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Abstract

In this paper, we first present a source coding theorem for linear coding over finite rings in the Slepian–Wolf

source coding problem. This result includes those given by Elias [1] and Csiszár [2] saying that linear coding over

finite field is optimal, i.e., achieves the Slepian–Wolf region. In addition, we show that linear coding over several

types of rings (which are not necessarily fields) is also optimal in the single source scenario.

Secondly, we propose linear coding over ring as an alternative solution to the problem of source coding for

computing. A generalization of the result in Körner–Marton [3] is presented. Based on this, it is demonstrated that

linear coding over ring strictly outperforms its field counterpart in terms of achieving better coding rates and reducing

the required alphabet sizes of the encoders.
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I. INTRODUCTION

The problem of source coding for computing considers the following scenario.

Problem 1 (Source Coding for Computing). Given S = {1, 2, · · · , s} and (X1, X2, · · · , Xs) ∼ p. Let ti (i ∈ S) be

a discrete memoryless source that randomly generates i.i.d. discrete data X
(1)
i , X

(2)
i , · · · , X

(n)
i , · · · , where X

(n)
i has

a finite sample space Xi and
[

X
(n)
1 , X

(n)
2 , · · · , X(n)

s

]

∼ p, ∀ n ∈ N+. For a discrete function g :
∏

i∈S

Xi → Ω, what

is the largest region R[g] ⊂ Rs, such that, ∀ (R1, R2, · · · , Rs) ∈ R[g] and ∀ ǫ > 0, there exists an N0 ∈ N+, such

that for all n > N0, there exist s encoders φi : X
n
i →

[

1, 2nRi
]

, i ∈ S, and one decoder ψ :
∏

i∈S

[

1, 2nRi
]

→ Ωn,

with

Pr {~g (Xn
1 , · · · , X

n
s ) 6= ψ [φ1 (X

n
1 ) , · · · , φs (X

n
s )]} < ǫ,
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where Xn
i =

[

X
(1)
i , X

(2)
i , · · · , X

(n)
i

]

and

~g (Xn
1 , · · · , X

n
s ) =











g
(

X
(1)
1 , · · · , X(1)

s

)

...

g
(

X
(n)
1 , · · · , X(n)

s

)











∈ Ωn?

The region R[g] is called the achievable coding rate region for computing g. A rate tuple R ∈ Rs is said to

be achievable for computing g (or simply achievable) if and only if R ∈ R[g]. A region R ⊂ Rs is said to be

achievable for computing g (or simply achievable) if and only if R ⊆ R[g].

If g is the identity function, it is obvious that the described computing problem is equivalent to the Slepian–Wolf

(SW) source coding problem. Hence, R[g] is the SW region [4], namely

R[X1, X2, · · · , Xs] =
{

(R1, R2, · · · , Rs) ∈ Rs
∣

∣

∣

∑

j∈T

Rj > H(XT |XT c), ∀ ∅ 6= T ⊆ S
}

,

where T c is the complement of T in S and XT (XT c) is the random variable array
∏

j∈T

Xj





∏

j∈T c

Xj



. In the

original SW source coding scenario, the structure of the encoders is unclear, the corresponding mappings are chosen

randomly among all feasible mappings. In the single source scenario, Elias [1] showed that linear coding over finite

field (LCoF), where Xi’s and Ω are embedded as subsets of this field and φi’s are linear mappings, is sufficient in

achieving the best coding rate. This idea is then generalized to the multiple sources scenario by Csiszár [2]. As a

consequence of [2], any rate tuple in the SW region is achievable with LCoF.

Generally speaking, R[X1, X2, · · · , Xs] ⊆ R[g] for an arbitrary discrete function g. Making use of Elias’ theorem

on binary linear codes [1], Körner–Marton [3] shows that R[⊕2] (“⊕2” is the modulo-two sum) contains the region

R⊕2
=
{

(R1, R2) ∈ R2 | R1, R2 > H(X1 ⊕2 X2)
}

.

This region is not contained in the SW region for certain distributions. In other words, R[⊕2] ) R[X1, X2].

Combining the standard random coding technique and Elias’ result, [5] shows that R[⊕2] can be strictly larger than

the convex hull of the union R[X1, X2] ∪ R⊕2
. However, the functions considered in these works are relatively

simple.

Taking on a polynomial approach, [6], [7] generalize the result of Ahlswede–Han [5, Theorem 10] to the most

general scenario. Making use of the fact that a discrete function is essentially a polynomial function [8, pp. 93]

over some finite field, an achievable region is given for computing an arbitrary discrete function. Such a region

contains and can be strictly larger (depending on the precise function and distribution under consideration) than the

SW region. Conditions under which R[g] is strictly larger than the SW region are presented in [9] and [6] from

different perspectives, respectively.

We observe that the linear coding (LC) technique over field by Elias and Csiszár is a key element in the results

accounted for above. This observation inspires our study of searching for alternative encoding methods (coding
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techniques). This paper focuses on linear coding over finite ring (LCoR) which serves as an alternative technique

in the case of the computing problem. We will show that this approach is better in terms of achieving coding rates

and reducing alphabet sizes of the encoders compared to its field counterpart. In Section III, we present a region

(4) achieved with LC over several finite rings, namely all encoders are linear mappings over rings (see Definition

II.9). It is proved that this region specializes to the SW region if all of these rings are fields. Thus, the results of

[1], [2] become special cases of ours in this sense. In addition, Section V shows that LCoR can achieve the best

coding rate in the single source scenario with certain rings (e.g., Z4) that are not necessary fields. To illustrate

applications to computing, Problem 1 is considered in Section VI where a generalized theorem of Körner–Marton

[3] is given. To conclude Section VI, Example VI.5 is constructed exhibiting the advantages of this LC technique

over finite rings. In this example, LCoR achieves a strictly larger region compared to the one obtained with LCoF

in the sense of Körner–Marton [3]. Additionally, the encoders using LCoR require strictly smaller alphabet sizes

than when using LCoF.

In addition to the fact that LCoR outperforms LCoF, Example VI.5 also points at another circumstance. The

results of Körner–Marton [3] and Ahlswede–Han [5, Theorem 10] depend on LCoF and apply to linear functions

over fields only. Therefore, their methods do not apply directly to discrete functions that are neither linear nor

can be linearized over any finite field (e.g., g from Example VI.5). Although the polynomial approach [6], [7],

proposed by the authors of the present work, works universally for any discrete functions, it will possibly require

larger alphabet size. More importantly, this approach requires that the polynomial presentation of the function is

available in accessible form. Unfortunately, this can possibly turn out to be a very strict requirement, even though

it is proved to be always possible. On the contrary, those discrete functions (e.g., g from Example VI.5) could be

simply a linear function over certain finite ring. Therefore, LCoR offers an alternative solution. As a matter of fact,

such an alternative solution is rather promising for, at least, functions like g from Example VI.5.

Conceptually speaking, LCoR is in fact a generalization of the LC technique proposed by Elias and Csiszár

(LCoF), since a field must be a ring. However, as seen in Section IV, the analysis of decoding error for the ring

version is in general substantially more challenging than in the case of the field version. Our analysis crucially

relies on the concept of ideal of ring. A field contains no non-trivial ideal but itself. Because of this special property

of fields, our general argument for finite rings deployed in later sections will render to a simple one if only finite

fields are considered.

Even though our analysis for the ring scenario is more complicated than the one for field, linear encoders working

over some finite rings are in general considerably easier to implement than using finite fields in practice. This is

because the implementation of finite field arithmetic can be quite demanding. Normally, a finite field is given by its

polynomial representation, operations are carried out based on the polynomial operation followed by polynomial

long division algorithm. On the contrary, implementing arithmetic of many finite rings is a straightforward task.

For instance, the arithmetic of modulo integers ring Zq , for any positive integer q, is simply the integer modulo q

arithmetic.
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II. RINGS, IDEALS AND LINEAR MAPPINGS

In this section we introduce some fundamental concepts from abstract algebra. Readers who are already familiar

with this material may still choose to go through quickly to identify our notation.

