R

N (r, (x1,x2)
t)

n
log

n

N (r, (x1,x2)t)
−

m
∑

j=1

cj
n

log
n

cj

3An alternative, second, proof was suggested by an anonymous reviewer for our paper [17], and is presented in Appendix C for completeness.
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and

1

n

m
∑

j=1

cjH(pj,2)

=

m
∑

j=1

cj
n

[

∑

r2∈R2

∑

r1∈aj+I
N ((r1, r2), (x1,x2)

t)

cj
× log

cj
∑

r1∈aj+I
N ((r1, r2), (x1,x2)t)

]

=

m
∑

j=1

∑

r2∈R2

∑

r1∈aj+I
N((r1, r2), (x1,x2)

t)

n
× log

n
∑

r1∈aj+I
N((r1, r2), (x1,x2)t)

−
m
∑

j=1

cj
n

log
n

cj
.

Since the entropy H is a continuous function, there exists some small 0 < ǫ < η/4, such that
∣

∣

∣

∣

∣

∑

r∈R

N (r, (x1,x2)
t)

n
log

n

N (r, (x1,x2)t)
−H(X1, X2)

∣

∣

∣

∣

∣

< η/8,

∣

∣

∣

∣

∣

∣

m
∑

j=1

cj
n

log
n

cj
−H(YR1/I)

∣

∣

∣

∣

∣

∣

< η/8 and

∣

∣

∣

∣

∣

m
∑

j=1

∑

r2∈R2

∑

r1∈aj+I
N((r1, r2), (x1,x2)

t)

n
× log

n
∑

r1∈aj+I
N((r1, r2), (x1,x2)t)

−H(X2, YR1/I)

∣

∣

∣

∣

∣

< η/8.

Therefore,

1

n

m
∑

j=1

cjH(pj) <H(X1, X2)−H(YR1/I) + η/4 (11)

1

n

m
∑

j=1

cjH(pj,2) >H(X2, YR1/I)−H(YR1/I)− η/4 (12)

where (11) and (12) are guaranteed for small 0 < ǫ < η/4. Substituting (11) and (12) into (10), (9) follows.

Remark 13. Assume that y − x = (a1, a2, · · · , an)
t, then y − x ∈ In is equivalent to 〈a1, a2, · · · , an〉l ⊆ I.

IV. PROOF OF THE ACHIEVABILITY THEOREMS

A. Proof of Theorem III.1

As mentioned, Xi can be seen as a subset of Ri for a fixed Φ = [Φ1, · · · ,Φs]. In this section, we assume that

Xi has sample space Ri, which makes sense since Φi is injective.

Let R = [R1, R2, · · · , Rs] and ki =

⌊

nRi

log |Ri|

⌋

, ∀ i ∈ S, where n is the length of the data sequences. If

R ∈ RΦ, then
∑

i∈T

Ri log |Ii|

log |Ri|
> r (T, IT ) , (this implies that

1

n

∑

i∈T

ki log |Ii| − r (T, IT ) > 2η for some small

constant η > 0 and large enough n), ∀ ∅ 6= T ⊆ S, ∀ 0 6= Ii ≤l Ri. We claim that R is achievable by linear coding

over R1,R2, · · · ,Rs.

Encoding:

For every i ∈ S, randomly generate a ki×n matrix Ai based on a uniform distribution, i.e. independently choose

each entry of Ai uniformly at random from Ri. Define a linear encoder φi : R
n
i → R

ki

i such that

φi : x 7→ Aix, ∀ x ∈ Rn
i .
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Obviously the coding rate of this encoder is
1

n
log |φi(R

n
i )| ≤

1

n
log |Ri|

ki =
log |Ri|

n

⌊

nRi

log |Ri|

⌋

≤ Ri.

Decoding:

Subject to observing yi ∈ R
ki

i (i ∈ S) from the ith encoder, the decoder claims that x = [x1,x2, · · · ,xs]
t ∈

s
∏

i=1

Rn
i is the array of the encoded data sequences, if and only if:

1) x ∈ Tǫ; and

2) ∀ x′ = [x′
1,x

′
2, · · · ,x

′
s]

t
∈ Tǫ, if x′ 6= x, then φj(x

′
j) 6= yj , for some j.

Error:

Assume that Xi ∈ Rn
i (i ∈ S) is the original data sequence generated by the ith source. It is readily seen that

an error occurs if and only if one of the following events occurs:

E1: X = [X1,X2, · · · ,Xs]
t
/∈ Tǫ;

E2: There exists X 6= [x′
1,x

′
2, · · · ,x

′
s]

t
∈ Tǫ, such that φi(x

′
i) = φi(Xi), ∀ i ∈ S.

Error Probability:

By the joint asymptotic equipartition principle (AEP) [15, Theorem 6.9], Pr {E1} → 0, n→ ∞.

Additionally, for ∅ 6= T ⊆ S, let

Dǫ(X;T ) =
{

[x′
1,x

′
2, · · · ,x

′
s]

t
∈ Tǫ

∣

∣x′
i 6= Xi if and only if i ∈ T

}

.

We have

Dǫ(X;T ) =
⋃

06=I≤lRT

[Dǫ(XT , I|XT c) \ {X}] , (13)

where XT =
∏

i∈T

Xi and XT c =
∏

i∈T c

Xi, since I goes over all possible non-trivial left ideals. Consequently,

Pr {E2|E
c
1} =

∑

[x′
1,··· ,x

′
s]

t
∈Tǫ\{X}

∏

i∈S

Pr {φi(x
′
i) = φi(Xi)|E

c
1}

=
∑

∅6=T⊆S

∑

[x′
1,··· ,x

′
s]

t

∈Dǫ(X;T )

∏

i∈T

Pr {φi(x
′
i) = φi(Xi)|E

c
1} (14)

≤
∑

∅6=T⊆S

∑

06=I≤lRT

∑

[x′
1,··· ,x

′
s]

t

∈Dǫ(XT ,I|XTc )\{X}

∏

i∈T

Pr {φi(x
′
i) = φi(Xi)|E

c
1} (15)

<
∑

∅6=T⊆S

∑

06=
∏

i∈T Ii

≤lRT

(

2n[r(T,I)+η] − 1
)

∏

i∈T

|Ii|
−ki (16)

< (2s − 1)
(

2|RS | − 2
)

× max
∅6=T∈S,

06=
∏

i∈T Ii≤lRT

2−n[ 1
n

∑

i∈T ki log |Ii|−[r(T,I)+η]], (17)

where

(14) is from the fact that Tǫ \ {X} =
∐

∅6=T⊆S

Dǫ(X;T ) (disjoint union);

(15) follows from (13) by the union bound (Boole’s inequality);
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(16) is from Lemma III.5 and Lemma III.7, as well as the fact that every left ideal of RT is a Cartesian product

of some left ideals Ii of Ri, i ∈ T (see Proposition II.9). At the same time, ǫ is required to be sufficiently

small;

(17) is due to the facts that the number of non-empty subsets of S is 2s − 1 and the number of non-trivial left

ideals of the finite ring RT is less than 2|RS |− 1, which is the number of non-empty subsets of RS (⊇ RT ).

Thus, Pr {E2|E
c
1} → 0, when n → ∞, from (17), since for sufficiently large n and small ǫ,

1

n

∑

i∈T

ki log |Ii| −

[r (T, I) + η] > η > 0.

Therefore, Pr {E1 ∪ E2} = Pr {E1}+ Pr {E2|E
c
1} → 0 as ǫ→ 0 and n→ ∞.

B. Proof of Theorem III.3

The proof follows almost the same steps as in proving Theorem III.1, except that the performance analysis only

focuses on sequences (ai,1, ai,2, · · · , ai,n) ∈ Rn
i (1 ≤ i ≤ s) such that

ai,j =
(

Φ1,i

(

x
(j)
i

)

,Φ2,i

(

x
(j)
i

)

, · · · ,Φki,i

(

x
(j)
i

))

∈
ki
∏

l=1

Rl,i

for some x
(j)
i ∈ Xi. Let Xi,Yi be any two such sequences satisfying Xi −Yi ∈ Ini for some Ii ≤l Ri. Based

on the special structure of Xi and Yi, it is easy to verify that Ii 6= 0 ⇔ Ii =

ki
∏

l=1

Il,i and 0 6= Il,i ≤l Rl,i, for all

1 ≤ l ≤ ki. (This causes the difference between (4) and (5).) In addition, it is obvious that RΦ ⊆ RΦ,prod by their

definitions.

C. Proof of Theorem III.4

The proof is similar to that for Theorem III.1, except that it only focuses on sequences (ai,1, ai,2, · · · , ai,n) ∈

Mn
L,Ri,mi

(1 ≤ i ≤ s) such that ai,j ∈ ML,Ri,mi satisfies [ai,j ]u,v =











a, u ≤ v;

0, otherwise,

for some a ∈ Ri. Let

Xi,Yi be any two such sequences such that Xi −Yi ∈ Ini for some Ii ≤l ML,Ri,mi . It is easily seen that Ii 6= 0

if and only if Ii /∈ O(ML,Ri,mi). (This causes the difference between (4) and (6).) In addition, it is obvious that

RΦ ⊆ RΦ,m by their definitions.

V. OPTIMALITY

Obviously, Theorem III.1 specializes to its field counterpart if all rings considered are fields, as summarized in

the following theorem.

Theorem V.1. Region (4) is the SW region if Ri contains no proper non-trivial left ideal, equivalently4, Ri is a

field, for all i ∈ S. As a consequence, region (7) is the SW region.

