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Abstract

This paper establishes an achievability theorem for compressing irreducible Markov sources using linear

coding over finite rings. Based on this theorem, it demonstrates that linear encoders over non-field rings can

be equally optimal as their field counterparts for compressing irreducible Markov sources. Applying the linear

coding technique, the problem of characterizing the achievable coding rate region of encoding some discrete

Markovian function of several correlated sources is addressed. Coding rate regions achieved by linear encoders

are presented. It is shown that linear encoders over non-field rings strictly outperform their field counterparts

for encoding many functions. To be more precise, it is proved that the set of coding rates achieved by linear

encoders over certain non-field ring is strictly larger than the one achieved by the field versions, regardless which

finite field is considered.

From the point of view of proof techniques, the above achievability results are not direct extensions of

corresponding results for i.i.d. sources [1] in which the proofs are built on the argument of traditional typical

sequences from Shannon [2]. Instead, a new type of typicality for sequences, termed Supremus typical sequences,

is introduced. The Asymptotically Equipartition Property and a generalized typicality lemma of Supremus typical

sequences are proved. Compared to the traditional version, Supremus typicality allows us to derive more accessible

results, while corresponding ones based on traditional typicality are often hard to analyze as demonstrated in the

paper. This is one of the reasons why we introduce this new concept. The achievability results mentioned above

are in fact applications of this Supremus typicality argument.

Index Terms

Discrete Function, Sources with Memory, Source Coding, Markov, Linear Coding, Finite Ring

I. INTRODUCTION

According to Csiszár [3], it is known that linear coding over finite fields achieves the optimal coding rates

for all Slepian–Wolf data compression scenarios [4] (the result for binary field is also credited to Elias in [5]).

The motivation for Csiszár’s work includes “the fact that in some source network problems linear codes (over

finite field) appear superior to others (cf. Körner and Marton [5])”. Unfortunately, the problem whether linear

coding over finite non-field rings can be equally optimal for Slepian–Wolf data compression remained open [6].
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Due to the fact/weakness that a ring might possess a non-invertible element (with respect to its multiplicative

operation), the analysis of [3] for the field case does not lead to an optimality conclusion when applied to the

ring case. However, the authors’ recent work [1], [7], [8] proves that, for any i.i.d. data compression scenario,

there always exists linear encoders over finite non-field rings that achieve optimality, the Slepian–Wolf region

[4]; moreover, it is demonstrated that the ring version can strictly dominate its field counterpart in many source

network problems (more details on these problems are given later) which also motivates Csiszár’s study (cf.

[1]). Readers are kindly referred to [1] for more details.

This paper will focus on bringing those techniques to the context of Markovian, instead of i.i.d., sources.

However, this generalization is not at all straightforward because a Markov process is no longer “symmetric”

(in the sense that Pr {X1 = a,X2 = b} 6= Pr {X1 = b,X2 = a} in general). The proofs involve the Markov

coupling-uncoupling theorem and the concept of stochastic complement from Meyer [9]. We will look deeper

into the stochastic behaviours characterized by the stochastic complements of reduced processes of Markov

chains/sources. Based on that, the concept Supremus typicality is introduced. A Supremus typicality encoding-

decoding trick is applied to obtain a related achievability theorem and demonstrate that linear coding over

rings (in particular non-field rings) can also be optimal (cf. [10, Theorem 1] for the optimal achievable region).

(Note: one can still use the classical typicality encoding-decoding technique to obtain achievability results.

However, it is hard to draw a conclusion whether the achieved region is optimal in particular for Markov

sources with transition matrixes that do not satisfy [11, (6)], since it associates with the entropy rate of another

non-necessarily Markov process induced. To the best of our knowledge, there is no efficient method to evaluate

the entropy rate in general. Thus, it is hard to assess the result to draw the same conclusion. Please see Section

IV for more details.)

To demonstrate the advantages of linear coding over finite rings compared to its field counterpart. We then

turn to a class of source network problems that partially motivate the studies on linear coding techniques (cf.

[3], [1]). These problems are stated as the follows:

Problem 2 (Source Coding for Computing a Function of Sources with or without Memory1). Let St (t ∈ S =

{1, 2, · · · , s}) be a source that randomly generates discrete data

· · · , X
(1)
t , X

(2)
t , · · · , X

(n)
t , · · · ,

where X
(n)
t has a finite sample space Xt for all n ∈ N+. Given a discrete function g : X → Y , where

X =
∏

t∈S

Xt, what is the biggest region R[g] ⊂ Rs satisfying, ∀ (R1, R2, · · · , Rs) ∈ R[g] and ∀ ǫ > 0,

∃ N0 ∈ N+, such that, ∀ n > N0, there exist s encoders φt : X
n
t →

[

1, 2nRt
]

, t ∈ S, and one decoder

ψ :
∏

t∈S

[

1, 2nRt
]

→ Y
n with

Pr {~g (Xn
1 , · · · , X

n
s ) 6= ψ [φ1 (X

n
1 ) , · · · , φs (X

n
s )]} < ǫ,

1The numerator, Problem 2, is such defined to avoid confusing with [1, Problem 1] referred latter.
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where

Xn
t =

[

X
(1)
t , X

(2)
t , · · · , X

(n)
t

]

and

~g (Xn
1 , · · · , X

n
s ) =

[

Y (1), Y (2), · · · , Y (n)
]t

with Y (n) = g
(

X
(n)
1 , X

(n)
2 , · · · , X(n)

s

)

?