Definition II.1. The tuple [R,+, ·] is called a ring if the following criteria are met:

1) [R,+] is an Abelian group;

2) There exists a multiplicative identity1 1 ∈ R, namely, 1 · a = a · 1 = a, ∀ a ∈ R;

3) ∀ a, b, c ∈ R, a · b ∈ R and (a · b) · c = a · (b · c);

4) ∀ a, b, c ∈ R, a · (b + c) = (a · b) + (a · c) and (b + c) · a = (b · a) + (c · a).

We often write R for [R,+, ·] when the operations (operators) considered are known from the context. The

operator “·” is usually written by juxtaposition, ab for a · b, for all a, b ∈ R.

A ring [R,+, ·] is said to be commutative if ∀ a, b ∈ R, a · b = b · a. In Definition II.1, the identity of the group

[R,+], denoted by 0, is called the zero. A ring [R,+, ·] is said to be finite if the cardinality |R| is finite, and |R|

is called the order of R. The set Zq of integers modulo q is a commutative finite ring with respect to the modular

arithmetic. For any ring R, the set of all polynomials of s indeterminants, namely R[X1, X2, · · · , Xs], is an infinite

ring. Meanwhile, we denote the set of all the polynomial functions of s variables over ring R by R[s].

Proposition II.2. Given s rings R1,R2, · · · ,Rs, for any non-empty set T ⊆ {1, 2, · · · , s}, the Cartesian product

RT =
∏

i∈T

Ri forms a new ring [RT ,+, ·] with respect to the component-wise operations defined as follows:

r′ + r′′ =
[

r′1 + r′′1 , r
′
2 + r′′2 , · · · , r

′
|T | + r′′|T |

]

,

r′ · r′′ =
[

r′1r
′′
1 , r

′
2r

′′
2 , · · · , r

′
|T |r

′′
|T |

]

,

∀ r′ =
[

r′1, r
′
2, · · · , r

′
|T |

]

, r′′ =
[

r′′1 , r
′′
2 , · · · , r

′′
|T |

]

∈ RT .

Remark 1. In Proposition II.2, it can be easily seen that [0, 0, · · · , 0] and [1, 1, · · · , 1] are the zero and multiplicative

identity of RT , respectively.

Definition II.3. A non-zero element a of a ring R is said to be invertible, if and only if there exists b ∈ R, such

that ab = ba = 1. b is called the inverse of a, denoted by a−1. An invertible element of a ring is called a unit.

Remark 2. It can be proved that the inverse of a unit is unique. By definition, the multiplicative identity is the

inverse of itself.

Let R∗ = R \ {0}. The ring [R,+, ·] is a field if and only if R∗ is an Abelian group with respect to the

multiplicative operation “·”. In other words, all non-zero elements of R are invertible. All fields are commutative

1Sometimes a ring without a multiplicative identity is considered. Such a structure has been called a rng. We consider rings with multiplicative

identities in this paper. However, similar results remain valid when considering rngs instead. Although we will occasionally comment on such

results, they are not fully considered in the present work.
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rings. Zq is a field if and only if q is a prime. Up to isomorphism, all finite fields are unique [10, pp. 549]. We use

Fq to denote this “unique” field of order q. It is necessary that q is a power of a prime. More details of finite field

can be found in [10, Ch. 14.3].

Theorem II.4 (Wedderburn’s little theorem c.f. Theorem 7.13 of [8]). Let R be a finite ring. R is a field if and

only if all non-zero elements of R are invertible.

Remark 3. Wedderburn’s little theorem guarantees commutativity for a finite ring if all of its non-zero elements

are invertible. Hence, a finite ring is either a field or at least one of its elements has no inverse. However, a finite

commutative ring is not necessary a field, e.g. Zq is not a field if q is not a prime.

Definition II.5 (c.f. [10]). The characteristic of a finite ring R is defined to be the smallest positive integer m,

such that

m
∑

j=1

1 = 0, where 0 and 1 are the zero and the multiplicative identity of R, respectively. The characteristic

of R is often denoted by Char(R).

Remark 4. Clearly, Char(Zq) = q. For a finite field Fq, Char(Fq) is always the prime q0 such that q = qn0 for

some integer n [8, Proposition 2.137].

Proposition II.6. Let Fq be a finite field. For any 0 6= a ∈ Fq, m = Char(Fq) if and only if m is the smallest

positive integer such that

m
∑

j=1

a = 0.

Proof: Since a 6= 0,

m
∑

j=1

a = 0 ⇒ a−1
m
∑

j=1

a = a−1 · 0 ⇒
m
∑

j=1

1 = 0 ⇒
m
∑

j=1

a = 0

The statement is proved.

Definition II.7. A subset I of a ring [R,+, ·] is said to be a left ideal of R, denoted by I ≤l R, if and only if

1) [I,+] is a subgroup of [R,+];

2) ∀ x ∈ I and ∀ r ∈ R, r · x ∈ I.

If condition 2) is replaced by

3) ∀ x ∈ I and ∀ r ∈ R, x · r ∈ I,

then I is called a right ideal of R, denoted by I ≤r R. {0} is a trivial left (right) ideal, usually denoted by 0.

The cardinality |I| is called the order of a finite left (right) ideal I.

Remark 5. Let {a1, a2, · · · , an} be a non-empty set of elements of some ring R. It is easy to verify that

〈a1, a2, · · · , an〉r =

{

n
∑

i=1

airi

∣

∣

∣

∣

∣

ri ∈ R, ∀ 1 ≤ i ≤ n

}

is a right ideal. Furthermore, 〈a1, a2, · · · , an〉r = R if ai is

a unit for some 1 ≤ i ≤ n.
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It is well-known that if I ≤l R or I ≤r R, then R is divided into disjoint cosets which are of equal size

(cardinality). For any coset J, J = x+ I = {x+ y|y ∈ I}, ∀ x ∈ J. The set of all cosets forms a quotient group,

denoted by R/I. See [8, Ch. 1.6 and Ch. 2.9] for more details.

Proposition II.8. Let Ri (1 ≤ i ≤ s) be a ring and R =

s
∏

i=1

Ri. For any A ⊆ R, A ≤l R (or A ≤r R) if and

only if A =

s
∏

i=1

Ai and Ai ≤l Ri (or Ai ≤r Ri), ∀ 1 ≤ i ≤ s.

Proof: It suffices to complete the proof for ≤l only. If A ≤l R, then A =

s
∏

i=1

Ai for some Ai ⊆ Ri, because

for any (a1, a2, · · · , as), (b1, b2, · · · , bs) ∈ A, {(c1, c2, · · · , cs) ∈ R|ci = ai or bi, 1 ≤ i ≤ s} ⊆ A. For instance,

(b1, a2, · · · , as) = (0, 1, · · · , 1) · (a1, a2, · · · , as) + (1, 0, · · · , 0) · (b1, b2, · · · , bs) ∈ A. Furthermore, it is easy to

show that Ai ≤l Ri for all feasible i by definition. Sufficiency is obvious.

Remark 6. For any ∅ 6= T ⊆ S, Proposition II.8 states that any left (right) ideal of RT is a Cartesian product of

some left (right) ideals of Ri, i ∈ T . Let Ii be a left (right) ideal of ring Ri (1 ≤ i ≤ s). We define IT to be the

left (right) ideal
∏

i∈T

Ii of RT .

Remark 7. It is worthwhile to point out that Proposition II.8 does not hold for infinite index set, namely, R =
∏

i∈I

Ri,

where I is not finite.

Definition II.9. A mapping f : Rn → Rm given as:

f(x1, x2, · · · , xn) =

(

n
∑

j=1

a1,jxj , · · · ,
n
∑

j=1

am,jxj

)t

(1)

(

f(x1, x2, · · · , xn) =

(

n
∑

j=1

xja1,j, · · · ,
n
∑

j=1

xjam,j

)t)

,

∀ (x1, x2, · · · , xn) ∈ Rn,

where ai,j ∈ R for all feasible i and j, is called a left (right) linear mapping over ring R. If m = 1, then f is

called a left (right) linear function over R.

From now on, left linear mapping (function) or right linear mapping (function) are simply called linear mapping

(function). This will not lead to any confusion since the intended use can usually be clearly distinguished from the

context.