4Equivalency does not necessarily hold for rngs.
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Proof: In Theorem III.1, random variable YRT /IT
admits a sample space of cardinality 1 for all ∅ 6= T ⊆ S,

since the only non-trivial left ideal of Ri is itself for all feasible i. Thus, 0 = H(YRT /IT
) ≥ H(YRT /IT

|XT c) ≥ 0.

Consequently,

RΦ =
{

[R1, R2, · · · , Rs] ∈ Rs
∣

∣

∣

∑

i∈T

Ri > H(XT |XT c), ∀ ∅ 6= T ⊆ S
}

,

which is the SW region R[X1, X2, · · · , Xs]. Therefore, region (7) is also the SW region.

If Ri is a field, then obviously it has no proper non-trivial left (right) ideal. Conversely, ∀ 0 6= a ∈ Ri,

〈a〉l = Ri implies that ∃ 0 6= b ∈ Ri, such that ba = 1. Similarly, ∃ 0 6= c ∈ Ri, such that cb = 1. Moreover,

c = c · 1 = cba = 1 · a = a. Hence, ab = cb = 1. b is the inverse of a. By Wedderburn’s little theorem, Ri is a

field.

One important question to address is whether linear coding over finite non-field rings can be equally optimal

for data compression. Hereby, we claim that, for any SW scenario, there always exist linear encoders over some

finite non-field rings which achieve the data compression limit. Therefore, optimality of linear coding over finite

non-field rings for data compression is established in the sense of existence.

A. Existence Theorem I: Single Source

For any single source scenario, the assertion that there always exists a finite ring R1, such that Rl is in fact the

SW region

R[X1] = {R1 ∈ R|R1 > H(X1)},

is equivalent to the existence of a finite ring R1 and an injection Φ1 : X1 → R1, such that

max
06=I1≤lR1

log |R1|

log |I1|

[

H(X1)−H(YR1/I1
)
]

= H(X1), (18)

where YR1/I1
= Φ1 (X1) + I1.

Theorem V.2. Let R1 be a finite ring of order |R1| ≥ |X1|. If R1 contains one and only one proper non-

trivial left ideal I0 and |I0| =
√

|R1|, then region (7) coincides with the SW region, i.e. there exists an injection

Φ1 : X1 → R1, such that (18) holds.

Remark 14. Examples of such a non-field ring R1 in the above theorem include

ML,p =











x 0

y x





∣

∣

∣

∣

∣

∣

x, y ∈ Zp







(ML,p is a ring with respect to matrix addition and multiplication) and Zp2 , where p is any prime. For any single

source scenario, one can always choose R1 to be either ML,p or Zp2 . Consequently, optimality is attained.

Proof of Theorem V.2: Notice that the random variable YR1/I0
depends on the injection Φ1, so does its entropy

H(YR1/I0
). Obviously H(YR1/R1

) = 0, since the sample space of the random variable YR1/R1
contains only one
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element. Therefore,
log |R1|

log |R1|

[

H(X1)−H(YR1/R1
)
]

= H(X1).

Consequently, (18) is equivalent to

log |R1|

log |I0|

[

H(X1)−H(YR1/I0
)
]

≤ H(X1)

⇔H(X1) ≤ 2H(YR1/I0
), (19)

since |I0| =
√

|R1|. By Lemma A.1, there exists injection Φ̃1 : X1 → R1 such that (19) holds if Φ1 = Φ̃1. The

statement follows.

Up to isomorphism, there are exactly 4 distinct rings of order p2 for a given prime p. They include 3 non-field

rings, Zp × Zp, ML,p and Zp2 , in addition to the field Fp2 . It has been proved that, using linear encoders over the

last three, optimality can always be achieved in the single source scenario. Actually, the same holds true for all

multiple sources scenarios.

B. Existence Theorem II: Multiple Sources

Theorem V.3. Let R1,R2, · · · ,Rs be s finite rings with |Ri| ≥ |Xi|. If Ri is isomorphic to either

1) a field, i.e. Ri contains no proper non-trivial left (right) ideal; or

2) a ring containing one and only one proper non-trivial left ideal I0i and |I0i| =
√

|Ri|,

for all feasible i, then (7) coincides with the SW region R[X1, X2, · · · , Xs].

Remark 15. It is obvious that Theorem V.3 includes Theorem V.2 as a special case. In fact, its proof resembles

the one of Theorem V.2. Examples of Ri’s include all finite fields, ML,p and Zp2 , where p is a prime. However,

Theorem V.3 does not guarantee that all rates, except the vertexes, in the polytope of the SW region are “directly”

achievable for the multiple sources case. A time sharing scheme is required in our current proof. Nevertheless, all

rates are “directly” achievable if Ri’s are fields or if s = 1. This is partially the reason that the two theorems are

stated separately.

Remark 16. Theorem V.3 also includes Theorem V.1 as a special case. However, Theorem V.1 admits a simpler

proof compared to the one for Theorem V.3.

Proof of Theorem V.3: It suffices to prove that, for any R = [R1, R2, · · · , Rs] ∈ Rs satisfies

Ri > H(Xi|Xi−1, Xi−2, · · · , X1), ∀ 1 ≤ i ≤ s,

R ∈ RΦ for some set of injections Φ = [Φ1,Φ2, · · · ,Φs], where Φi : Xi → Ri. Let Φ̃ = [Φ̃1, Φ̃2, · · · , Φ̃s] be the

set of injections, where, if

(i) Ri is a field, Φ̃i is any injection;

(ii) Ri satisfies 2), Φ̃i is the injection such that

H(Xi|Xi−1, Xi−2, · · · , X1) ≤2H(YRi/I0i
|Xi−1, Xi−2, · · · , X1),
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when Φi = Φ̃i. The existence of Φ̃i is guaranteed by Lemma A.1.

If Φ = Φ̃, then

log |Ii|

log |Ri|
H(Xi|Xi−1, Xi−2, · · · , X1) ≥H(Xi|Xi−1, Xi−2, · · · , X1)−H(YRi/Ii

|Xi−1, Xi−2, · · · , X1)

=H(Xi|YRi/Ii
, Xi−1, Xi−2, · · · , X1),

for all 1 ≤ i ≤ s and 0 6= Ii ≤l Ri. As a consequence,

∑

i∈T

Ri log |Ii|

log |Ri|
>
∑

i∈T

log |Ii|

log |Ri|
H(Xi|Xi−1, Xi−2, · · · , X1)

≥
∑

i∈T

[

H(Xi|YRi/Ii
, Xi−1, Xi−2, · · · , X1)

]

≥
∑

i∈T

[

H(Xi|YRT /IT
, XT c , Xi−1, Xi−2, · · · , X1)

]

≥H
(

XT

∣

∣YRT /IT
, XT c

)

=H (XT |XT c)−H
(

YRT /IT
|XT c

)

,

for all ∅ 6= T ⊆ {1, 2, · · · , s}. Thus, R ∈ RΦ̃.

By Theorem V.1, Theorem V.2 and Theorem V.3, we draw the conclusion that

Corollary V.4. For any SW scenario, there always exists a sequence of linear encoders over some finite rings

(fields or non-field rings) which achieves the data compression limit, the SW region.

In fact, LCoR can be optimal even for rings beyond those stated in the above theorems (see Example III.2). We

classify some of these scenarios in the remaining parts of this section.

C. Product Rings

Theorem V.5. Let Rl,1,Rl,2, · · · ,Rl,s (l = 1, 2) be a set of finite rings of equal size, and Ri = R1,i ×R2,i for

all feasible i. If the coding rate R ∈ Rs is achievable with linear encoders over Rl,1,Rl,2, · · · ,Rl,s (l = 1, 2),

then R is achievable with linear encoders over R1,R2, · · · ,Rs.

Proof: By definition, R is a convex combination of coding rates which are achieved by different linear encoding

schemes over Rl,1,Rl,2, · · · ,Rl,s (l = 1, 2), respectively. To be more precise, there exist R1,R2, · · · ,Rm ∈ Rs

and positive numbers w1, w2, · · · , wm with

m
∑

j=1

wj = 1, such that R =

m
∑

j=1

wjRj . Moreover, there exist injections

Φl = [Φl,1,Φl,2, · · · ,Φl,s] (l = 1, 2), where Φl,i : Xi → Rl,i, such that

Rj ∈ RΦl
=

{

[R1, R2, · · · , Rs] ∈ Rs

∣

∣

∣

∣

∑

i∈T

Ri log |Il,i|

log |Rl,i|
> H(XT |XT c)−H(YRl,T /Il,T

|XT c),

∀ ∅ 6= T ⊆ S, ∀ 0 6= Il,i ≤l Rl,i

}

, (20)
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where Rl,T =
∏

i∈T

Rl,i, Il,T =
∏

i∈T

Il,i and YRl,T /Il,T
= Φl(XT ) + Il,T is a random variable with sample space

Rl,T /Il,T . To show that R is achievable with linear encoders over R1,R2, · · · ,Rs, it suffices to prove that Rj

is achievable with linear encoders over R1,R2, · · · ,Rs for all feasible j. Let Rj = [Rj,1, Rj,2, · · · , Rj,s]. For all

∅ 6= T ⊆ S and 0 6= Ii = I1,i × I2,i ≤l Ri with 0 6= Il,i ≤l Rl,i (l = 1, 2), we have

∑

i∈T

Rj,i log |Ii|

log |Ri|
=
∑

i∈T

Rj,i log |I1,i|

log |R1,i|

c1
c1 + c2

+
∑

i∈T

Rj,i log |I2,i|

log |R2,i|

c2
c1 + c2

,

where cl = log |Rl,1|. By (20), it can be easily seen that

∑

i∈T

Rj,i log |Ii|

log |Ri|
>H(XT |XT c)−

1

c1 + c2

2
∑

l=1

clH(YRl,T /Il,T
|XT c).