The region R[g] is called the achievable coding rate region for computing g. A rate tuple R ∈ Rs is said to

be achievable for computing g (or simply achievable) if R ∈ R[g]. A region R ⊂ Rs is said to be achievable

for computing g (or simply achievable) if R ⊆ R[g].

Problem 2 is a generalization of [1, Problem 1] which considers only the special case that the process

· · · , X(1), X(2), · · · , X(n), · · · ,

where X(n) =
[

X
(n)
1 , X

(n)
2 , · · · , X(n)

s

]

, in Problem 2 is i.i.d.. Related work for this special scenario (i.i.d.

scenario) includes: [4], [7] which considers the case that g is an identity function; [5], [12] where g is the

binary sum; [13], [14] for conditions under which that R[g] is strictly larger than the Slepian–Wolf region;

[15], [16], [17], [18], [19], [1], [8] for an arbitrary discrete function g. For other variations, readers are referred

to [15], [20], [16], [17], [21], [22], [23], [24] for related problems including rate distortion, noisy channels and

network coding scenarios.

We will investigate Problem 2 based on some additional Markovian constraints since, without any constraints

on the stochastic behavior of the sources, the original scenario is too general to allow proper analysis. We

henceforward assume that:

(c1) There exist some finite ring R, functions kt : Xt → R (t ∈ S) and h : R → Y with

g(x1, x2, · · · , xs) = h

(

∑

t∈S

kt(xt)

)

, (1)

such that

{

∑

t∈S

kt

(

X
(n)
t

)

}

is irreducible2 Markovian3. Thus,
{

g
(

X(n)
)}

is a Markovian function4.

A linear and irreducible Markovian function is one of the many examples of such a function g satisfying (c1).

By Lemma II.15 and Lemma B.1, (c1) includes:

(c0) g is arbitrary, while
{

X(n)
}

forms an irreducible Markov chain with transition matrix

P0 = c1U+ (1− c1)1, (2)

where all rows of U are identical to some unitary vector [ux]x∈X , 1 is an identity matrix and 0 ≤ c1 ≤ 1.

(c0) is very interesting because:

1) A stationary finite-state Markov chain
{

X(n)
}

admits a transition matrix of the form (2), if and only if
{

Γ
(

X(n)
)}

is Markovian for all feasible mappings Γ [11, Theorem 3];

2Irreducible is a more general condition compared to stationary ergodic which is (implicitly) assumed in some literature (cf. [25], [26]).

3For any finite discrete function g, such a finite ring R and functions kt’s and h always exist by Lemma II.15. However, the Markovian

condition is not guaranteed in general.

4A Markovian function is defined to be a Markov process that is a function of another arbitrary process [11].
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2)
{

X(n)
}

is an i.i.d. process if c1 = 1.

Making use of the linear coding technique introduced previously, we address Problem 2 of computing g regarding

each of the previous conditions, (c0) and (c1). Inner bounds for R[g] are presented. It is demonstrated that

the achievable regions given by these inner bounds are larger than Cover’s region [10, Theorem 1]. Even more

interestingly, our method (for computing some g) even works for some cases to which [10, Theorem 1] does

not apply, because
{

X(n)
}

is not asymptotically mean stationary (a.m.s.)5 [27]. Finally, a comparison between

linear encoder over non-field ring and its field counterpart is carried out. It is seen that the non-field ring

version offers many advantages, including strictly outperforming the field version in terms of achieving larger

achievable region for computing (infinitely) many functions. In this sense, we conclude that linear coding over

finite field is not optimal.

This paper is organized as the follows: Section II contains preliminaries used. Section III introduces the

concept Supremus typical sequence and investigates related Asymptotically Equipartition Properties (AEP) and

typicality lemmas. Section IV are dedicated to establish the achievability theorem of linear coding over finite

rings for compressing Markov sources. Section V addresses Problem 2 as an application of the linear coding

technique. Section VI is to demonstrate that linear coding over rings (non-field rings) is in strict upper hand

compared to its field counterpart in many settings raised from Problem 2.

II. PRELIMINARIES

Required concepts and properties are listed in this section to partially make the paper self-contained, at

the same time, to clarify delicate aspects of concepts and (implicit) assumptions sometimes defined slightly

differently in other literature. Readers are recommended to go thought (quickly) to identify our notation and

universal assumptions.

A. Index Oriented Matrix Operations

Let X , Y and Z be three countable sets with or without orders defined, e.g.