Remark 8. The mapping f in Definition II.9 is called linear in accordance with the definition of linear mapping

(function) over field. In fact, the two structures have several similar properties. Moreover, (1) is equivalent to

f(x1, x2, · · · , xn) =A (x1, x2, · · · , xn)
t , (2)

∀ (x1, x2, · · · , xn) ∈ Rn,
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where A is an m×n matrix over R and [A]i,j = ai,j for all feasible i and j. A is named the coefficient matrix. It

is easy to prove that a linear mapping is uniquely determined by its coefficient matrix, and vice versa. The linear

mapping f is said to be trivial, denoted by 0, if A is the zero matrix, i.e., [A]i,j = 0 for all feasible i and j.

Let A be an m× n matrix over ring R and f(x) = Ax, ∀ x ∈ R
n. For the system of linear equations

f(x) = Ax = 0, where 0 = (0, 0, · · · , 0)t ∈ R
m,

let S(f) be the set of all solutions, namely S(f) = {x ∈ R
n|f(x) = 0}. It is obvious that S(f) = R

n if f is

trivial, i.e., A is the zero matrix. If R is a field, then S(f) is a subspace of Rn. We conclude this section with a

lemma regarding the cardinalities of Rn and S(f) in the following.

Lemma II.10. For a finite ring R and a linear function

f : x 7→ [a1, a2, · · · , an]x, ∀ x ∈ R
n,

we have

|S(f)|

|R|n
=

1

|I|
,

where I = 〈a1, a2, · · · , an〉r . In particular, if ai is invertible for some 1 ≤ i ≤ n, then |S(f)| = |R|n−1
.

Proof: It is obvious that the image f(Rn) = I by definition. Moreover, ∀ x 6= y ∈ I, the pre-images

f−1(x) ∩ f−1(y) = ∅ and
∣

∣f−1(x)
∣

∣ =
∣

∣f−1(y)
∣

∣ = |S(f)|. Therefore, |I| |S(f)| = |R|n, i.e.,
|S(f)|

|R|n
=

1

|I|
.

Moreover, if ai is a unit, then I = R, thus, |S(f)| = |R|n / |R| = |R|n−1
.

Remark 9. For linear function

f : x 7→ xt[a1, a2, · · · , an]
t, ∀ x ∈ R

n,

Lemma II.10 holds true, if

I = 〈a1, a2, · · · , an〉l =

{

n
∑

i=1

riai

∣

∣

∣

∣

∣

ri ∈ R, ∀ 1 ≤ i ≤ n

}

which is a left ideal of R.

III. LINEAR CODING OVER FINITE RINGS

In this section, we will present a coding rate region achieved with LCoR for the SW source coding problem, i.e.,

g is the identity function in Problem 1. This region is exactly the SW region if all the rings considered are fields.

However, being field is not necessary as seen in Section V.

Before proceeding, a subtleness needs to be cleared out. It is assumed that a source, say ti, generates data taking

values from a finite sample space Xi, while Xi does not necessarily admit any algebraic structure. We have to

either assume that Xi is with a certain algebraic structure, for instance Xi is a ring, or injectively map elements

of Xi into some algebraic structure. In our subsequent discussions, we assume that Xi is mapped into a finite ring
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Ri of order at least |Xi| by some injection Φi. Hence, Xi can simply be treated as a subset Φi (Xi) ⊆ Ri for a

fixed Φi. When required, Φi can also be selected to obtain desired outcomes (see Remark 11).

To simplify our discussion, the following notation is used. For ∅ 6= T ⊆ S, XT (xT ,XT ) is defined to be the

Cartesian product

∏

i∈T

Xi

(

∏

i∈T

xi,
∏

i∈T

Xi

)

,

where xi ∈ Xi is a realization of Xi. If (X1, X2, · · · , Xs) ∼ p, we denote the marginal of p with respect to XT

by pXT and define

supp(p) =

{

s
∏

i=1

xi ∈
s
∏

i=1

Xi

∣

∣

∣

∣

∣

p

(

s
∏

i=1

xi

)

> 0

}

.

Besides, M (XS ,RS) is defined to be

{ [Φ1,Φ2, · · · ,Φs]|Φi : Xi → Ri is injective, ∀ i ∈ S}

(|Ri| ≥ |Xi| is implicitly assumed).

Theorem III.1. Given Φ ∈ M (XS ,RS) and let

RΦ =

{

[R1, R2, · · · , Rs] ∈ Rs

∣

∣

∣

∣

∣

∑

i∈T

Ri log |Ii|

log |Ri|
> r (T, IT ) ,

∀ ∅ 6= T ⊆ S, ∀ 0 6= Ii ≤l Ri

}

, (3)

where r (T, IT ) = H(XT |XT c)−H(YRT /IT
|XT c) and YRT /IT

is a random variable with sample space RT /IT

and

Pr
{

YRT /IT
= a+ IT

∣

∣XT = xT
}

=











1; if xT ∈ a+ IT ,

0; otherwise.

Any rate in RΦ is achievable with linear coding over finite rings R1,R2, · · · ,Rs.

A concrete example can be helpful in the interpretation of this theorem.

Example III.2. Consider the single source scenario, where X1 ∼ p and X1 = Z6, satisfying the follows.

X1 0 1 2 3 4 5

p(X1) 0.05 0.1 0.15 0.2 0.2 0.3

By Theorem III.1,

R = {R1 ∈ R|R1 > max{2.40869, 2.34486, 2.24686}}

= {R1 ∈ R|R1 > 2.40869 = H(X1)}

is achievable with linear coding over ring Z6. Obviously, R is just the SW region R[X1]. Optimality is claimed.
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Remark 10. Without much effort, one can see that RΦ in the above theorem depends on Φ via random variables

YRT /IT
’s whose distributions are determined by Φ. For each i ∈ S, there exist

(

|Ri|

|Xi|

)

distinct injections from

Xi to a ring Ri of order at least |Xi|. Let cov(A) be the convex hull of a set A ⊆ Rs. By a straightforward time

sharing argument, we have that

Rl = cov





⋃

Φ∈M (XS ,RS)

RΦ



 (4)

is achievable with LCoR.

Remark 11. From Theorem V.1, one will see that (3) and (4) are the same when all the rings are fields. Actually,

both are identical to the SW region. However, (4) can be strictly larger than (3) (see Theorem V.2), when not all

the rings are fields. This implies that, in order to achieve desired rate, a suitable injection is required. However, be

reminded that taking convex hull (4) is not always needed for optimality as shown in Example III.2. Much more

sophisticated analysis on this issue is found in Section V.

The rest of this section provides key supporting lemmata and concepts used to prove Theorem III.1. The final

proof is given in Section IV.

Lemma III.3. Given a finite ring R, two distinct sequences x,y ∈ Rn, and let y − x = [a1, a2, · · · , an]
t

and

f : Rn → R
k be a linear mapping chosen uniformly randomly, i.e., generate the k × n coefficient matrix A of f

by independently choosing each entry of A uniformly at random. Then

Pr {f(x) = f(y)} = |I|−k, (5)

where I = 〈a1, a2, · · · , an〉l.

Proof: Assume that f = (f1, f2, · · · , fk)
t, where fi : R

n → R is a random linear function. Then

Pr{f(x) = f(y)} =Pr

{

k
⋂

i=1

{fi(x) = fi(y)}

}

=

k
∏

i=1

Pr {fi(x− y) = 0} ,

since fi’s are independent to each other. The statement follows from Lemma II.10 and Remark 9 which assure that

Pr {fi(x− y) = 0} = |I|−1.

Remark 12. In Lemma III.3, if R is a field and x 6= y, then I = R because every non-zero ai is a unit. Thus,

Pr {f(x) = f(y)} = |R|−k.

Definition III.4 (c.f. [11]). Let X ∼ pX be a discrete random variable with sample space X . The set Tǫ(n,X)

of strongly ǫ-typical sequences of length n with respect to X is defined to be
{

x ∈ X
n

∣

∣

∣

∣

∣

∣

∣

∣

N(x;x)

n
− pX(x)

∣

∣

∣

∣

≤ ǫ, ∀ x ∈ X

}

,
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where N(x;x) is the number of occurrences of x in the sequence x.