Meanwhile, let RT =
∏

i∈T

Ri, IT =
∏

i∈T

Ii, Φ = [Φ1,1 × Φ2,1,Φ1,2 × Φ2,2, · · · ,Φ1,s × Φ2,s] (Note:

Φ1,i × Φ2,i : xi 7→ (Φ1,i(xi),Φ2,i(xi)) ∈ Ri

for all xi ∈ Xi.) and YRT /IT
= Φ(XT )+IT . It can be verified that YRl,T /Il,T

(l = 1, 2) is a function of YRT /IT
,

hence, H(YRT /IT
|XT c) ≥ H(YRl,T /Il,T

|XT c). Consequently,

∑

i∈T

Rj,i log |Ii|

log |Ri|
> H(XT |XT c)−H(YRT /IT

|XT c),

which implies that Rj ∈ RΦ,prod by Theorem III.3. We therefore conclude that Rj is achievable with linear encoders

over R1,R2, · · · ,Rs for all feasible j, so is R.

Obviously, R1,R2, · · · ,Rs in Theorem V.5 are of the same size. Inductively, one can verify the following without

any difficulty.

Theorem V.6. Let L be any finite index set, Rl,1,Rl,2, · · · ,Rl,s (l ∈ L ) be a set of finite rings of equal

size, and Ri =
∏

l∈L

Rl,i for all feasible i. If the coding rate R ∈ Rs is achievable with linear encoders over

Rl,1,Rl,2, · · · ,Rl,s (l ∈ L ), then R is achievable with linear encoders over R1,R2, · · · ,Rs.

Remark 17. There are delicate issues to the situation Theorem V.6 (Theorem V.5) illustrates. Let Xi (1 ≤ i ≤ s)

be the set of all symbols generated by the ith source. The hypothesis of Theorem V.6 (Theorem V.5) implicitly

implies the alphabet constraint |Xi| ≤ |Rl,i| for all feasible i and l.

Let R1,R2, · · · ,Rs be s finite rings each of which is isomorphic to either

1) a ring R containing one and only one proper non-trivial left ideal whose order is
√

|R|, e.g. ML,p and Zp2

(p is a prime); or

2) a ring of a finite product of finite field(s) and/or ring(s) satisfying 1), e.g. ML,p ×
m
∏

j=1

Zpj (p and pj’s are

prime) and

m′
∏

i=1

ML,pi ×
m′′
∏

j=1

Fqj (m′ and m′′ are non-negative, pi’s are prime and qj’s are power of primes).

Theorem V.3 and Theorem V.6 ensure that linear encoders over ring R1,R2, · · · ,Rs are always optimal in any

applicable (subject to the condition specified in the corresponding theorem) SW coding scenario. As a very special
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case, Zp×Zp, where p is a prime, is always optimal in any (single source or multiple sources) scenario with alphabet

size less than or equal to p. However, using a field or product rings is not necessary. As shown in Theorem V.2,

neither ML,p nor Zp2 is (isomorphic to) a product of rings nor a field. It is also not required to have a restriction

on the alphabet size (see Theorem V.3), even for product rings (see Example III.2 for a case of Z2 × Z3).

D. Trivial Case: Uniform Distributions

The following theorem is trivial, however we include it for completeness.

Theorem V.7. Regardless which set of rings R1,R2, · · · ,Rs is chosen, as long as |Ri| = |Xi| for all feasible i,

region (4) is the SW region if (X1, X2, · · · , Xs) ∼ p is a uniform distribution.

Proof: If p is uniform, then, for any ∅ 6= T ⊆ S and 0 6= IT ≤l RT , YRT /IT
is uniformly distributed on

RT /IT . Moreover, XT and XT c are independent, so are YRT /IT
and XT c . Therefore, H(XT |XT c) = H(XT ) =

log |RT | and H(YRT /IT
|XT c) = H(YRT /IT

) = log
|RT |

|IT |
. Consequently,

r(T, IT ) = H(XT |XT c)−H(YRT /IT
|XT c) = log |IT |.

Region (4) is the SW region.

Remark 18. When p is uniform, it is obvious that the uncoded strategy (all encoders are one-to-one mappings)

is optimal in the SW source coding problem. However, optimality stated in Theorem V.7 does not come from

deliberately fixing the linear encoding mappings, but generating them randomly.

So far, we have only shown that there exist linear encoders over finite non-field rings that are equally good as

their field counterparts. In next section, Problem 1 is considered with an arbitrary g. It will be demonstrated that

linear coding over finite non-field rings can strictly outperform its field counterpart for encoding some discrete

functions, and there are infinitely many such functions.

VI. APPLICATION: SOURCE CODING FOR COMPUTING

The problem of Source Coding for Computing, Problem 1, with an arbitrary g is addressed in this section. Some

advantages of LCoR (compared to LCoF) will be demonstrated. We begin with establishing the following theorem

which can be recognized as a generalization of Körner–Marton [3].

Theorem VI.1. Let R be a finite ring, and

ĝ = h ◦ k, where k(x1, x2, · · · , xs) =
s
∑

i=1

ki(xi) (21)

and h, ki’s are functions mapping R to R. Then

Rĝ =
{

(r, r, · · · , r) ∈ Rs
∣

∣

∣r > max
06=I≤lR

log |R|

log |I|

[

H(X)−H(YR/I)
]

}

⊆ R[ĝ], (22)

where X = k(X1, X2, · · · , Xs) and YR/I = X + I.
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Proof: By Theorem III.1, ∀ ǫ > 0, there exists a large enough n, an m× n matrix A ∈ Rm×n and a decoder

ψ, such that Pr {Xn 6= ψ (AXn)} < ǫ, if m > max
06=I≤lR

n(H(X)−H(YR/I))

log |I|
. Let φi = A ◦ ~ki (1 ≤ i ≤ s) be

the encoder of the ith source. Upon receiving φi(X
n
i ) from the ith source, the decoder claims that ~h

(

X̂n
)

, where

X̂n = ψ

[

s
∑

i=1

φi (X
n
i )

]

, is the function, namely ĝ, subject to computation. The probability of decoding error is

Pr
{

~h
[

~k (Xn
1 , X

n
2 , · · · , X

n
s )
]

6= ~h
(

X̂n
)}

≤Pr
{

Xn 6= X̂n
}

=Pr

{

Xn 6= ψ

[

s
∑

i=1

φi (X
n
i )

]}

=Pr

{

Xn 6= ψ

[

s
∑

i=1

A~ki (X
n
i )

]}

=Pr

{

Xn 6= ψ

[

A

s
∑

i=1

~ki (X
n
i )

]}

=Pr
{

Xn 6= ψ
[

A~k (Xn
1 , X

n
2 , · · · , X

n
s )
]}

=Pr {Xn 6= ψ (AXn)} < ǫ.

Therefore, all (r, r, · · · , r) ∈ Rs, where r =
m log |R|

n
> max

06=I≤lR

log |R|

log |I|

[

H(X)−H(YR/I)
]

, is achievable, i.e.

Rĝ ⊆ R[ĝ].

Corollary VI.2. In Theorem VI.1, let X = k(X1, X2, · · · , Xs) ∼ pX . We have

Rĝ = { (r, r, · · · , r) ∈ Rs| r > H(X)} ⊆ R[ĝ],

if either of the following conditions holds:

1) R is isomorphic to a finite field;

2) R is isomorphic to a ring containing one and only one proper non-trivial left ideal I0 with |I0| =
√

|R|,

and

H(X) ≤ 2H(X + I0).

Proof: If either 1) or 2) holds, then it is guaranteed that

max
06=I≤lR

log |R|

log |I|

[

H(X)−H(YR/I)
]

= H(X)

in Theorem VI.1. The statement follows.

Remark 19. By Lemma A.2, examples of non-field rings satisfying 2) in Corollary VI.2 includes

(1) Z4 with pX(0) = p1, pX(1) = p2, pX(3) = p3 and pX(2) = p4 satisfying

0 ≤ max{p2, p3} 6< min{p1, p4} ≤ 1 and 0 ≤ max{p1, p4} 6< min{p2, p3} ≤ 1, (23)
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(2) ML,2 with

pX









0 0

0 0







 = p1, pX









1 0

0 1







 = p2, pX









1 0

1 1







 = p3 and pX









0 0

1 0







 = p4

satisfying (23) and etc.

Interested readers can figure out even more explicit examples deduced from Lemma A.1.

Remark 20. If R is isomorphic to Z2 and ĝ is the modulo-two sum, then Corollary VI.2 recovers the theorem of

Körner–Marton [3]. While if R is (isomorphic to) a field, it becomes a special case of [7, Theorem III.1]. Actually,

almost all the results in [6] and [7] can be reproved in the setting of rings in a parallel fashion.

We claim that there are functions g for which LCoR outperforms LCoF; in fact, there are infinite many such g’s.

To prove this, some definitions are required for the mechanics of our argument.

Definition VI.3. Let g1 :

s
∏

i=1

Xi → Ω1 and g2 :

s
∏

i=1

Yi → Ω2 be two functions. If there exist bijections µi : Xi →

Yi, ∀ 1 ≤ i ≤ s, and ν : Ω1 → Ω2, such that

g1(x1, x2, · · · , xs) = ν−1(g2(µ1(x1), µ2(x2), · · · , µs(xs))),

then g1 and g2 are said to be equivalent (via µ1, µ2, · · · , µs and ν).