X = {(0, 0), (0, 1), (1, 1), (1, 0)} and Y = {α, β} × N+.

In many places hereafter, we write [pi,j ]i∈X ,j∈Y ([pi]i∈X ) for a “matrix” (“vector”) whose “(i, j)th” (“ith”)

entry is pi,j (pi) ∈ R. Matrices
[

p′i,j
]

i∈X ,j∈Y
and [qj,k]j∈Y ,k∈Z are similarly defined. Let P = [pi,j ]i∈X ,j∈Y .

For subsets A ⊆ X and B ⊆ Y , PA,B is designated for the “submatrix” [pi,j ]i∈A,j∈B . We will use “index

oriented” operations, namely

[pi]i∈X [pi,j ]i∈X ,j∈Y =

[

∑

i∈X

pipi,j

]

j∈Y

;

[pi,j ]i∈X ,j∈Y +
[

p′i,j
]

i∈X ,j∈Y
=
[

pi,j + p′i,j
]

i∈X ,j∈Y
;

[pi,j ]i∈X ,j∈Y [qj,k]j∈Y ,k∈Z =





∑

j∈Y

pi,jqj,k





i∈X ,k∈Z

.

5To our best knowledge, asymptotically mean stationary is the most general condition known in literature based on which the Shannon–

McMillon–Breiman Theorem holds [27].
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In addition, a matrix PA,A = [pi,j ]i,j∈A is said to be an identity matrix if and only if pi,j = δi,j (Kronecker

delta), ∀ i, j ∈ A. We often indicate an identity matrix with 1 whose size is known from the context, while

designate 0 as the zero matrix (all of whose entries are 0) of size known from the context. For any matrix

PA,A, its inverse (if exists) is some matrix QA,A such that QA,APA,A = PA,AQA,A = 1. Let [pi]i∈X be

non-negative and unitary, i.e.
∑

i∈X

pi = 1, and [pi,j ]i∈X ,j∈Y be non-negative and
∑

j∈Y

pi,j = 1 (such a matrix is

termed a stochastic matrix). For discrete random variables X and Y with sample spaces X and Y , respectively,

X ∼ [pi]i∈X and (X,Y ) ∼ [pi]i∈X [pi,j ]i∈X ,j∈Y state for

Pr {X = i} = pi and Pr {X = i, Y = j} = pipi,j ,

for all i ∈ X and j ∈ Y , respectively.

B. Markov Chains and Strongly Markov Typical Sequences

If not specified, we assume that all Markov chains considered throughout this paper are finite-state and

homogeneous. However, they are not necessarily stationary [28, pp. 71], or their initial distributions are

unknown.

Definition II.1. Given a Markov chain M =
{

X(n)
}

with state space X , the transition matrix of M is

defined to be the stochastic matrix P = [pi,j ]i,j∈X , where pi,j = Pr
{

X(2) = j
∣

∣

∣X(1) = i
}

. Moreover, M is

said to be irreducible if and only if P is irreducible, namely, there exists no ∅ 6= A ( X such that PA,Ac = 0.

Definition II.2. A state j of a Markov chain M =
{

X(n)
}

is said to be recurrent if Pr
{

T <∞|X(0) = j
}

=

1, where T = inf{n > 0|X(n) = j}. If in addition the conditional expectation E{T |X(0) = j} <∞, then j is

said to be positive recurrent. M is said to be positive recurrent if all states are positive recurrent.

Theorem II.3 (Theorem 1.7.7 of [29]). An irreducible Markov chain M with state space X is positive

recurrent, if and only if it admits a non-negative unitary vector π = [pj ]j∈X
, such that πP = π, where P is

the transition matrix of M . Moreover, π is unique and is called the invariant (stationary) distribution.

Theorem II.4 (Theorem 2.31 of [30]). A finite-state irreducible Markov chain is positive recurrent.

Clearly, all irreducible Markov chains considered in this paper admit a unique invariant distribution (which is

not necessarily the initial distribution), since they are assumed to be simultaneously finite-state and homogeneous

(unless otherwise specified).

Definition II.5 (Strong Markov Typicality (cf. [25], [26])). Let M =
{

X(n)
}

be an irreducible Markov chain

with state space X , and P = [pi,j ]i,j∈X and π = [pj ]j∈X
be its transition matrix and invariant distribution,

respectively. For any ǫ > 0, a sequence x ∈ X
n of length n (≥ 2) is said to be strongly Markov ǫ-typical with

respect to P if
∣

∣

∣

∣

N(i, j;x)

N(i;x)
− pi,j

∣

∣

∣

∣

< ǫ and

∣

∣

∣

∣

N(i;x)

n
− pi

∣

∣

∣

∣

< ǫ, ∀ i, j ∈ X ,

where N(i, j;x) is the occurrences of sub-sequence [i, j] in x and N(i;x) =
∑

j∈X

N(i, j;x). The set of all

strongly Markov ǫ-typical sequences with respect to P in X
n is denoted by Tǫ(n,P) or Tǫ for simplicity.
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Let P and π be some stochastic matrix and non-negative unitary vector. We define H(π) and H(P|π)

to be H(X) and H(Y |X), respectively, for jointly discrete random variables (X,Y ) such that X ∼ π and

(X,Y ) ∼ πP.