Tǫ(n,X) is sometimes replaced by Tǫ when the length n and the random variable X referred to are clear from the

context.

Let X ∼ pX be a discrete random variable with finite sample space X and H(pX) = H(X). It is well-known

that H is a concave function, i.e., cH(p1)+(1−c)H(p2) ≤ H(cp1+(1−c)p2), ∀ 0 ≤ c ≤ 1. Equality holds if and

only if p1 = p2. For convenience, define emp(x) to be the empirical distribution of x and H(x) = H(emp(x)),

∀ x ∈ X
n.

Lemma III.5. Let (X1, X2) ∼ p be a jointly random variable whose sample space is a finite ring R = R1 ×R2.

For any η > 0, there exists ǫ > 0, such that, ∀ (x1,x2)
t ∈ Tǫ(n, (X1, X2)) and ∀ I ≤l R1,

|Dǫ(x1, I|x2)| < 2n[H(X1|X2)−H(YR1/I|X2)+η], (6)

where

Dǫ(x1, I|x2) =
{

(y,x2)
t ∈ Tǫ

∣

∣y − x1 ∈ In
}

and YR1/I is a random variable with sample space R1/I such that

Pr
{

YR1/I = a+ I
∣

∣X1 = r1
}

=











1; if r1 ∈ a+ I,

0; otherwise.

Proof: Let R1/I = {a1 + I, a2 + I, · · · , am + I}, where m = |R1|/|I|. For arbitrary ǫ > 0 and integer n,

without loss of generality, assume that




x1

x2



 =





x1,1,x1,2, · · · ,x1,m

x2,1,x2,2, · · · ,x2,m



 =





x
(1)
1 , x

(2)
1 , · · · , x

(n)
1

x
(1)
2 , x

(2)
2 , · · · , x

(n)
2





and

zj =





x1,j

x2,j



 =





x
(
∑j−1

k=0
ck+1)

1 , x
(
∑j−1

k=0
ck+2)

1 , · · · , x
(
∑j

k=0
ck)

1

x
(
∑j−1

k=0
ck+1)

2 , x
(
∑j−1

k=0
ck+2)

2 , · · · , x
(
∑j

k=0
ck)

2



 ∈ (aj + I×R2)
cj ,

where c0 = 0 and cj =
∑

r∈aj+I×R2

N
(

r, (x1,x2)
t
)

, 1 ≤ j ≤ m. For any y =
[

y(1), y(2), · · · , y(n)
]

with

(y,x2)
t ∈ Dǫ(x1, I|x2), we have y(i) − x

(i)
1 ∈ I, ∀ 1 ≤ i ≤ n, by definition. Thus, y(i) and x

(i)
1 belong to the

same coset, i.e., y(
∑j−1

k=0
ck+1), y(

∑j−1

k=0
ck+2), · · · , y(

∑j
k=0

ck) ∈ aj + I, ∀ 1 ≤ j ≤ m. Furthermore, ∀ r ∈ R,

∣

∣N
(

r, (x1,x2)
t
)

/n− p(r)
∣

∣ ≤ ǫ and

∣

∣N
(

r, (y,x2)
t
)

/n− p(r)
∣

∣ ≤ ǫ

=⇒

∣

∣

∣

∣

N (r, (y,x2)
t)

n
−
N (r, (x1,x2)

t)

n

∣

∣

∣

∣

≤ 2ǫ,

since (x1,x2)
t, (y,x2)

t ∈ Tǫ. As a consequence,

z′j =





y(
∑j−1

k=0
ck+1), y(

∑j−1

k=0
ck+2), · · · , y(

∑j
k=0

ck)

x
(
∑j−1

k=0
ck+1)

2 , x
(
∑j−1

k=0
ck+2)

2 , · · · , x
(
∑j

k=0
ck)

2



 ∈ (aj + I×R2)
cj
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is a strongly 2ǫ-typical sequences of length cj with respect to the random variable Zj ∼ pj = emp(zj). The sample

space of Zj is aj + I ×R2. Therefore, the number of such a z′j of length cj (all elements





w1

w2



 ∈ T2ǫ(cj , Zj)

such that w2 = x2,j) is upper bounded by 2cj[H(pj)−H(pj,2)+2ǫ], where pj,2 is the marginal of pj with respect to

the second coordinate. Consequently,

|Dǫ(x1, I|x2)| ≤ 2
∑m

j=1
cj [H(pj)−H(pj,2)+2ǫ]. (7)

Direct computation yields

1

n

m
∑

j=1

cjH(pj)

=
m
∑

j=1

cj
n

∑

r∈aj+I×R2

N (r, (x1,x2)
t)

cj
log

cj
N (r, (x1,x2)t)

=
∑

r∈R

N (r, (x1,x2)
t)

n
log

n

N (r, (x1,x2)t)
−

m
∑

j=1

cj
n

log
n

cj

and

1

n

m
∑

j=1

cjH(pj,2)

=
m
∑

j=1

cj
n

[

∑

r2∈R2

∑

r1∈aj+I
N ((r1, r2), (x1,x2)

t)

cj

× log
cj

∑

r1∈aj+I
N ((r1, r2), (x1,x2)t)

]

=
m
∑

j=1

∑

r2∈R2

∑

r1∈aj+I
N((r1, r2), (x1,x2)

t)

n

× log
n

∑

r1∈aj+I
N((r1, r2), (x1,x2)t)

−
m
∑

j=1

cj
n

log
n

cj
.

Since the entropy H is a continuous function, there exists some small 0 < ǫ < η/4, such that

∣

∣

∣

∣

∣

∑

r∈R

N (r, (x1,x2)
t)

n
log

n

N (r, (x1,x2)t)
−H(X1, X2)

∣

∣

∣

∣

∣

< η/8,

∣

∣

∣

∣

∣

∣

m
∑

j=1

cj
n

log
n

cj
−H(YR1/I)

∣

∣

∣

∣

∣

∣

< η/8 and

∣

∣

∣

∣

∣

m
∑

j=1

∑

r2∈R2

∑

r1∈aj+I
N((r1, r2), (x1,x2)

t)

n

× log
n

∑

r1∈aj+I
N((r1, r2), (x1,x2)t)

−H(X2, YR1/I)

∣

∣

∣

∣

∣

< η/8.
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Therefore,

1

n

m
∑

j=1

cjH(pj) <H(X1, X2)−H(YR1/I) + η/4 (8)

=H(X1|X2)−H(X2)−H(YR1/I) + η/4, (9)

1

n

m
∑

j=1

cjH(pj,2) >H(X2, YR1/I)−H(YR1/I)− η/4 (10)

=H(YR1/I|X2)−H(X2)−H(YR1/I)− η/4, (11)

where (8) and (10) are guaranteed for some small 0 < ǫ < η/4. Substituting (9) and (11) into (7), (6) follows.

Remark 13. Assume that y − x = [a1, a2, · · · , an]
t, then y − x ∈ In is equivalent to 〈a1, a2, · · · , an〉l ⊆ I.

IV. PROOF OF THEOREM III.1

As mentioned, Xi can be seen as a subset of Ri for a fixed Φ = [Φ1, · · · ,Φs]. In this section, we assume that

Xi has sample space Ri, which makes sense since Φi is injective.

Let R = [R1, R2, · · · , Rs] and ki =

⌊

nRi

log |Ri|

⌋

, ∀ i ∈ S, where n is the length of the data sequences. If

R ∈ RΦ, then
∑

i∈T

Ri log |Ii|

log |Ri|
> r (T, IT ) , (this implies that

1

n

∑

i∈T

ki log |Ii| − r (T, IT ) > 2η for some small

constant η > 0 and large enough n), ∀ ∅ 6= T ⊆ S, ∀ 0 6= Ii ≤l Ri. We claim that R is achievable.

A. Encoding:

For every i ∈ S, randomly generate a ki × n matrix Ai based on a uniform distribution, i.e., independently

choose each entry of Ai uniformly at random. Define a linear encoder φi : R
n
i → R

ki

i such that

φi : x 7→ Aix, ∀ x ∈ R
n
i .