Definition VI.4. Given function g : D → Ω, and let ∅ 6= S ⊆ D . The restriction of g on S is defined to be the

function g|S : S → Ω such that g|S : x 7→ g(x), ∀ x ∈ S .

Lemma VI.5. For any discrete function g :

k
∏

i=1

Xi → Ω with Xi’s and Ω being finite, there always exist a finite

ring (field) and a polynomial function ĝ ∈ R[k] such that

ν (g (x1, x2, · · · , xk)) = ĝ (µ1(x1), µ2(x2), · · · , µk(xk))

for some injections µi : Xi → R (1 ≤ i ≤ k) and ν : Ω → R.

Proof: There are several possible proofs of this lemma. One is provided in appendix B.

Remark 21. Up to equivalence, a function can be presented in many different formats. For example, the function

min{x, y} defined on {0, 1}×{0, 1} (with ordering 0 ≤ 1) can either be seen as F1(x, y) = xy on Z2
2 or be treated

as the restriction of F2(x, y) = x+ y − (x+ y)2 defined on Z2
3 to the domain {0, 1} × {0, 1} ( Z2

3.

Lemma VI.5 implies that any discrete function defined on a finite domain is equivalent to a restriction of some

polynomial function over some finite ring (field). As a consequence, we can restrict Problem 1 to all polynomial

functions. This polynomial approach offers valuable insight into the general problem, because the algebraic structure

of a polynomial function is clearer than that of an arbitrary function. We often call ĝ in Lemma VI.5 a polynomial

presentation of g. On the other hand, the ĝ given by (21) is named a nomographic function over R (by terminology

borrowed from [18]), it is said to be a nomographic presentation of g if g is equivalent to a restriction of it.
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Lemma VI.6. Let X1,X2, · · · ,Xs and Ω be some finite sets. For any discrete function g :

s
∏

i=1

Xi → Ω, there

exists a nomographic function ĝ over some finite ring (field) R such that

ν (g (x1, x2, · · · , xk)) = ĝ (µ1(x1), µ2(x2), · · · , µk(xk))

for some injections µi : Xi → R (1 ≤ i ≤ k) and ν : Ω → R.

Proof: There are several proofs of this lemma. One is provided in appendix B.

Lemma VI.6 advances Lemma VI.5 by claiming that a discrete function with a finite domain is always equivalent

to a restriction of some nomographic function. From this, it is seen that Theorem VI.1 and Corollary VI.2 have

presented a universal solution to Problem 1.

Given some finite ring R, let ĝ of format (21) be a nomographic presentation of g. We say that the region Rĝ

given by (22) is achievable for computing g in the sense of Körner–Marton. From Theorem VI.11 given later,

we know that Rĝ might not be the largest achievable region one can obtain for computing g. However, Rĝ still

captures the ability of linear coding over R when used for computing g. In other words, Rĝ is the region purely

achieved with linear coding over R for computing g. On the other hand, regions from Theorem VI.11 are achieved

by combining the linear coding and the standard random coding techniques. Therefore, it is reasonable to compare

LCoR with LCoF in the sense of Körner–Marton.

We show that linear coding over finite rings, non-field rings in particular, strictly outperforms its field counterpart,

LCoF, in the following example.

Example VI.7 ([19]). Let g : {α0, α1}
3 → {β0, β1, β2, β3} (Fig 1) be a function such that

g : (α0, α0, α0) 7→ β0; g : (α0, α0, α1) 7→ β3;

g : (α0, α1, α0) 7→ β2; g : (α0, α1, α1) 7→ β1;

g : (α1, α0, α0) 7→ β1; g : (α1, α0, α1) 7→ β0;

g : (α1, α1, α0) 7→ β3; g : (α1, α1, α1) 7→ β2.

(24)

Define µ : {α0, α1} → Z4 and ν : {β0, β1, β2, β3} → Z4 by

µ : αj 7→ j, ∀ j ∈ {0, 1}, and

ν : βj 7→ j, ∀ j ∈ {0, 1, 2, 3},
(25)

respectively. Obviously, g is equivalent to x+ 2y+ 3z ∈ Z4[3] (Fig 2) via µ1 = µ2 = µ3 = µ and ν. However, by

Proposition VI.8, there exists no ĝ ∈ F4[3] of format (21) so that g is equivalent to any restriction of ĝ. Although,

Lemma VI.6 ensures that there always exists a bigger field Fq such that g admits a presentation ĝ ∈ Fq[3] of format

(21), the size q must be strictly bigger than 4. For instance, let

ĥ(x) =
∑

a∈Z5

a
[

1− (x− a)4
]

−
[

1− (x− 4)4
]

∈ Z5[1].
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β2

β1 β0

β3

β0

β1

x

β2

y

β3

z

2

1 0

3

0

1

x

2

y

3

z

2

1 0

3 = ĥ(4)

0

1

x

2

y

3

z

Fig 1: g : {α0, α1}
3 → {β0, β1, β2, β3} Fig 2: x+ 2y + 3z ∈ Z4[3] Fig 3: ĥ(x+ 2y + 4z) ∈ Z5[3]

Then, g has presentation ĥ(x + 2y + 4z) ∈ Z5[3] (Fig 3) via µ1 = µ2 = µ3 = µ : {α0, α1} → Z5 and

ν : {β0, β1, β2, β3} → Z5 defined (symbolic-wise) by (25).

Proposition VI.8. There exists no polynomial function ĝ ∈ F4[3] of format (21), such that a restriction of ĝ is

equivalent to the function g defined by (24).

Proof: Suppose ν ◦ g = ĝ ◦ (µ1, µ2, µ3), where µ1, µ1, µ3 : {α0, α1} → F4, ν : {β0, · · · , β3} → F4 are

injections, and ĝ = h◦ (k1+k2+k3) with h, ki ∈ F4[1] for all feasible i. We claim that ĝ and h are both surjective,

since
∣

∣g
(

{α0, α1}
3
)∣

∣ = |{β0, β1, β2, β3}| = 4 = |F4| . In particular, h is bijective. Therefore, h−1 ◦ ν ◦ g =

k1 ◦ µ1 + k2 ◦ µ2 + k3 ◦ µ3, i.e. g admits a presentation k1(x) + k2(y) + k3(z) ∈ F4[3]. A contradiction to Lemma

A.3.

As a consequence of Proposition VI.8, in the sense of Körner–Marton, in order to use LCoF to encode function

g, the alphabet sizes of the three encoders need to be at least 5. However, LCoR offers a solution in which the

alphabet sizes are 4, strictly smaller than using LCoF. Most importantly, the region achieved with linear coding

over any finite field Fq, is always a subset of the one achieved with linear coding over Z4. This is proved in the

following proposition.

Proposition VI.9. Let g be the function defined by (24), {α0, α1}
3 be the sample space of (X1, X2, X3) ∼ p and

pX be the distribution of X = g(X1, X2, X3). If

pX(β0) = p1, pX(β1) = p2, pX(β3) = p3 and pX(β2) = p4

satisfying (23), then, in the sense of Körner–Marton, the region R1 achieved with linear coding over Z4 contains

the one, that is R2, obtained with linear coding over any finite field Fq for computing g. Moreover, if supp(p) is

the whole domain of g, then R1 ) R2.

Proof: Let ĝ = h ◦ k ∈ Fq[3] be a polynomial presentation of g with format (21). By Corollary VI.2 and
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(X1, X2, X3) p (X1, X2, X3) p

(α0, α0, α0) 1/90 (α0, α1, α0) 1/90

(α1, α0, α1) 1/90 (α1, α1, α1) 1/90

(α1, α0, α0) 42/90 (α0, α0, α1) 1/90

(α0, α1, α1) 42/90 (α1, α1, α0) 1/90

Table 1

Remark 19, we have

R1 =
{

(R1, R2, R3) ∈ R3
∣

∣Ri > H(X1 + 2X2 + 3X3)
}

,

R2 =
{

(R1, R2, R3) ∈ R3
∣

∣Ri > H(k(X1, X2, X3))
}

.

Assume that ν ◦ g = h ◦ k ◦ (µ1, µ2, µ3), where µ1, µ1, µ3 : {α0, α1} → Fq and ν : {β0, · · · , β3} → Fq are

injections. Obviously, g(X1, X2, X3) is a function of k(X1, X2, X3). Hence,

H(k(X1, X2, X3)) ≥ H(g(X1, X2, X3)). (26)

On the other hand, H(X1 + 2X2 + 3X3) = H(g(X1, X2, X3)). Therefore,

H(k(X1, X2, X3)) ≥ H(X1 + 2X2 + 3X3), (27)

and R1 ⊇ R2. In addition, we claim that h|S , where S = k

(

3
∏

j=1

µj{α0, α1}

)

, is not injective. Otherwise,

h : S → S
′, where S

′ = h(S ), is bijective, hence, (h|S ′)
−1◦ν◦g = k◦(µ1, µ2, µ3) = k1◦µ1+k2◦µ2+k3◦µ3.

A contradiction to Lemma A.3. Consequently, |S | > |S ′| = |ν ({β0, · · · , β3})| = 4. If supp(p) = {α0, α1}
3, then

(26) as well as (27) hold strictly, thus, R1 ) R2.

A more intuitive comparison (which is not as conclusive as Proposition VI.9) can be identified from the

presentations of g given in Fig 2 and Fig 3. According to Corollary VI.2, linear encoders over field Z5 achieve

RZ5 =
{

(R1, R2, R3) ∈ R3
∣

∣Ri > H(X1 + 2X2 + 4X3)
}

.