Proposition II.6 (AEP of Strongly Markov Typicality6). Let M =
{

X(n)
}

be an irreducible Markov chain

with state space X , and P = [pi,j ]i,j∈X and π = [pj]j∈X
be its transition matrix and invariant distribution,

respectively. For any η > 0, there exist ǫ0 > 0 and N0 ∈ N+, such that, ∀ ǫ0 > ǫ > 0, ∀ n > N0 and

∀ x =
[

x(1), x(2), · · · , x(n)
]

∈ Tǫ(n,P),

1) exp2 [−n (H(P|π) + η)] < Pr
{[

X(1), X(2), · · · , X(n)
]

= x
}

< exp2 [−n (H(P|π)− η)];

2) Pr {X /∈ Tǫ(n,P)} < η, where X =
[

X(1), X(2), · · · , X(n)
]

; and

3) |Tǫ(n,P)| < exp2 [n (H(P|π) + η)].

C. Rings, Ideals and Linear Mappings

Definition II.7. The tuple [R,+, ·] is called a ring if the following criteria are met:

1) [R,+] is an Abelian group;

2) There exists a multiplicative identity 1 ∈ R, namely, 1 · a = a · 1 = a, ∀ a ∈ R;

3) ∀ a, b, c ∈ R, a · b ∈ R and (a · b) · c = a · (b · c);

4) ∀ a, b, c ∈ R, a · (b + c) = (a · b) + (a · c) and (b + c) · a = (b · a) + (c · a).

We often write R for [R,+, ·] when the operations considered are known from the context. The operation

“·” is usually written by juxtaposition, ab for a · b, for all a, b ∈ R.

A ring [R,+, ·] is said to be commutative if ∀ a, b ∈ R, a · b = b · a. In Definition II.7, the identity of the

group [R,+], denoted by 0, is called the zero. A ring [R,+, ·] is said to be finite if the cardinality |R| is finite,

and |R| is called the order of R. The set Zq of integers modulo q is a commutative finite ring with respect to

the modular arithmetic.

Definition II.8 (cf. [31]). The characteristic of a finite ring R is defined to be the smallest positive integer

m, such that

m
∑

j=1

1 = 0, where 0 and 1 are the zero and the multiplicative identity of R, respectively. The

characteristic of R is often denoted by Char(R).

Remark 1. Clearly, Char(Zq) = q. For a finite field F, Char(F) is always the prime q0 such that |F| = qn0 for

some integer n [32, Proposition 2.137].

Definition II.9. A subset I of a ring [R,+, ·] is said to be a left ideal of R, denoted by I ≤l R, if and only if

1) [I,+] is a subgroup of [R,+];

2) ∀ x ∈ I and ∀ r ∈ R, r · x ∈ I.

If condition 2) is replaced by

3) ∀ x ∈ I and ∀ r ∈ R, x · r ∈ I,

6Similar statements in many literature (cf. [25], [26]) assume that the Markov chain is stationary ergodic. The result is easy to generalize

to irreducible Markov chain. To be rigorous, we include a proof in Appendix A.
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then I is called a right ideal of R, denoted by I ≤r R. {0} is a trivial left (right) ideal, usually denoted by 0.

It is well-known that if I ≤l R, then R is divided into disjoint cosets of equal size (cardinality). |I| is called

the order of I if it is finite. For any coset J, J = x + I = {x+ y|y ∈ I}, ∀ x ∈ J. The set of all cosets,

denoted by R/I, forms a left module. Similarly, R/I becomes a right module if I ≤r R. R/I is also seen as

a partition of R [32, Ch. 1.6 and Ch. 2.9].

Example II.10. Let ML,2 =











a 0

b a





∣

∣

∣

∣

∣

∣

a, b ∈ Z2







. ML,2 is a ring with respect to usual matrix addition

and multiplication (note: ML,2 is not isomorphic to Z2 ×Z2). Its only left ideal is I =











0 0

0 0



 ,





0 0

1 0











.

ML,2/I = {I, J}, where J =











1 0

0 1



 ,





1 0

1 1











=





1 0

0 1



+ I =





1 0

1 1



+ I.

Definition II.11. A mapping f : Rn → Rm given as:

f(x1, x2, · · · , xn) =
(
∑n

j=1 a1,jxj , · · · ,
∑n

j=1 am,jxj
)t

(

f(x1, x2, · · · , xn) =
(
∑n

j=1 xja1,j , · · · ,
∑n

j=1 xjam,j

)t
)

,

∀ (x1, x2, · · · , xn) ∈ Rn,

where ai,j ∈ R for all feasible i and j, is called a left (right) linear mapping over ring R. If m = 1, then f is

called a left (right) linear function over R. The matrix A = [ai,j ]1≤i,j≤n is called the coefficient matrix of f .