Obviously the coding rate of this encoder is
1

n
log |φi(R

n
i )| ≤

1

n
log |Ri|

ki =
log |Ri|

n

⌊

nRi

log |Ri|

⌋

≤ Ri.

B. Decoding:

Subject to observing yi ∈ R
ki

i (i ∈ S) from the ith encoder, the decoder claims that x = [x1,x2, · · · ,xs]
t ∈

s
∏

i=1

R
n
i is the array of the encoded data sequences, if and only if:

1) x ∈ Tǫ; and

2) ∀ x′ = [x′
1,x

′
2, · · · ,x

′
s]

t
∈ Tǫ, if x′ 6= x, then φj(x

′
j) 6= yj , for some j.

C. Error:

Assume that Xi ∈ Rn
i (i ∈ S) is the original data sequence generated by the ith source. It is readily seen that

an error occurs if and only if:

E1: X = [X1,X2, · · · ,Xs]
t
/∈ Tǫ; or

E2: There exists X 6= [x′
1,x

′
2, · · · ,x

′
s]

t
∈ Tǫ, such that φi(x

′
i) = φi(Xi), ∀ i ∈ S.



HUANG AND SKOGLUND: ON LINEAR CODING OVER FINITE RINGS AND APPLICATIONS TO COMPUTING 13

D. Error Probability:

By the joint AEP, Pr {E1} → 0, n→ ∞.

Additionally, for ∅ 6= T ⊆ S, let

Dǫ(X;T ) =
{

[x′
1,x

′
2, · · · ,x

′
s]

t
∈ Tǫ

∣

∣

∣

x′
i 6= Xi if and only if i ∈ T

}

.

We have

Dǫ(X;T ) =
⋃

06=I≤lRT

[Dǫ(XT , I|XT c) \ {X}] , (12)

where XT =
∏

i∈T

Xi and XT c =
∏

i∈T c

Xi, since I goes over all possible non-trivial left ideals. Consequently,

Pr {E2|E
c
1}

=
∑

[x′
1
,··· ,x′

s]
t
∈Tǫ\{X}

∏

i∈S

Pr {φi(x
′
i) = φi(Xi)|E

c
1}

=
∑

∅6=T⊆S

∑

[x′

1
,··· ,x′

s]
t

∈Dǫ(X;T )

∏

i∈T

Pr {φi(x
′
i) = φi(Xi)|E

c
1} (13)

≤
∑

∅6=T⊆S

∑

06=I≤lRT

∑

[x′
1
,··· ,x′

s]
t

∈Dǫ(XT ,I|XTc )\{X}

∏

i∈T

Pr {φi(x
′
i) = φi(Xi)|E

c
1} (14)

<
∑

∅6=T⊆S

∑

06=
∏

i∈T Ii

≤lRT

(

2n[r(T,I)+η] − 1
)

∏

i∈T

|Ii|
−ki (15)

< (2s − 1)
(

2|RS | − 2
)

× max
∅6=T∈S,

06=
∏

i∈T Ii≤lRT

2−n[ 1n
∑

i∈T ki log |Ii|−[r(T,I)+η]], (16)

where

(13) is from the fact that Tǫ \ {X} =
∐

∅6=T⊆S

Dǫ(X;T ) (disjoint union);

(14) follows from (12) by the union bound (Boole’s inequality);

(15) is from Lemma III.3 and Lemma III.5, as well as the fact that every left ideal of RT is a Cartesian product

of some left ideals Ii of Ri, i ∈ T (see Proposition II.8). At the same time, ǫ is required to be sufficiently

small;

(16) is due to the facts that the number of non-empty subsets of S is 2s − 1 and the number of non-trivial left

ideals of the finite ring RT is less than 2|RS |− 1, which is the number of non-empty subsets of RS (⊇ RT ).

Thus, Pr {E2|E
c
1} → 0, when n → ∞, from (16), since for sufficiently large n and small ǫ,

1

n

∑

i∈T

ki log |Ii| −

[r (T, I) + η] > η > 0.

Therefore, Pr {E1 ∪ E2} = Pr {E1}+ Pr {E2|E
c
1} → 0 as ǫ→ 0 and n→ ∞.
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V. OPTIMALITY

Some optimality results regarding region (4) are presented in this section. First of all, it is proved that Theorem

III.1 specializes to its field counterpart in the following result.

Theorem V.1. Region (3) is the SW region if Ri contains no proper non-trivial left ideal, equivalently2, Ri is a

field, for all i ∈ S. As a consequence, region (4) is the SW region.

Proof: In Theorem III.1, random variable YRT /IT
admits a sample space of cardinality 1 for all ∅ 6= T ⊆ S,

since the only non-trivial left ideal of Ri is itself for all feasible i. Thus, 0 = H(YRT /IT
) ≥ H(YRT /IT

|XT c) ≥ 0.

Consequently,

RΦ =
{

[R1, R2, · · · , Rs] ∈ Rs

∣

∣

∣

∣

∣

∑

i∈T

Ri > H(XT |XT c),

∀ ∅ 6= T ⊆ S
}

,

which is the SW region R[X1, X2, · · · , Xs]. Therefore, region (4) is also the SW region.

If Ri is a field, then obviously it has no proper non-trivial left (right) ideal. Conversely, ∀ 0 6= a ∈ Ri,

〈a〉l = Ri implies that ∃ 0 6= b ∈ Ri, such that ba = 1. Similarly, ∃ 0 6= c ∈ Ri, such that cb = 1. Moreover,

c = c · 1 = cba = 1 · a = a. Hence, ab = cb = 1. b is the inverse of a. By Wedderburn’s little theorem, Ri is a

field.

Remark 14. Theorem V.1 states that LCoF of Elias [1] and Csiszár [2] are special cases of Theorem III.1 in the sense

of achieving the optimal coding rate region, the SW region. However, R1,R2, · · · ,Rs being fields is not necessary.

As shown in Theorem V.2, the SW region can be achieved using rings such as Z4 and ML =











x 0

y x





∣

∣

∣

∣

∣

∣

x, y ∈ Z2







(ML is a ring with respect to matrix addition and multiplication). Clearly, neither Z4 nor ML is a field.

A. Single Source

In the single source scenario, showing that the convex hull (4) is the SW region is equivalent to proving that

max
06=I1≤lR1

log |R1|

log |I1|

[

H(X)−H(YR1/I1
)
]

= H(X) (17)

for some Φ ∈ M (XS ,RS). As mentioned before, YR1/I1
depends on Φ1 (note that Φ = [Φ1] for single source).

Hence, an appropriate Φ1 is a crucial.

Theorem V.2. If s = 1 and R1 is of order 4 containing one and only one proper non-trivial left ideal (equivalently3,

R1 is isomorphic to either Z4 or ML), then region (4) is the SW region, i.e., there exists Φ = [Φ1] ∈ M (X1,R1),

such that (17) holds.

2Equivalency does not necessarily hold for rngs.

3Equivalency does not hold necessarily for rngs.
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Proof: R1 has only two non-trivial left ideals, R1 and the unique proper non-trivial left ideal J. Moreover,

|J| = 2 since |R1| = 4. If I1 = R1, then Pr
{

YR1/I1
= R1

}

= 1, thus, H(YR1/I1
) = 0 and

log |R1|

log |I1|

[

H(X)−H(YR1/I1
)
]

= H(X).

Thus, (17) is valid if and only if

log |R1|

log |J|

[

H(X)−H(YR1/J)
]

≤H(X)

⇔ H(X) ≤2H(YR1/J). (18)

for some injection Φ1 : X1 → R1.

Without loss of generality, assume that R1 = {1, 0, a, b}, J = {0, a}, X1 = {α1, α2, α3, α4} and 0 ≤ p(α4) ≤

p(α3) ≤ p(α2) ≤ p(α1) ≤ 1 (note if |X1| < 4, then p(α4), p(α3) or p(α2) is simply 0). Let

Φ1 : α1 7→ 1; Φ1 : α2 7→ 0; Φ1 : α3 7→ a; Φ1 : α4 7→ b.