The one achieved by linear encoders over ring Z4 is

RZ4 =
{

(R1, R2, R3) ∈ R3
∣

∣Ri > H(X1 + 2X2 + 3X3)
}

.

Clearly, H(X1 + 2X2 + 3X3) ≤ H(X1 + 2X2 + 4X3), thus, RZ4 contains RZ5 . Furthermore, as long as

0 < Pr (α0, α0, α1) ,Pr (α1, α1, α0) < 1,

RZ4 is strictly larger than RZ5 , since H(X1 + 2X2 + 3X3) < H(X1 + 2X2 + 4X3). To be specific, assume that

(X1, X2, X3) ∼ p satisfies Table 1, we have

R[X1, X2, X3] (RZ5 =
{

(R1, R2, R3) ∈ R3
∣

∣Ri > 0.4812
}

(RZ4 =
{

(R1, R2, R3) ∈ R3
∣

∣Ri > 0.4590
}

.
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Based on Proposition VI.8 and Proposition VI.9, we conclude that LCoR dominates LCoF, in terms of achieving

better coding rates with smaller alphabet sizes of the encoders for computing g. As a direct conclusion, we have:

Theorem VI.10. In the sense of Körner–Marton, LCoF is not optimal.

Remark 22. The key property underlying the proof of Proposition VI.9 is that the characteristic of a finite field must

be a prime while the characteristic of a finite ring can be any positive integer larger than or equal to 2. This implies

that it is possible to construct infinitely many discrete functions for which using LCoF always leads to a suboptimal

achievable region compared to linear coding over finite non-field rings. Examples include

s
∑

i=1

xi ∈ Z2p[s] for s ≥ 2

and prime p > 2 (note: the characteristic of Z2p is 2p which is not a prime). One can always find an explicit

distribution of sources for which linear coding over Z2p strictly dominates linear coding over each and every finite

field.

As mentioned, Rĝ given by (22) is sometimes strictly smaller than R[g]. This was first shown by Ahlswede–Han

[4] for the case of g being the modulo-two sum. Their approach combines the linear coding technique over binary

field with the standard random coding technique. In the following, we generalize the result of Ahlswede–Han [4,

Theorem 10] to the settings, where g is arbitrary, and, at the same time, LCoF is replaced by its generalized version,

LCoR.

Consider function ĝ admitting

ĝ(x1, x2, · · · , xs) = h

[

k0(x1, x2, · · · , xs0),
s
∑

j=s0+1

kj(xj)

]

, 0 ≤ s0 < s, (28)

where k0 : Rs0 → R and h, kj’s are functions mapping R to R. By Lemma VI.6, a discrete function with a

finite domain is always equivalent to a restriction of some function of format (28). We call ĝ from (28) a pseudo

nomographic function over ring R.

Theorem VI.11. Let S0 = {1, 2, · · · , s0} ⊆ S = {1, 2, · · · , s}. If ĝ is of format (28), and R = (R1, R2, · · · , Rs) ∈

Rs satisfying

∑

j∈T

Rj > |T \ S0| max
06=I≤lR

log |R|

log |I|

[

H(X |VS)−H(YR/I|VS)
]

+ I(YT ;VT |VT c), ∀ ∅ 6= T ⊆ S, (29)

where ∀ j ∈ S0, Vj = Yj = Xj; ∀ j ∈ S \ S0, Yj = kj(Xj), Vj ’s are discrete random variables such that

p(y1, y2, · · · , ys, v1, v2, · · · , vs) = p(y1, y2, · · · , ys)
s
∏

j=s0+1

p(vj |yj), (30)

and X =

s
∑

j=s0+1

Yj , YR/I = X + I, then R ∈ R[ĝ].

Proof: The proof can be completed by applying the tricks from Lemma III.5 and Lemma III.7 to the approach

generalized from Ahlswede–Han [4, Theorem 10]. Details are found in Appendix D.
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Remark 23. The achievable region given by (29) always contains the SW region. Moreover, it is in general larger

than the Rĝ from (22). If ĝ is the modulo-two sum, namely s0 = 0 and h, kj’s are identity functions for all

s0 < j ≤ s, then (29) resumes the region of Ahlswede–Han [4, Theorem 10].

VII. CONCLUSION

A. Right Linearity

Careful readers might have noticed that the encoders we used so far are actually left linear mappings. By

symmetry, almost all related statements can be easily reproved for right linear mappings (encoders). As an example,

the following corresponds to Theorem III.1.

Theorem VII.1. For any Φ ∈ M (XS ,RS),

R′
Φ =

{

[R1, R2, · · · , Rs] ∈ Rs

∣

∣

∣

∣

∣

∑

i∈T

Ri log |Ii|

log |Ri|
> r (T, IT ) , ∀ ∅ 6= T ⊆ S, ∀ 0 6= Ii ≤r Ri

}

, (31)

where r (T, IT ) = H(XT |XT c)−H(YRT /IT
|XT c) and YRT /IT

= Φ(XT ) + IT , is achievable with (right) linear

coding over the finite rings R1,R2, · · · ,Rs.

By time sharing,

Rr = cov





⋃

Φ∈M (XS ,RS)

R′
Φ



 , (32)

where R′
Φ is given by (31), is achievable with (right) LCoR.

B. Field, Ring, Rng and Group

Conceptually speaking, LCoR is in fact a generalization of the linear coding technique proposed by Elias [1]

and Csiszár [2] (LCoF), since a field must be a ring. However, as seen in Section IV, analyzing the decoding error

for the ring version is in general substantially more challenging than in the case of the field version. Our approach

crucially relies on the concept of ideals. A field contains no non-trivial ideal but itself. Because of this special

property of fields, our general argument for finite rings will render to a simple one when only finite fields are

considered.

Even though our analysis for the ring scenario is more complicated than the one for field, linear encoders working

over some finite rings are in general considerably easier to implement in practice. This is because the implementation

of finite field arithmetic can be quite demanding. Normally, a finite field is given by its polynomial representation,

operations are carried out based on the polynomial operations (addition and multiplication) followed by the poly-

nomial long division algorithm. In contrast, implementing arithmetic of many finite rings is a straightforward task.

For instance, the arithmetic of modulo integers ring Zq , for any positive integer q, is simply the integer modulo q

arithmetic.

In addition, it is also very interesting to consider instead linear coding over rngs. It will be even more intriguing

should it turn out that the rng version outperforms the ring version in the computing problem (Problem 1), in the
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same manner that the ring version outperforms its field counterpart. It will also be interesting to see whether the

idea of using rng provides more understanding of the problems from [8] and [6].

Some works, including [20], [21], [22], have proposed to implement coding over a simpler algebraic structure,

that of a group. Seemingly, this corresponds to a more universal approach since both fields and rings are also

groups. However, one subtle issue is often overlooked in this context. Namely, the set of rings (or rngs) is not a

subset of the set of groups, since several non-isomorphic rings (or rngs) can be defined on one and the same group.

For instance, given two distinct primes p and q, up to isomorphism,

1) there are 2 finite rngs of order p, while there is only one group of order p;

2) there are 4 finite rngs of order pq;

3) there are 11 finite rngs of order p2 (if p = 2, then 4 of them are rings, namely F4, Z4, Z2 × Z2 and ML,2

[23]), while there are only 2 groups of order p2, both of which are Abelian;

4) there are 22 finite rngs of order p2q;

5) there are 52 finite rngs of order 8;

6) there are 3p+50 finite rngs of order p3 (p > 2), while there are 5 groups of order p3, 3 of which are Abelian

(More can be found from [24]).

Therefore, there is no one-to-one correspondence between rings (field or rngs) and groups, in either direction.

Furthermore, from the point of view of formulating a multivariate function, one is highly restricted by using

groups, compared to rings (rng or field). Specifically, it is well-known that every discrete function defined on a

finite domain is essentially a restriction of some polynomial function over a finite ring (rng or field). Although

non-Abelian structures (non-Abelian groups) have the potential to lead to important non-trivial results [25], they

are very difficult to handle theoretically and in practice. The performance of non-Abelian group block codes can

be quite bad [26].

C. Final Remarks

This paper establishes achievability theorems regarding linear coding over finite rings for Slepian–Wolf data

compression. Our results include related work from Elias [1] and Csiszár [2] regarding linear coding over finite

fields as special cases in the sense of characterizing the achievable region. We have also proved that, for any

Slepian–Wolf scenario, there always exists a sequence of linear encoders over some finite rings (non-field rings in

particular) that achieves the data compression limit, the Slepian–Wolf region. Thus, with regard to existence, the

optimality issue of linear coding over finite non-field rings for data compression is confirmed positively.

In addition, we also address the problem of source coding for computing, Problem 1. Results of Körner–Marton

[3], Ahlswede–Han [4, Theorem 10] and [7] are generalized to corresponding ring versions. Based on these, it is

demonstrated that LCoR dominates its field counterpart for encoding (infinitely) many discrete functions.
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APPENDIX A

SUPPORTING LEMMATA

Lemma A.1. Let R be a finite ring, X and Y be two correlated discrete random variables, and X be the sample

space of X with |X | ≤ |R|. If R contains one and only one proper non-trivial left ideal I and |I| =
√

|R|, then

there exists injection Φ̃ : X → R such that

H(X |Y ) ≤ 2H(Φ̃ (X) + I|Y ). (A.1)

Proof: Let

Φ̃ ∈ arg max
Φ∈M

H(Φ (X) + I|Y ),

where M is the set of all possible Φ’s (maximum can always be reached because |M | =
|R|!