In our later discussions, we mainly use left linear mappings (functions, encoders). They are simply referred

to as linear mappings (functions, encoders). This will not give rise to confusion because left linearity and right

linearity can always be distinguished from the context.

Lemma II.12 ([1]). Let x,y ∈ Rn be two distinct sequences, where R is a finite ring, and assume that

y − x = (a1, a2, · · · , an)
t
. If f : Rn → Rk is a random linear mapping chosen uniformly at random, i.e.

generate the k × n coefficient matrix A of f by independently choosing each entry of A from R uniformly at

random, then

Pr {f(x) = f(y)} = |I|−k, (3)

where I denotes the left ideal

{

n
∑

i=1

riai

∣

∣

∣

∣

∣

ri ∈ R, ∀ 1 ≤ i ≤ n

}

.

D. Polynomial Functions

Definition II.13. A polynomial function of k variables over a finite ring R is a function g : Rk → R of the

form

g(x1, x2, · · · , xk) =
m
∑

j=0

ajx
m1j

1 x
m2j

2 · · ·x
mkj

k , (4)

where aj ∈ R and m and mij’s are non-negative integers. The set of all the polynomial functions of k variables

over ring R is designated by R[k].
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Remark 2. Polynomial and polynomial function are sometimes only defined over a commutative ring [32]. It

is a very delicate matter to define them over a non-commutative ring [33], [34], due to the fact that x1x2 and

x2x1 can become different objects. We choose to define “polynomial functions” with formula (4) because those

functions are within the scope of this paper’s interest.

Lemma II.14 ([1]). For any discrete function g :
k
∏

i=1

Xi → Y with Xi’s and Y being finite, there always

exist a finite ring (field) and a polynomial function ĝ ∈ R[k] such that

ν (g (x1, x2, · · · , xk)) = ĝ (µ1(x1), µ2(x2), · · · , µk(xk))

for some injections µi : Xi → R (1 ≤ i ≤ k) and ν : Y → R.

The important message conveyed by Lemma II.14 says that any discrete function defined on a finite domain

is essentially a restriction [14, Definition II.3] of some polynomial function. Therefore, we can restrict the

consideration of Problem 2 to all polynomial functions. This polynomial approach [14], [18] offers a very

good insight into the general problem. After all, the algebraic structure of a polynomial function is much more

accessible than that of an arbitrary mapping (function). Most importantly, a polynomial function can often be

expressed in several formats. Some of them are very helpful in tackling Problem 2 [14], [18].

Lemma II.15 ([1]). Let X1,X2, · · · ,Xs and Y be some finite sets. For any discrete function g :

s
∏

t=1

Xt → Y ,

there exist a finite ring (field) R, functions kt : Xt → R and h : R → Y , such that

g(x1, x2, · · · , xs) = h

(

s
∑

t=1

kt(xt)

)

. (5)

We often name the polynomial function ĝ in Lemma II.14 a polynomial presentation of g. The left hand

side of (5) is termed a nomographic function (by terminology borrowed from [35]) over R. It is said to be a

nomographic presentation of g. Readers are kindly referred to [18] for other interested formats. As a simple

demonstration [14], one can see that the function min{x, y} defined on {0, 1} × {0, 1} (with order 0 < 1)

admits polynomial presentations xy ∈ Z2[2] and x+ y− (x+ y)2 defined on {0, 1}×{0, 1} ( Z2
3. The second

one gives a nomographic presentation.

III. SUPREMUS TYPICAL SEQUENCES

This paper will from now on not rely on the traditional (weakly/strongly) typical sequence argument [2].

Instead, a new typicality concept is defined. This new concept is stronger in the sense of characterizing the

stochastic behaviors of random processes/sources. Although this concept is only defined for and applied to

Markovian processes/sources in this paper, the idea can be easily generalized to other random processes/sources,

e.g. a.m.s. processes/sources [27]. Before proceeding, we need the following background material from Meyer

[9], cited here for completeness.

Given a Markov chain M =
{

X(n)
}

with state space X and a non-empty subset A of X , let

TA,l =























inf
{

n > 0|X(n) ∈ A
}

; l = 1,

inf
{

n > TA,l−1|X
(n) ∈ A

}

; l > 1,

sup
{

n < TA,l+1|X
(n) ∈ A

}

; l < 1.