Then Pr
{

YR1/J = J
}

= p(0) + p(a) = p(α2) + p(α3) and Pr
{

YR1/J = 1 + J
}

= p(1) + p(b) = p(α1) + p(α4)

(note that after fixing Φ1, X1 is seen as a subset of R1). Consequently, (18) is equivalent to

−
4
∑

j=1

p(αj) log p(αj)

≤− 2 [p(α2) + p(α3)] log [p(α2) + p(α3)]

− 2 [p(α1) + p(α4)] log [p(α1) + p(α4)] ,

which is established by Lemma A.1. Therefore, (18) holds, so does (17). Furthermore, that R1 is isomorphic to

either Z4 or ML is a well-known fact [12]. The theorem is proved.

Remark 15. Notice that Theorem V.2 is valid for any X ∼ p. However, for other rings (in particular for those

containing only one left (right) ideal besides the trivial ideal and itself, for instance, Zq2 with prime q), no conclusive

result is so far available. However, that optimality, i.e., (17) holds, can still be shown for certain distribution p.

Remark 16. Up to isomorphism, there are 4 rings (and 11 rngs) of order 4 [12]. On the contrary, there is one and

only one finite field of any finite order. Theorem V.2 suggests that LC over rings, e.g., F4, Z4 and ML can be as

good as LC over fields in the single source SW source coding problem. Actually, due to its flexible structure (a

ring does not have to be commutative, can have a non-prime characteristic, etc), LCoR offers certain advantages.

One example is shown in Section VI demonstrating this.

B. Multiple Sources

Based on Theorem V.2, the following corollary can be verified immediately.

Corollary V.3. Region (4) contains the region

{(R1, R2, · · · , Rs) ∈ Rs |Ri > H(Xi), ∀ i ∈ S } ,
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if Ri is isomorphic to either Z4, ML or F4 for all 1 ≤ i ≤ s.

For the multiple sources scenario, we do not have conclusive result like Theorem V.2 that is valid for any

distribution. However, the following theorem makes it more plausible that there exists some set of non-field rings

over which LC is optimal.

Theorem V.4. Regardless which set of rings R1,R2, · · · ,Rs is chosen, as long as |Ri| = |Xi| for all feasible i,

region (3) is the SW region if (X1, X2, · · · , Xs) ∼ p is a uniform distribution.

Proof: If p is uniform, then, for any ∅ 6= T ⊆ S and 0 6= IT ≤l RT , YRT /IT
is uniformly distributed on

RT /IT . Moreover, XT and XT c are independent, so are YRT /IT
and XT c . Therefore, H(XT |XT c) = H(XT ) =

log |RT | and H(YRT /IT
|XT c) = H(YRT /IT

) = log
|RT |

|IT |
. Consequently,

r(T, IT ) = H(XT |XT c)−H(YRT /IT
|XT c) = log |IT |.

Region (3) is the SW region.

Remark 17. When p is uniform, it is obvious that the uncoded strategy (all encoders are one-to-one mappings)

is optimal in the SW source coding problem. However, optimality stated in Theorem V.4 does not come from

deliberately fixing the encoding mappings, but generating them randomly.

VI. APPLICATION: SOURCE CODING FOR COMPUTING

Some advantages of LCoR are demonstrated in this section. In Example VI.5 below, we show that LCoR achieves

better coding rates compared to LCoF in the sense of Körner–Marton [3] for some function g in Problem 1. At the

same time, the encoders using LCoR require strictly smaller alphabet sizes than using LCoF. We first present the

following theorem which is seen as a generalization of Körner–Marton [3].

Theorem VI.1. In Problem 1, if ĝ is a polynomial function in R[s] admitting that

ĝ = h ◦ k, where k(x1, x2, · · · , xs) =
s
∑

i=1

ki(xi), (19)

and h, ki ∈ R[1] for all feasible i, then

Rĝ =
{

(r, r, · · · , r) ∈ Rs
∣

∣

∣r >

max
06=I≤lR

log |R|

log |I|

[

H(X)−H(YR/I)
]

}

⊆ R[ĝ],
(20)

where X = k(X1, X2, · · · , Xs) and YR/I is a random variable with sample space R/I and

Pr
{

YR/I = a+ I
∣

∣X = x
}

=











1; if x ∈ a+ I,

0; otherwise.

Proof: By Theorem III.1, ∀ ǫ > 0, there exists a large enough n, an m× n matrix A ∈ Rm×n and a decoder

ψ, such that Pr {Xn 6= ψ (AXn)} < ǫ, if m > max
06=I≤lR

n(H(X)−H(YR/I))

log |I|
. Let φi = A ◦ ~ki (1 ≤ i ≤ s) be
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the encoder of the ith source. Upon receiving φi(X
n
i ) from the ith source, the decoder claims that ~h

(

X̂n
)

, where

X̂n = ψ

[

s
∑

i=1

φi (X
n
i )

]

, is the function, namely ĝ, subject to computation. The probability of decoding error is

Pr
{

~h
[

~k (Xn
1 , X

n
2 , · · · , X

n
s )
]

6= ~h
(

X̂n
)}

≤Pr
{

Xn 6= X̂n
}

=Pr

{

Xn 6= ψ

[

s
∑

i=1

φi (X
n
i )

]}

=Pr

{

Xn 6= ψ

[

s
∑

i=1

A~ki (X
n
i )

]}

=Pr

{

Xn 6= ψ

[

A

s
∑

i=1

~ki (X
n
i )

]}

=Pr
{

Xn 6= ψ
[

A~k (Xn
1 , X

n
2 , · · · , X

n
s )
]}

=Pr {Xn 6= ψ (AXn)} < ǫ.

Therefore, all (r, r, · · · , r) ∈ Rs, where r =
m log |R|

n
> max

06=I≤lR

log |R|

log |I|

[

H(X)−H(YR/I)
]

, is achievable, i.e.,

Rĝ ⊆ R[ĝ].

Corollary VI.2. In Theorem VI.1, let X = k(X1, X2, · · · , Xs) ∼ pX . We have

Rĝ = { (r, r, · · · , r) ∈ Rs| r > H(X)} ⊆ R[ĝ],

if either of the following conditions holds:

1) R is isomorphic to some finite field;

2) R is isomorphic to Z4 and

pX(0) = p1, pX(1) = p2, pX(3) = p3 and pX(2) = p4

satisfying (A.1);

3) R is isomorphic to ML and

pX









0 0

0 0







 = p1, pX









1 0

0 1







 = p2, pX









1 0

1 1







 = p3 and pX









0 0

1 0







 = p4

satisfying (A.1).

Proof: If either 1), 2) or 3) holds, then Theorem V.1 or Lemma A.1 guarantee that

max
06=I≤lR

log |R|

log |I|

[

H(X)−H(YR/I)
]

= H(X)

in Theorem VI.1. The statement follows.
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Remark 18. If R is isomorphic to Z2 and ĝ is the modulo-two sum, then Corollary VI.2 recovers the theorem of

Körner–Marton [3]. While if R is (isomorphic to) a field, it becomes a special case of [7, Theorem III.1]. Actually,

almost all the results in [6] and [7] can be reproved in the setting of rings in a parallel fashion.

Definition VI.3. Let g1 :
s
∏

i=1

Xi → Ω1 and g2 :
s
∏

i=1

Yi → Ω2 be two functions. If there exist bijections µi : Xi →

Yi, ∀ 1 ≤ i ≤ s, and ν : Ω1 → Ω2, such that

g1(x1, x2, · · · , xs) = ν−1(g2(µ1(x1), µ2(x2), · · · , µs(xs))),

then g1 and g2 are said to be equivalent (via µ1, µ2, · · · , µs and ν).

Definition VI.4. Given function g : D → Ω, and let ∅ 6= S ⊆ D . The restriction of g on S is defined to be the

function g|S : S → Ω such that g|S : x 7→ g(x), ∀ x ∈ S .

Remark 19. Up to equivalence, a function can be presented in many different formats. For example, the function

min{x, y} defined on {0, 1}× {0, 1} can either be seen as F1(x, y) = xy on Z2
2 or be treated as the restriction of

F2(x, y) = x+ y− (x+ y)2 defined on Z2
3 to the domain {0, 1}× {0, 1} ( Z2

3. We refer to each presented format

of a function as a presentation of this function.