(|R| − |X |)!
is finite,

but it is not uniquely attained by Φ̃ in general). Assume that Y is the sample space (not necessarily finite) of Y .

Let q = |I|, I = {r1, r2, · · · , rq} and R/I = {a1 + I, a2 + I, · · · , aq + I}. We have that

H(X |Y ) =−
∑

y∈Y

q
∑

i,j=1

pi,j,y log
pi,j,y
py

and

H(Φ̃ (X) + I|Y ) =−
∑

y∈Y

q
∑

i=1

pi,y log
pi,y
py

,

where

pi,j,y =Pr
{

Φ̃(X) = ai + rj , Y = y
}

,

py =

q
∑

i,j=1

pi,j,y,

pi,y =

q
∑

j=1

pi,j,y.

(Note: Pr
{

Φ̃(X) = r
}

= 0 if r ∈ R \ Φ̃(X ). In addition, every element in R can be uniquely expressed as

ai + rj .) Therefore, (A.1) is equivalent to

−
∑

y∈Y

q
∑

i,j=1

pi,j,y log
pi,j,y
py

≤− 2
∑

y∈Y

q
∑

i=1

pi,y log
pi,y
py

⇔
∑

y∈Y

py

q
∑

i=1

pi,y
py

H

(

pi,1,y
pi,y

,
pi,2,y
pi,y

, · · · ,
pi,q,y
pi,y

)

≤
∑

y∈Y

pyH

(

p1,y
py

,
p2,y
py

, · · · ,
pq,y
py

)

, (A.2)

where H (v1, v2, · · · , vq) = −

q
∑

j=1

vj log vj , by the grouping rule for entropy [16, pp. 49]. Let

A =
∑

y∈Y

pyH

(

q
∑

i=1

pi,1,y
py

,

q
∑

i=1

pi,2,y
py

, · · · ,

q
∑

i=1

pi,q,y
py

)

.

The concavity of the function H implies that

∑

y∈Y

py

q
∑

i=1

pi,y
py

H

(

pi,1,y
pi,y

,
pi,2,y
pi,y

, · · · ,
pi,q,y
pi,y

)

≤ A. (A.3)
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At the same time,
∑

y∈Y

pyH

(

p1,y
py

,
p2,y
py

, · · · ,
pq,y
py

)

= max
Φ∈M

H(Φ(X) + I|Y )

by the definition of Φ̃. We now claim that

A ≤ max
Φ∈M

H(Φ(X) + I|Y ). (A.4)

Suppose otherwise, i.e. A >
∑

y∈Y

pyH

(

p1,y
py

,
p2,y
py

, · · · ,
pq,y
py

)

. Let Φ′ : X → R be defined as

Φ′ : x 7→ aj + ri ⇔ Φ̃(x) = ai + rj .

We have that

H(Φ′(X) + I|Y ) =
∑

y∈Y

pyH

(

q
∑

i=1

pi,1,y
py

,

q
∑

i=1

pi,2,y
py

, · · · ,

q
∑

i=1

pi,q,y
py

)

= A

>
∑

y∈Y

pyH

(

p1,y
py

,
p2,y
py

, · · · ,
pq,y
py

)

= max
Φ∈M

H(Φ(X) + I|Y ).

It is absurd that H(Φ′(X) + I|Y ) > max
Φ∈M

H(Φ(X) + I|Y )! Therefore, (A.2) is valid by (A.3) and (A.4), so is

(A.1).

Lemma A.2. If both

0 ≤ max{p2, p3} 6< min{p1, p4} ≤ 1 and 0 ≤ max{p1, p4} 6< min{p2, p3} ≤ 1

are valid, and

4
∑

j=1

pj = 1, then

−
4
∑

j=1

pj log pj ≤ −2
[

(p2 + p3) log (p2 + p3) + (p1 + p4) log (p1 + p4)
]

. (A.5)

Proof [27]: Without loss of generality, we assume that 0 ≤ max{p4, p3} ≤ min{p2, p1} ≤ 1 which implies

that p1 + p2 − 1/2 ≥ |p1 + p4 − 1/2|. Let H2(c) = −c log c− (1− c) log(1− c), 0 ≤ c ≤ 1, be the binary entropy

function. By the grouping rule for entropy [16, pp. 49], (A.5) equals to

(p1 + p4)

(

p1
p1 + p4

log
p1 + p4
p1

+
p4

p1 + p4
log

p1 + p4
p4

)

+(p2 + p3)

(

p2
p2 + p3

log
p2 + p3
p2

+
p3

p2 + p3
log

p2 + p3
p3

)

≤− (p2 + p3) log (p2 + p3)− (p1 + p4) log (p1 + p4)

⇔

A =(p1 + p4)H2

(

p1
p1 + p4

)

+ (p2 + p3)H2

(

p2
p2 + p3

)

≤H2(p1 + p4).
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Since H2 is a concave function and

4
∑

j=1

pj = 1, then

A ≤ H2 (p1 + p2) .

Moreover, p1 + p2 − 1/2 ≥ |p1 + p4 − 1/2| guarantees that

H2 (p1 + p2) ≤ H2 (p1 + p4) ,

because H2(c) = H2(1−c), ∀ 0 ≤ c ≤ 1, and H2(c
′) ≤ H2(c

′′) if 0 ≤ c′ ≤ c′′ ≤ 1/2. Therefore,A ≤ H2 (p1 + p4)

and (A.5) holds.

Lemma A.3. No matter which finite field Fq is chosen, g given by (24) admits no presentation k1(x)+k2(y)+k3(z),

where ki ∈ Fq[1] for all feasible i.

Proof: Suppose otherwise, i.e. k1◦µ1+k2◦µ2+k3◦µ3 = ν ◦g for some injections µ1, µ1, µ3 : {α0, α1} → Fq

and ν : {β0, · · · , β3} → Fq . By (24), we have

ν(β1) =(k1 ◦ µ1)(α1) + (k2 ◦ µ2)(α0) + (k3 ◦ µ3)(α0)

=(k1 ◦ µ1)(α0) + (k2 ◦ µ2)(α1) + (k3 ◦ µ3)(α1)

ν(β3) =(k1 ◦ µ1)(α1) + (k2 ◦ µ2)(α1) + (k3 ◦ µ3)(α0)

=(k1 ◦ µ1)(α0) + (k2 ◦ µ2)(α0) + (k3 ◦ µ3)(α1)

=⇒ ν(β1)− ν(β3) = τ = −τ

=⇒ τ + τ = 0, (A.6)

where τ = k2(µ2(α0)) − k2(µ2(α1)). Since µ2 is injective, (A.6) implies that either τ = 0 or Char(Fq) = 2 by

Proposition II.7. Noticeable that k2(µ2(α0)) 6= k2(µ2(α1)), i.e. τ 6= 0, otherwise, ν(β1) = ν(β3) which contradicts

the assumption that ν is injective. Thus, Char(Fq) = 2. Let ρ = (k3 ◦ µ3)(α0) − (k3 ◦ µ3)(α1). Obviously, ρ 6= 0

because of the same reason that τ 6= 0, and ρ+ ρ = 0 since Char(Fq) = 2. Therefore,

ν(β0) =(k1 ◦ µ1)(α0) + (k2 ◦ µ2)(α0) + (k3 ◦ µ3)(α0)

=(k1 ◦ µ1)(α0) + (k2 ◦ µ2)(α0) + (k3 ◦ µ3)(α1) + ρ

=ν(β3) + ρ

=(k1 ◦ µ1)(α1) + (k2 ◦ µ2)(α1) + (k3 ◦ µ3)(α0) + ρ

=(k1 ◦ µ1)(α1) + (k2 ◦ µ2)(α1) + (k3 ◦ µ3)(α1) + ρ+ ρ

=ν(β2) + 0 = ν(β2).

This contradicts the assumption that ν is injective.
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Remark 24. As a special case, this lemma implies that no matter which finite field Fq is chosen, g defined by

(24) has no polynomial presentation that is linear over Fq. In contrast, g admits presentation x+ 2y + 3z ∈ Z4[3]

which is a linear function over Z4.

APPENDIX B

PROOFS OF LEMMA VI.5 AND LEMMA VI.6

A. Proof of Lemma VI.5

Let p be a prime such that pm ≥ max {|Ω| , |Xi| |1 ≤ i ≤ k} for some integer m, and choose R to be a finite

field of order pm. By [28, Lemma 7.40], the number of polynomial functions in R[k] is pmpmk

. Moreover, the

number of distinct functions with domain Rk and codomain R is also |R||R
k| = pmpmk

. Hence, any function

g′ : Rk → R is a polynomial function.

In the meanwhile, any injections µi : Xi → R (1 ≤ i ≤ k) and ν : Ω → R give rise to a function

ĝ = ν ◦ g (µ′
1, µ

′
2, · · · , µ

′
k) : R

k → R,

where µ′
i is the inverse mapping of µi : Xi → µi (Xi). Since ĝ must be a polynomial function as shown, the

statement is established.

Remark 25. Another proof involving Fermat’s little theorem can be found in [6].

B. Proof of Lemma VI.6

Let F be a finite field such that |F| ≥ |Xi| for all 1 ≤ i ≤ s and |F|s ≥ |Ω|, and let R be the splitting field of F

of order |F|s (one example of the pair F and R is the Zp, where p is some prime, and its Galois extension of degree

s). It is easily seen that R is an s dimensional vector space over F. Hence, there exist s vectors v1, v2, · · · , vs ∈ R

that are linearly independent. Let µi be an injection from Xi to the subspace generated by vector vi. It is easy

to verify that k =

s
∑

i=1

µi is injective since v1, v2, · · · , vs are linearly independent. Let k′ be the inverse mapping

of k :

s
∏

i=1

Xi → k

(

s
∏

i=1

Xi

)

and ν : Ω → R be any injection. By [28, Lemma 7.40], there exists a polynomial

function h ∈ R[s] such that h = ν ◦ g ◦ k′. Let ĝ(x1, x2, · · · , xs) = h

(

s
∑

i=1

xi

)

. The statement is proved.