9

It is well-known that MA =
{

X(TA,l)
}

is Markov by the strong Markov property [29, Theorem 1.4.2]. In

particular, if M is irreducible, so is MA. To be more precise, if M is irreducible, and write its invariant

distribution and transition matrix as π = [pi]i∈X and

P =





PA,A PA,Ac

PAc,A PAc,Ac



 ,

respectively, then

SA = PA,A +PA,Ac (1−PAc,Ac)
−1

PAc,A,

is the transition matrix of MA [9, Theorem 2.1 and Section 3]. πA =

[

pi
∑

j∈A pj

]

i∈A

is an invariant distribution

of SA, i.e. πASA = πA [9, Theorem 2.2]. Since MA inherits irreducibility from M [9, Theorem 2.3], πA is

unique. The matrix SA is termed the stochastic complement of PA,A in P, while MA is named a reduced

Markov chain (or reduced process) of M . It has state space A obviously.

Definition III.1 (Supremus Typicality). Following the notation defined above, given ǫ > 0 and a sequence

x =
[

x(1), x(2), · · · , x(n)
]

∈ X
n of length n (≥ 2 |X |), let xA be the subsequence of x formed by all those

x(l)’s that belong to A in the original ordering. x is said to be Supremus ǫ-typical with respect to P, if and

only if xA is strongly Markov ǫ-typical with respect to SA for any feasible non-empty subset A of X .

In Definition III.1, the set of all Supremus ǫ-typical sequences with respect to P in X
n is denoted as Sǫ(n,P)

or Sǫ for simplicity. xA is called a reduced subsequence (with respect to A) of x. It follows immediately form

the definition that

Proposition III.2. Every reduced subsequence of a Supremus ǫ-typical sequence is Supremus ǫ-typical.

However, the above proposition does not hold for strongly Markov ǫ-typical sequences. Namely, a reduced

subsequence of a strongly Markov ǫ-typical sequence is not necessarily strongly Markov ǫ-typical.

Example III.3. Let {α, β, γ} be the state space of an i.i.d. process with a uniform distribution, i.e.

P =











1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3











,

and

x = (α, β, γ, α, β, γ, α, β, γ).

It is easy to verify that x is a strongly Markov 5/12-typical sequence. However, the reduced subsequence

x{α,γ} = (α, γ, α, γ, α, γ)

is no long a strongly Markov 5/12-typical sequence, because S{α,γ} =





0.5 0.5

0.5 0.5



 and

∣

∣

∣

∣

the number of subsequence (α, α)’s in x{α,γ}

6
− 0.5

∣

∣

∣

∣

= |0− 0.5| >
5

12
.
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Proposition III.4 (AEP of Supremus Typicality). Let M =
{

X(n)
}

be an irreducible Markov chain with

state space X , and P = [pi,j ]i,j∈X and π = [pj ]j∈X
be its transition matrix and invariant distribution,

respectively. For any η > 0, there exist ǫ0 > 0 and N0 ∈ N+, such that, ∀ ǫ0 > ǫ > 0, ∀ n > N0 and

∀ x =
[

x(1), x(2), · · · , x(n)
]

∈ Sǫ(n,P),

1) exp2 [−n (H(P|π) + η)] < Pr
{[

X(1), X(2), · · · , X(n)
]

= x
}

< exp2 [−n (H(P|π)− η)];

2) Pr {X /∈ Sǫ(n,P)} < η, where X =
[

X(1), X(2), · · · , X(n)
]

; and

3) |Sǫ(n,P)| < exp2 [n (H(P|π) + η)].

Proof: Note that Tǫ(n,P) ⊇ Sǫ(n,P). Thus, 1) and 3) are inherited from the AEP of strongly Markov

typicality. In addition, 2) can be proved without any difficulty since any reduced Markov chain of M is

irreducible and the number of reduced Markov chains of M is, 2|X | − 1, finite.

Remark 3. Motivated by Definition III.1, Proposition III.4 and two related typicality lemmas in Appendix C,

one can define the concept of Supremus type resembling other classic notions of types [26], e.g. Markov type

[25].

Remark 4. It is known that Shannon’s (weakly/strongly) typical sequences [2] are defined to be those sequences

“representing” the stochastic behavior of the whole random process. To be more precise, a non (weakly/strongly)

typical sequence is unlikely to be produced by the random procedure (Proposition II.6). However, the study of

induced transformations7 in ergodic theory [37] suggests that (weakly/strongly) typical sequences that are not

Supremus typical form also a low probability set [36]. When the random procedure propagates, it is highly likely

that all reduced subsequences of the generated sequence also admit empirical distributions “close enough” to the

genuine distributions of corresponding reduced processes as seen from Proposition III.4. Therefore, Supremus

typical sequences “represent” the random process better. This difference has been seen from Proposition III.2

and Example III.3 and will be seen again in comparing the two typicality lemmas, Lemma III.5 and Lemma

III.6, given later.

The following two typicality lemmas of Supremus typical sequences are the ring versions tailored for our

discussions from the two given in Appendix C, respectively. From these two lemmas, we will start to see the

impact brought to the analytic results by the differences between classical typicality and Supremus typicality.