Assume that g has presentation ĝ ∈ R[s] for some finite ring R, we say that the region Rĝ given by (20) is

achievable for computing g in the sense of Körner–Marton [3]. From [7], we know that Rĝ might not the largest

achievable region one can obtain for computing g. However, Rĝ still captures the ability of LC over R when used

for computing g. More precisely, Rĝ is the region purely achieved with LC over R for computing g. On the other

hand, regions from [7] are achieved by combining the LC and the standard random coding techniques. Therefore,

it is reasonable to compare LCoR with LCoF in the sense of Körner–Marton4.

Making use of Theorem VI.1 and Corollary VI.2, we show that LCoR strictly outperforms its field counterpart

in the following example.

Example VI.5 ([13]). Let g : {α0, α1}
3 → {β0, β1, β2, β3} (Fig 1) be a function such that

g : (α0, α0, α0) 7→ β0; g : (α0, α0, α1) 7→ β3;

g : (α0, α1, α0) 7→ β2; g : (α0, α1, α1) 7→ β1;

g : (α1, α0, α0) 7→ β1; g : (α1, α0, α1) 7→ β0;

g : (α1, α1, α0) 7→ β3; g : (α1, α1, α1) 7→ β2.

(21)

Define µ : {α0, α1} → Z4 and ν : {β0, β1, β2, β3} → Z4 by

µ : αj 7→ j, ∀ j ∈ {0, 1}, and

ν : βj 7→ j, ∀ j ∈ {0, 1, 2, 3},
(22)

4In fact, the authors believe that LCoR outperforms LCoF even in the sense of combining the LC and the standard random coding techniques

[7].



HUANG AND SKOGLUND: ON LINEAR CODING OVER FINITE RINGS AND APPLICATIONS TO COMPUTING 19

β2

β1 β0

β3

β0

β1

x

β2

y

β3

z

2

1 0

3

0

1

x

2

y

3

z

2

1 0

3 = ĥ(4)

0

1

x

2

y

3

z

Fig 1: g : {α0, α1}
3 → {β0, β1, β2, β3} Fig 2: x+ 2y + 3z ∈ Z4[3] Fig 3: ĥ(x+ 2y + 4z) ∈ Z5[3]

respectively. Obviously, g is equivalent to x+ 2y+ 3z ∈ Z4[3] (Fig 2) via µ1 = µ2 = µ3 = µ and ν. However, by

Proposition VI.6, there exists no ĝ ∈ F4[3] of format (19) so that g is equivalent to any restriction of ĝ. Although, by

[6, Lemma A.2], there always exists a bigger field Fq such that g admits a presentation for some ĝ ∈ Fq[3] of format

(19), the size q must be strictly bigger than 4. For instance, let ĥ(x) =
∑

a∈Z5

a
[

1− (x− a)4
]

−
[

1− (x− 4)4
]

∈

Z5[1]. Then, g has presentation ĥ(x + 2y + 4z) ∈ Z5[3] (Fig 3) via µ1 = µ2 = µ3 = µ : {α0, α1} → Z5 and

ν : {β0, β1, β2, β3} → Z5 defined (symbolic-wise) by (22).

Proposition VI.6. There exists no polynomial function ĝ ∈ F4[3] of format (19), such that a restriction of ĝ is

equivalent to the function g defined by (21).

Proof: Suppose ν ◦ g = ĝ ◦ (µ1, µ2, µ3), where µ1, µ1, µ3 : {α0, α1} → F4, ν : {β0, · · · , β3} → F4 are

injections and ĝ = h◦ (k1+k2+k3) with h, ki ∈ F4[1] for all feasible i. We claim that ĝ and h are both surjective,

since
∣

∣g
(

{α0, α1}
3
)∣

∣ = |{β0, β1, β2, β3}| = 4 = |F4| . In particular, h is bijective. Therefore, h−1 ◦ ν ◦ g =

k1 ◦ µ1 + k2 ◦ µ2 + k3 ◦ µ3, i.e., g admits a presentation k1(x) + k2(y) + k3(z) ∈ F4[3]. A contradiction to Lemma

A.2.

As a consequence of Proposition VI.6, in order to use LCoF in the sense of Körner–Marton to compute function

g, the alphabet sizes of the three encoders need to be at least 5. However, LCoR offers a solution in which the

alphabet sizes are 4, strictly smaller than using LCoF. In addition, in the sense of Körner–Marton, the region

achieved with LC over a finite field Fq, is always a subset of the one achieved with LC over Z4. This is proved in

the following proposition.

Proposition VI.7. Let g be the function defined by (21), (X1, X2, X3) ∼ p and pX be the distribution of X =

g(X1, X2, X3). If

pX(β0) = p1, pX(β1) = p2, pX(β3) = p3 and pX(β2) = p4

satisfying (A.1), then, in the sense of Körner–Marton, the region R1 achieved with LC over Z4 contains the one,
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that is R2, obtained with LC over any finite field Fq for computing g. Moreover, if supp(p) is the whole domain of

g, then R1 ) R2.

Proof: Let ĝ = h ◦ k ∈ Fq[3] be a polynomial presentation of g with format (19) guaranteed by [6, Lemma

A.2]. By Corollary VI.2, we have

R1 =
{

(R1, R2, R3) ∈ R3
∣

∣Ri > H(X1 + 2X2 + 3X3)
}

,

R2 =
{

(R1, R2, R3) ∈ R3
∣

∣Ri > H(k(X1, X2, X3))
}

.

Assume that ν ◦ g = h ◦ k ◦ (µ1, µ2, µ3), where µ1, µ1, µ3 : {α0, α1} → Fq and ν : {β0, · · · , β3} → Fq are

injections. Obviously, g(X1, X2, X3) is a function of k(X1, X2, X3). Hence,

H(k(X1, X2, X3)) ≥ H(g(X1, X2, X3)). (23)

On the other hand, H(X1 + 2X2 + 3X3) = H(g(X1, X2, X3)), since x + 2y + 3z ∈ Z4[3] is equivalent to g.

Therefore,

H(k(X1, X2, X3)) ≥ H(X1 + 2X2 + 3X3), (24)

and R1 ⊇ R2. In addition, we claim that h|S , where S = k





3
∏

j=1

µj{α0, α1}



, is not injective. Otherwise,

h : S → S
′, where S

′ = h(S ), is bijective, hence, (h|S ′)−1◦ν◦g = k◦(µ1, µ2, µ3) = k1◦µ1+k2◦µ2+k3◦µ3.

A contradiction to Lemma A.2. Consequently, |S | > |S ′| = |ν ({β0, · · · , β3})| = 4. If supp(p) = {α0, α1}
3, then

(23) as well as (24) hold strictly, thus, R1 ) R2.

A more intuitive comparison can be identified from the presentations of g given in Fig 2 and Fig 3. According

to Corollary VI.2, LC over field Z5 achieves the region

{

(R1, R2, R3) ∈ R3
∣

∣Ri > H(X1 + 2X2 + 4X3)
}

. (25)

The one achieved by LC over ring Z4 is

{

(R1, R2, R3) ∈ R3
∣

∣Ri > H(X1 + 2X2 + 3X3)
}

. (26)

Clearly, H(X1 + 2X2 + 3X3) ≤ H(X1 + 2X2 + 4X3), thus, (26) contains (25). Furthermore, as long as

0 < Pr (α0, α0, α1) ,Pr (α1, α1, α0) < 1

(e. g., (X1, X2, X3) ∼ p is a uniform distribution), (26) is strictly larger than (25), since H(X1 + 2X2 + 3X3) <

H(X1 + 2X2 + 4X3).

Based on Proposition VI.6 and Proposition VI.7, we conclude that LCoR dominates LCoF, in terms of achieving

better coding rates with smaller alphabet sizes of the encoders for computing g.

Remark 20. With proof similar to Proposition VI.7, one can show that LCoR outperforms LCoF in computing g

given by (21) in the sense of [7], namely combining the standard and LC techniques.
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VII. CONCLUSION

Careful readers might have noticed that the encoders used in Theorem III.1 are left linear mappings. An almost

identical theorem (Theorem VII.1) can be easily proved when using right linear mappings as encoders.