Remark 26. In the proof, k is chosen to be injective because the proof includes the case that g is an identity

function. In general, k is not necessarily injective.

APPENDIX C

THE SECOND PROOF OF LEMMA III.7

Define the mapping Γ : R1 → R1/I by

Γ : x1 7→ x1 + I, ∀ x1 ∈ R1.



HUANG AND SKOGLUND: ON LINEAR CODING OVER FINITE RINGS AND APPLICATIONS TO COMPUTING 33

Assume that x1 =
[

x
(1)
1 , x

(2)
1 , · · · , x

(n)
1

]

, and let

y =
[

Γ
(

x
(1)
1

)

,Γ
(

x
(2)
1

)

, · · · ,Γ
(

x
(n)
1

)]

.

By definition, ∀ (y,x2)
t ∈ Dǫ(x1, I|x2), where y =

[

y(1), y(2), · · · , y(n)
]

,

[

Γ
(

y(1)
)

,Γ
(

y(2)
)

, · · · ,Γ
(

y(n)
)]

= y.

Moreover,

(y,y,x2)
t ∈Tǫ(n, (X1, YR1/I, X2)), and

|Dǫ(x1, I|x2)| =
∣

∣

{

(y,y,x2)
t ∈ Tǫ

∣

∣y − x1 ∈ In
}∣

∣ .

For fixed (y,x2)
t ∈ Tǫ, the number of strongly ǫ-typical sequences y such that (y,y,x2)

t is strongly ǫ-typical is

strictly upper bounded by 2n[H(X1|YR1/I,X2)+η] if n is larger enough and ǫ is small. Therefore,

|Dǫ(x1, I|x2)| < 2n[H(X1|YR1/I,X2)+η].

Remark 27. The mechanisms behind the first proof and the second one are in fact very different. However, this

is not very clear for i.i.d. scenarios. For non-i.i.d. scenarios, the results proved by these two approaches diverse.

Although the technique from the first proof is more complicated, it provides results with its own advantages.

Henceforth, we deliberately put the first proof in the first place. Interested readers are kindly referred to [29] for

more details of the differences.

APPENDIX D

PROOF OF THEOREM VI.11

Choose δ > 6ǫ > 0, such that Rj = R′
j + R′′

j , ∀ j ∈ S,
∑

j∈T

R′
j > I(YT ;VT |VT c) + 2 |T | δ, ∀ ∅ 6= T ⊆ S, and

R′′
j > r + 2δ, where r = max

06=I≤lR

log |R|

log |I|

[

H(X |VS)−H(YR/I|VS)
]

, ∀ j ∈ S \ S0.

A. Encoding:

Fix the joint distribution p which satisfies (30). For all j ∈ S0, let Vj,ǫ = Tǫ(n,Xj). For all j ∈ S \S0, generate

randomly 2n[I(Yj;Vj)+δ] strongly ǫ-typical sequences according to distribution pV n
j

and let Vj,ǫ be the set of these

generated sequences. Define mapping φ′j : R
n → Vj,ǫ as follows:

1) If j ∈ S0, then, ∀ x ∈ Rn, φ′j(x) =











x, if x ∈ Tǫ;

x0, otherwise,

where x0 ∈ Vj,ǫ is fixed.

2) If j ∈ S \ S0, then for every x ∈ Rn, let Łx = {v ∈ Vj,ǫ|(~kj(x),v) ∈ Tǫ}. If x ∈ Tǫ and Łx 6= ∅, then

φ′j(x) is set to be some element in Łx; otherwise φ′j(x) is some fixed v0 ∈ Vj,ǫ.

Define mapping ηj : Vj,ǫ → [1, 2nR
′
j ] by randomly choosing the value for each v ∈ Vj,ǫ according to a uniform

distribution.
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Let k = min
j∈S\S0

{⌊

nR′′
j

log |R|

⌋}

. When n is big enough, we have k >
n[r + δ]

log |R|
. Randomly generate a k×n matrix

M ∈ Rk×n, and let θj : R
n → Rk (j ∈ S \ S0) be the function θj : x 7→ M~kj(x), ∀ x ∈ Rn.

Define the encoder φj as the follows

φj =











ηj ◦ φ
′
j , j ∈ S0;

(ηj ◦ φ
′
j , θj), otherwise.

B. Decoding:

Upon observing (a1, a2, · · · , as0 , (as0+1, bs0+1), · · · , (as, bs)) at the decoder, the decoder claims that

~h
[

~k0

(

V̂ n
1 , V̂

n
2 , · · · , V̂

n
s0

)

, X̂n
]

is the function of the generated data, if and only if there exists one and only one

V̂ =
(

V̂ n
1 , V̂

n
2 , · · · , V̂

n
s

)

∈
s
∏

j=1

Vj,ǫ,

such that aj = ηj(V̂
n
j ), ∀ j ∈ S, and X̂n is the only element in the set

L
V̂

=
{

x ∈ Rn
∣

∣

∣(x, V̂) ∈ Tǫ,Mx =
s
∑

j=t+1

bj

}

.

C. Error:

Assume that Xn
j is the data generated by the jth source and let Xn =

s
∑

j=s0+1

~kj
(

Xn
j

)

. An error happens if and

only if one of the following events happens.

E1: (Xn
1 , X

n
2 , · · · , X

n
s , Y

n
1 , Y

n
2 , · · · , Y

n
s , X

n) /∈ Tǫ;

E2: There exists some j0 ∈ S \ S0, such that ŁXn
j0

= ∅;

E3: (Y n
1 , Y

n
2 , · · · , Y

n
s , X

n,V) /∈ Tǫ, where V = (V n
1 , V

n
2 , · · · , V

n
s ) and V n

j = φ′j(X
n
j ), ∀ j ∈ S;

E4: There exists V′ = (v′
1,v

′
2, · · · ,v

′
s) ∈ Tǫ ∩

s
∏

j=1

Vj,ǫ, V
′ 6= V, such that ηj(v

′
j) = ηj

(

V n
j

)

, ∀ j ∈ S;

E5: Xn /∈ LV or |LV| > 1, i.e. there exists Xn
0 ∈ Rn, Xn

0 6= Xn, such that MXn
0 = MXn and (Xn

0 ,V) ∈ Tǫ.

Let γ = Pr

{

5
⋃

l=1

El

}

=
5
∑

l=1

Pr {El|El,c}, where E1,c = ∅ and El,c =
l−1
⋂

τ=1

Ec
τ for 1 < l ≤ 5. In the following,

we show that γ → 0, n→ ∞.

(a). By the joint AEP [15, Theorem 6.9], Pr{E1} → 0, n→ ∞.

(b). Let E2,j =
{

ŁXn
j
= ∅
}

, ∀j ∈ S \ S0. Then

Pr{E2|E2,c} ≤
∑

j∈S\S0

Pr {E2,j |E2,c} . (D.1)

For any j ∈ S \ S0, because the sequence v ∈ Vj,ǫ and Y n
j = ~kj(X

n
j ) are drawn independently, we have

Pr{(Y n
j ,v) ∈ Tǫ} ≥(1 − ǫ)2−n[I(Yj;Vj)+3ǫ]

=(1 − ǫ)2−n[I(Yj;Vj)+δ/2]+n(δ/2−3ǫ)

>2−n[I(Yj;Vj)+δ/2]
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when n is big enough. Thus,

Pr {E2,j |E2,c} =Pr
{

ŁXn
j
= ∅ | E2,c

}

=
∏

v∈Vj,ǫ

Pr
{(

~kj(X
n
j ),v

)

/∈ Tǫ
}

<
{

1− 2−n[I(Yj ;Vj)+δ/2]
}2n[I(Yj ;Vj)+δ]

(D.2)

→ 0, n→ ∞.

where (D.2) holds true for all big enough n and the limit follow from the fact that (1− 1/a)a → e−1, a → ∞.

Therefore, Pr{E2|E2,c} → 0, n→ ∞ by (D.1).

(c). By (30), it is obvious that VJ1 − YJ1 − YJ2 − VJ2 forms a Markov chain for any two disjoint nonempty sets

J1, J2 ( S. Thus, if (Y n
j , V

n
j ) ∈ Tǫ for all j ∈ S and (Y n

1 , Y
n
2 , · · · , Y

n
s ) ∈ Tǫ, then (Y n

1 , Y
n
2 , · · · , Y

n
s ,V) ∈ Tǫ. In

the meantime, X−(Y1, Y2, · · · , Ys)−(V1, V2, · · · , Vs) is also a Markov chain. Hence, (Y n
1 , Y

n
2 , · · · , Y

n
s , X

n,V) ∈

Tǫ if (Y n
1 , Y

n
2 , · · · , Y

n
s , X

n) ∈ Tǫ. Therefore, Pr{E3|E3,c} = 0.

(d). For all ∅ 6= J ⊆ S, let J = {j1, j2, · · · , j|j|} and

ΓJ =
{

V′ = (v′
1,v

′
2, · · · ,v

′
s) ∈

s
∏

j=1

Vj,ǫ

∣

∣

∣v
′
j = V n

j if and only if j ∈ S \ J
}

.