Lemma III.5. Let R be a finite ring, M =
{

X(n)
}

be an irreducible Markov chain whose state space,

transition matrix and invariant distribution are R, P and π = [pj ]j∈R
, respectively. For any η > 0, there exist

ǫ0 > 0 and N0 ∈ N+, such that, ∀ ǫ0 > ǫ > 0, ∀ n > N0, ∀ x ∈ Sǫ(n,P) and ∀ I ≤l R,

|Sǫ(x, I)| < exp2







n





∑

A∈R/I

∑

j∈A

pjH(SA|πA) + η











(6)

=exp2
{

n
[

H(SR/I|π) + η
]}

(7)

7See [36] for the correspondence between an induced transformation and a reduced process of a random process (a dynamical system).
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where

Sǫ(x, I) = {y ∈ Sǫ(n,P)|y − x ∈ In} ,

SA is the stochastic complement of PA,A in P, πA =

[

pi
∑

j∈A pj

]

i∈A

is the invariant distribution of SA and

SR/I = diag
{

{SA}A∈R/I

}

.

Remark 5. By definition, for any y ∈ Sǫ(x, I) in Lemma III.5, we have that y and x follow the same sequential

pattern, i.e. the ith coordinates of both sequences are from the same coset of I. If I = R, then Sǫ(x, I) is

the whole set of Supremus typical sequences. It is well-known that evaluating the cardinality of the set of all

the (weakly/strongly) typical sequences is of great importance to the achievability part of the source coding

theorem [4]. We will see from the next section that determining the number of (weakly/strongly/Supremus)

typical sequences of certain sequential pattern is also very important to the achievability result for linear coding

over finite rings.

Proof of Lemma III.5: Assume that x =
[

x(1), x(2), · · · , x(n)
]

and let xA be the subsequence of x formed

by all those x(l)’s that belong to A ∈ R/I in the original ordering. For any y =
[

y(1), y(2), · · · , y(n)
]

∈

Sǫ(x, I), obviously y(l) ∈ A if and only if x(l) ∈ A for all A ∈ R/I and 1 ≤ l ≤ n. Let xA =
[

x(n1), x(n2), x(nmA
)
]

(note:
∑

A∈R/I

mA = n and

∣

∣

∣

∣

∣

∣

mA

n
−
∑

j∈A

pj

∣

∣

∣

∣

∣

∣

< |A| ǫ +
1

n
). By Proposition III.2, yA =

[

y(n1), y(n2), y(nmA
)
]

∈ AmA is a strongly Markov ǫ-typical sequence of length mA with respect to SA, since y

is Supremus ǫ-typical. Additionally, by Proposition II.6, there exist ǫA > 0 and positive integer MA such that the

number of strongly Markov ǫ-typical sequences of lengthmA is upper bounded by exp2 {mA [H(SA|πA) + η/2]}

if 0 < ǫ < ǫA and mA > MA. Therefore, if 0 < ǫ < min
A∈R/I

ǫA, n > M = max
A∈R/I







1 +MA
∣

∣

∣

∑

j∈A pj − |A| ǫ
∣

∣

∣







(this

guarantees that mA > MA for all A ∈ R/I), then

|Sǫ(x, I)| ≤ exp2







∑

A∈R/I

mA [H(SA|πA) + η/2]







=exp2







n





∑

A∈R/I

mA

n
H(SA|πA) + η/2











.

Furthermore, choose 0 < ǫ0 ≤ min
A∈R/I

ǫA and N0 ≥ M such that
mA

n
<
∑

j∈A

pj +
η

2
∑

A∈R/IH(SA|πA)
for

all 0 < ǫ < ǫ0 and n > N0 and A ∈ R/I, we have

|Sǫ(x, I)| < exp2







n





∑

A∈R/I

∑

j∈A

pjH(SA|πA) + η











,

(6) is established. Direct calculation yields (7).

At this point, one might argue to replace Sǫ(x, I) in Lemma III.5 with Tǫ(x, I) = {y ∈ Tǫ(n,P)|y − x ∈ In},

the set of strongly Markov ǫ-typical sequences having the same sequential pattern as those from Sǫ(x, I), to

keep the argument inside the classical typicality framework. Unfortunately, a reduced subsequence of a sequence

from Tǫ(x, I) is not necessarily strongly Markov ǫ-typical anymore (Proposition III.2 fails). Thus, the same
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proof does not follow. Even though a corresponding bound of |Tǫ(x, I)| (see Lemma III.6) can be obtained,

this bound is often very hard to evaluate as seen later.

Lemma III.6. In Lemma III.5,

|Sǫ(x, I)| ≤ |Tǫ(x, I)| < exp2

{

n

[

H (P|π)− lim
m→∞

1

m
H
(

Y
(m)
R/I, Y

(m−1)
R/I , · · · , Y

(1)
R/I

)

+ η

]}

, (8)

where Y
(m)
R/I = X(m) + I is a random variable with sample space R/I.

Proof: |Sǫ(x, I)| ≤ |Tǫ(x, I)| is obvious. Assume that x =
[

x(1), x(2), · · · , x(n)
]

and let

y =
[

x(1) + I, x(2) + I, · · · , x(n) + I

]

.