Theorem VII.1. Given Φ ∈ M (XS ,RS) and let

R′
Φ =

{

[R1, R2, · · · , Rs] ∈ Rs

∣

∣

∣

∣

∣

∑

i∈T

Ri log |Ii|

log |Ri|
> r (T, IT ) ,

∀ ∅ 6= T ⊆ S, ∀ 0 6= Ii ≤r Ri

}

, (27)

where r (T, IT ) = H(XT |XT c)−H(YRT /IT
|XT c) and YRT /IT

is a random variable with sample space RT /IT

and

Pr
{

YRT /IT
= a+ IT

∣

∣XT = xT
}

=











1; if xT ∈ a+ IT ,

0; otherwise.

Any rate in R′
Φ is achievable with linear coding over finite rings R1,R2, · · · ,Rs.

By time sharing,

RRS
= cov





⋃

Φ∈M (XS ,RS)

(RΦ ∪R′
Φ)



 , (28)

where RΦ and R′
Φ are given by (3) and (27), respectively, is achievable with (left and right) LCoR.

As mentioned before, [6], [7] consider the computing problem, Problem 1, by treating a discrete function as a

polynomial function over some finite field. Naturally, we believe that similar results can be obtained for polynomial

functions over finite rings. In addition, both [9] and [6] considered the problem that under what circumstances

R[g] ) R[X1, X2, · · · , Xs]. However, a conclusive result is proved only for the case s = 2. It will be interesting

to know whether the ring approach can provide further insight regarding this problem.

In order to focus on the basics of the new ideas, we did not consider the computing problem in the context of

noisy channels (e.g., [14]) or network coding (e.g., [15]). However, it is clear that the polynomial (over fields or

rings) approach can be applied to such scenarios as well. This will be considered in our further work.

As another suggestion for further work, it will be very interesting to consider instead linear coding over rngs. It

will be even more intriguing should it turn out that the rng version outperforms the ring version in the computing

problem, in the same manner that the ring version outperforms the field counterpart. It will also be interesting to

see whether the idea of using rng provides more understanding of the problems from [9] and [6].

Regarding algebraic structure coding, some authors [16], [17], [18] propose to implement coding over a simpler

structure, group. Seemingly, this is a more universal approach since a field or a ring must be a group. However,

one subtle issue is often overlooked in this context. Strictly speaking, the set of rings (or rngs) is not a subset of

the set of groups. Several non-isomorphic rings (or rngs) can be defined on one and the same group. For instance,

given two distinct primes p and q, up to isomorphism,
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1) there are 2 finite rngs of order p, while there is only one group of order p;

2) there are 4 finite rngs of order pq;

3) there are 11 finite rngs of order p2 (if p = 2, 4 of them are rings, namely F4, Z4, Z2 × Z2 and ML [12]);

4) there are 22 finite rngs of order p2q;

5) there are 52 finite rngs of order 8;

6) there are 3p+ 50 finite rngs of order p3 (p > 2). (More can be found from [19].)

Therefore, there is no one-to-one correspondence from rings (or rngs) to groups, in either direction. Furthermore,

from the point of view of formulating a multivariate function, group, associated with a single operator, is in a

subordinate position compared to ring (rng or field). On the contrary, it is well-known that every discrete function

is essentially a restriction of some polynomial function over some finite ring (rng or field). Although non-Abelian

structures (non-Abelian groups) possess the potential to offer prominent results [20], [21], they are very difficult to

handle theoretically and in practice. The performance of non-Abelian group block codes is sometimes bad [22].

APPENDIX A

SUPPORTING LEMMATA

Lemma A.1. If both

0 ≤ max{p2, p3} 6< min{p1, p4} ≤ 1 and 0 ≤ max{p1, p4} 6< min{p2, p3} ≤ 1 (A.1)

are valid, and

4
∑

j=1

pj = 1, then

−
4
∑

j=1

pj log pj ≤− 2
[

(p2 + p3) log (p2 + p3)

+ (p1 + p4) log (p1 + p4)
]

. (A.2)

Proof [23]: Without loss of generality, we assume that 0 ≤ max{p4, p3} ≤ min{p2, p1} ≤ 1 which implies

that p1 + p2 − 1/2 ≥ |p1 + p4 − 1/2|. Let H2(c) = −c log c− (1− c) log(1− c), 0 ≤ c ≤ 1, be the binary entropy

function. (A.2) equals to

(p1 + p4)

(

p1
p1 + p4

log
p1 + p4
p1

+
p4

p1 + p4
log

p1 + p4
p4

)

+(p2 + p3)

(

p2
p2 + p3

log
p2 + p3
p2

+
p3

p2 + p3
log

p2 + p3
p3

)

≤− (p2 + p3) log (p2 + p3)− (p1 + p4) log (p1 + p4)

⇔

A =(p1 + p4)H2

(

p1
p1 + p4

)

+ (p2 + p3)H2

(

p2
p2 + p3

)

≤H2(p1 + p4).
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Since H2 is a concave function and

4
∑

j=1

pj = 1, then

A ≤ H2 (p1 + p2) .

Moreover, p1 + p2 − 1/2 ≥ |p1 + p4 − 1/2| guarantees that

H2 (p1 + p2) ≤ H2 (p1 + p4) ,

because H2(c) = H2(1−c), ∀ 0 ≤ c ≤ 1, and H2(c
′) ≤ H2(c

′′) if 0 ≤ c′ ≤ c′′ ≤ 1/2. Therefore,A ≤ H2 (p1 + p4)

and (A.2) holds.

Lemma A.2. No matter which finite field Fq is chosen, g given by (21) admits no presentation k1(x)+k2(y)+k3(z),

where ki ∈ Fq[1] for all feasible i.

Proof: Suppose otherwise, i.e., k1◦µ1+k2◦µ2+k3◦µ3 = ν◦g for some injections µ1, µ1, µ3 : {α0, α1} → Fq

and ν : {β0, · · · , β3} → Fq . By (21), we have

ν(β1) =(k1 ◦ µ1)(α1) + (k2 ◦ µ2)(α0) + (k3 ◦ µ3)(α0)

=(k1 ◦ µ1)(α0) + (k2 ◦ µ2)(α1) + (k3 ◦ µ3)(α1)

ν(β3) =(k1 ◦ µ1)(α1) + (k2 ◦ µ2)(α1) + (k3 ◦ µ3)(α0)

=(k1 ◦ µ1)(α0) + (k2 ◦ µ2)(α0) + (k3 ◦ µ3)(α1)

=⇒ ν(β1)− ν(β3) = τ = −τ

=⇒ τ + τ = 0, (A.3)

where τ = k2(µ2(α0)) − k2(µ2(α1)). Since µ2 is injective, (A.3) implies that either τ = 0 or Char(Fq) = 2 by

Proposition II.6. Noticeable that k2(µ2(α0)) 6= k2(µ2(α1)), i.e., τ 6= 0, otherwise, ν(β1) = ν(β3) which contradicts

the assumption ν is injective. Thus, Char(Fq) = 2. Let ρ = (k3 ◦µ3)(α0)−(k3 ◦µ3)(α1). Obviously, ρ 6= 0 because

of the same reason that τ 6= 0, and ρ+ ρ = 0 since Char(Fq) = 2. Therefore,

ν(β0) =(k1 ◦ µ1)(α0) + (k2 ◦ µ2)(α0) + (k3 ◦ µ3)(α0)

=(k1 ◦ µ1)(α0) + (k2 ◦ µ2)(α0) + (k3 ◦ µ3)(α1) + ρ

=ν(β3) + ρ

=(k1 ◦ µ1)(α1) + (k2 ◦ µ2)(α1) + (k3 ◦ µ3)(α0) + ρ

=(k1 ◦ µ1)(α1) + (k2 ◦ µ2)(α1) + (k3 ◦ µ3)(α1) + ρ+ ρ

=ν(β2) + 0 = ν(β2).

This contradicts that ν is injective.

Remark 21. As a special case, this lemma implies that no matter which finite field Fq is chosen, g defined by (21)

has no presentation that is linear over Fq. In contrast, g is equivalent to linear function x+ 2y + 3z ∈ Z4[3].
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