By definition, |ΓJ | =
∏

j∈J

|Vj,ǫ| − 1 = 2n[
∑

j∈J I(Yj ;Vj)+|J|δ] − 1 and

Pr{E4|E4,c} =
∑

∅6=J⊆S

∑

V′∈ΓJ

Pr
{

ηj(v
′
j) = ηj(V

n
j ), ∀ j ∈ J,V′ ∈ Tǫ|E4,c

}

=
∑

∅6=J⊆S

∑

V′∈ΓJ

Pr
{

ηj(v
′
j) = ηj(V

n
j ), ∀ j ∈ J

}

× Pr {V′ ∈ Tǫ|E4,c} (D.3)

<
∑

∅6=J⊆S

∑

V′∈ΓJ

2−n
∑

j∈J R′
j × 2

−n
[

∑|J|
i=1 I(Vji

;VJc ,Vj1 ,··· ,Vji−1
)−|J|δ

]

(D.4)

<
∑

∅6=J⊆S

2n[
∑

j∈J I(Yj ;Vj)+|j|δ] × 2−n
∑

j∈J R′
j × 2

−n
[

∑|j|
i=1 I(Vji

;VJc ,Vj1 ,··· ,Vji−1
)−|j|δ

]

≤C max
∅6=J⊆N

2−n[
∑

j∈J R′
j−I(YJ ;VJ |VJc )−2|j|δ] (D.5)

→ 0, n→ ∞,

where C = 2s − 1. Equality (D.3) holds because the processes of choosing ηj ’s and generating V′ are done

independently. (D.4) follows from Lemma D.1 and the definitions of ηj’s. (D.5) is from Lemma D.2.

Lemma D.1. Let [X1, X2, · · · , Xl, Y ] ∼ q. For any ǫ > 0 and positive integer n, choose a sequence X̃n
j (1 ≤ j ≤ l)

randomly from Tǫ(n,Xj) based on a uniform distribution. If y ∈ Y
n is an ǫ-typical sequence with respect to Y ,

then

Pr
{

(X̃n
1 , X̃

n
2 , · · · , X̃

n
l , Y

n) ∈ Tǫ|Y
n = y

}

≤ 2−n[
∑l

j=1 I(Xj ;Y,X1,X2,··· ,Xj−1)−3lǫ].
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Proof: Let Fj be the event {(X̃n
1 , X̃

n
2 , · · · , X̃

n
j , Y

n) ∈ Tǫ}, 1 ≤ j ≤ l, and F0 = ∅. We have

Pr
{

(X̃n
1 , X̃

n
2 , · · · , X̃

n
l , Y

n) ∈ Tǫ|Y
n = y

}

=

l
∏

j=1

Pr {Fj |Y
n = y, Fj−1}

≤
l
∏

j=1

2−n[I(Xj ;Y,X1,X2,··· ,Xj−1)−3ǫ]

=2−n[
∑l

j=1 I(Xj ;Y,X1,X2,··· ,Xj−1)−3lǫ],

since X̃n
1 , X̃

n
2 , · · · , X̃

n
l ,y are generated independent.

Lemma D.2. If (Y1, V1, Y2, V2, · · · , Ys, Vs) ∼ q, and

q(y1, v1, y2, v2, · · · , ys, vs) = q(y1, y2, · · · , ys)
s
∏

i=1

q(vi|yi),

then, ∀ J = {j1, j2, · · · , j|j|} ⊆ {1, 2, · · · , s},

I(YJ ;VJ |VJc) =

|j|
∑

i=1

I(Yji ;Vji )− I(Vji ;VJc , Vj1 , · · · , Vji−1).

(e). Let E5,1 = {LV = ∅} and E5,2 = {|LV| > 1}. We have Pr{E5,1|E5,c} = 0, because E5,c contains the

event that (Xn,V) ∈ LV and V is unique. Therefore,

Pr {E5|E5,c} =Pr {E5,2|E5,c}

=
∑

(Xn
0 ,V)∈Tǫ\(Xn,V)

Pr {MXn
0 = MXn}

<
∑

06=I≤lR

∑

Dǫ(Xn,I|V)\(Xn,V)

Pr {MXn
0 = MXn}

Choose a small η > 0 such that η <
δ

2 log |R|
. Then

Pr {E5|E5,c} <
(

2|R| − 2
)

max
06=I≤lR

2n[H(X|VS )−H(YR/I|VS)+η] × 2−k log|I| (D.6)

=
(

2|R| − 2
)

max
06=I≤lR

2−n[k log|I|/n−H(X|VS)+H(YR/I|VS)−η]

<
(

2|R| − 2
)

max
06=I≤lR

2−n[δ log|I|/ log|R|−η]

<
(

2|R| − 2
)

2−nδ/2 log|R| (D.7)

→ 0, n→ ∞,

where (D.6) is from Lemma III.5 and Lemma III.7 (for all large enough n and small enough ǫ) and (D.7) is because

|I| ≥ 2 for all I 6= 0.

To summarize, by (a)–(e), we have γ → 0, n→ ∞. The theorem is established.
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APPENDIX E

CODING OVER ABELIAN GROUPS

Most of the coding literature has focused on coding over fields. Some both traditional and recent work, including

[30], has also considered (Abelian) groups, while significantly fewer results are available for coding over rings. In

this appendix we elaborate on the relation between coding over rings and groups in order to clearly show that our

results in this paper are not subsumed by previous work on coding over groups. In fact previous work, e.g. [30], on

“linear coding over finite Abelian groups” does not even include linear coding over finite fields as a special case.

(R1) Consider the example given in [30, Section VIII.B.1)] for reconstruction of the modulo-two sum of binary

symmetric sources [3]. On [30, pp. 1509], it reads “Rate points achieved by embedding the function in the

Abelian groups Z3, Z4 are strictly worse than that achieved by embedding the function in Z2 while embedding

in Z2 ⊕ Z2 gives the Slepian–Wolf rate region for the lossless reconstruction of (X,Y )” 5.

[30] clearly states that group coding over Z2 ⊕ Z2 for encoding the modulo-two sum of symmetric sources

gives only the Slepian–Wolf region. On the contrary, consider either the finite field F4 or the non-field ring

ML,2 =











a 0

b a





∣

∣

∣

∣

∣

∣

a, b ∈ Z2







(note: the underlying Abelian group defined F4 and ML,2 is Z2⊕Z2). We claim that linear coding over either

F4 or ML,2 for encoding the modulo-two sum of symmetric sources gives the Körner–Marton region [3].

This is because linear coding over finite field, e.g. F4, is always optimal for the Slepian–Wolf problem, so is

linear coding over non-field ring ML,2 by Theorem V.3. Unfortunately, group coding over Z2 ⊕ Z2 is not.

It is well-known that the Körner–Marton region is often strictly larger than the Slepian–Wolf region. Linear

coding over non-field ring ML,2 (field F4) as a special case “linear coding over Abelian group Z2⊕Z2” must

not achieve a region larger than the Slepian–Wolf region, leading to a contradiction.

(R2) [30, row 2 of TABLE III] states that group coding over Z4 ⊕ Z4 (achieving sum rate 3.5) is strictly worse

than over group Z4 (achieving sum rate 3) for lossless encoding a quaternary function [30, Section VIII.A].

On the contrary, linear coding over ring Z4 × Z4 (with underlying Abelian group Z4 ⊕ Z4) always achieves

region containing the one achieved by linear coding over ring Z4. This is implied by Theorem III.3. By direct

calculation, we have that linear coding over ring Z4 ×Z4 (achieving sum rate 3) is strictly better than “linear

coding over Abelian group Z4 ⊕ Z4” (achieving sum rate 3.5). Again, a contradiction.

(R3) Linearity is often defined with regard to linear combination, which requires corresponding definitions of

addition and multiplication. It is basic and well-known that over Abelian group G = Zp ⊕ Zp ⊕ Zp ⊕ Zp (p

is a prime), there are at least three distinct definitions of multiplication to define rings over G. These rings

are isomorphic to either

a) the field Fp4 which is commutative; or

5There is a typo at the end of the last sentence. (X, Y ) should be F (X, Y ) = X ⊕2 Y from the context, because coding over Z3 is not

strictly worse than coding over Z2 for lossless reconstruct the original data (X, Y ) [2].
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b) the non-field ring

Mp =











a b

c d





∣

∣

∣

∣

∣

∣

a, b, c, d ∈ Zp







which is not commutative; or

c) the product ring Zp × Zp × Zp × Zp which is commutative.

Suppose “linear coding over Abelian group G” is defined with respect to some multiplicative operation “∗”,

at the same time, this linear scheme over G includes the three distinct linear coding schemes defined over

Fp4 , Mp and Zp × Zp × Zp × Zp simultaneously. We then conclude that this newly defined multiplicative

operation “∗” is commutative and non-commutative at the same time. As a conclusion, “linear coding over

Abelian group” does not make sense as a concept.

(R4) Finally, we emphasize that according to the Fundamental Theorem of (Finite) Abelian Group [9, Theorem

5.25], up to isomorphism, every finite Abelian group is a direct sum of cyclic groups of prime-power order [9,

Proposition 5.27]. This implies that every finite Abelian group is can be represented via direct sum of modulo

integers. However, many finite rings are not (isomorphic to) direct product of modulo integers, e.g. finite

fields Fq (when q is a power of a prime but is not a prime), matrix rings ML,q′ (when q′ ≥ 2 is any positive

integer) and all non-commutative rings. For a fixed order (e.g. p2 with p being a prime), the number of finite

rings is often significantly bigger than the number of finite Abelian groups. For instance, there are 4 rings of

order 4 while there are 2 groups of order 4.
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