For any y =
[

y(1), y(2), · · · , y(n)
]

∈ Tǫ(x, I), obviously y(l) ∈ A if and only if x(l) ∈ A for all A ∈ R/I and

1 ≤ l ≤ n. Moreover,

y =
[

y(1) + I, y(2) + I, · · · , y(n) + I

]

.

y is jointly typical with y [10] with respect to the process

· · · ,





X(1)

Y
(1)
R/I



 ,





X(2)

Y
(2)
R/I



 , · · · ,





X(n)

Y
(n)
R/I



 , · · ·

Therefore, there exist ǫ0 > 0 and N0 ∈ N+, such that, ∀ ǫ0 > ǫ > 0 and ∀ n > N0,

|Tǫ(x, I)| < exp2

{

n

[

lim
m→∞

1

m
H
(

X(m), X(m−1), · · · , X(1)
)

− lim
m→∞

1

m
H
(

Y
(m)
R/I, Y

(m−1)
R/I , · · · , Y

(1)
R/I

)

+ η

]}

=exp2

{

n

[

H (P|π) − lim
m→∞

1

m
H
(

Y
(m)
R/I, Y

(m−1)
R/I , · · · , Y

(1)
R/I

)

+ η

]}

,

where the equality follows from the fact that lim
m→∞

1

m
H
(

X(m), X(m−1), · · · , X(1)
)

= H (P |π ) since M is

irreducible Markov.

Remark 6. If R in Lemma III.5 is a field, then both (7) and (8) are equivalent to

|Sǫ(x, I)| < exp2 [n (H (P|π) + η)] .

Or, if M in Lemma III.5 is i.i.d., then both (7) and (8) are equivalent to

|Sǫ(x, I)| < exp2

[

n
(

H
(

X(1)
)

−H
(

Y
(1)
R/I

)

+ η
)]

,

which is a special case of the generalized conditional typicality lemma [1, Lemma III.5].

Remark 7. In Lemma III.6, if P = c1U+ (1− c1)1 with all rows of U being identical and 0 ≤ c1 ≤ 1, then

M
′ =

{

Y
(n)
R/I

}

is Markovian by Lemma B.1. As a conclusion,

|Sǫ(x, I)| ≤ |Tǫ(x, I)|

< exp2

{

n
[

H (P|π) − lim
m→∞

H
(

Y
(m)
R/I

∣

∣

∣
Y

(m−1)
R/I

)

+ η
]}

=exp2 {n [H (P|π) −H (P′|π′) + η]} ,
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where P′ and π′ are the transition matrix and the invariant distribution of M
′ that can be easily calculated

from P.

From Remark 6 and Remark 7, we have seen that the two bounds (7) and (8) coincide, and both can be

easily calculated for some special scenarios. Unfortunately, for general settings (when the initial distribution of

M is not known or P 6= c1U+ (1− c1)1 for any U and c1), (8) becomes almost unaccessible because there

is no efficient way to evaluate the entropy rate of
{

Y
(n)
R/I

}

. On the other hand, (7) is always as straightforward

as calculating the conditional entropy.

Example III.7. Let M be an irreducible Markov chain with state space Z4 = {0, 1, 2, 3}. Its transition matrix

P = [pi,j ]i,j∈Z4
is given as the follows.

0 1 2 3

0 .2597 .2093 .2713 .2597

1 .1208 .0872 .6711 .1208

2 .0184 .2627 .4101 .3088

3 .0985 .1823 .2315 .4877

(9)

Let I = {0, 2}. Notice that the initial distribution is unknown, neither P = c1U + (1 − c1)1 for any U and

c1. Thus, the upper bound of |Sǫ(x, I)| and |Tǫ(x, I)| from (8) is not very meaningful for calculation since the

entropy rate is not explicitly known. In contrast, we have that

|Sǫ(x, I)| < 20.8791

by (7).

The above is partially the reason we forsake the traditional (weakly/strongly) typical sequence argument of

Shannon [2], and introduce an argument based on Supremus typicality.

IV. ACHIEVABILITY THEOREM OF MARKOV SOURCE COMPRESSION WITH LINEAR CODING

Equipped with the foundation laid down by Proposition III.4, Lemma III.5 and Lemma III.6, we resume our

discussion of the Markov source coding problem of linear coding over finite rings. This is a special scenario of

Problem 2 with s = 1, g being an identity function and M =
{

X
(n)
1

}

=
{

Y (n)
}

being irreducible Markov. It

is known from [10] that the achievable coding rate region for compressing M is {R ∈ R|R > H(P|π)} where

P and π are the transition matrix and invariant distribution of M , respectively. Unfortunately, the structures

of the encoders used in [10] are unclear (as their Slepian–Wolf correspondences) which limits their application

(to Problem 2) as we will see in later sections. This motivates the study of encoders with explicit algebraic

structures. We will examine the achievability of linear encoder over a finite ring for this special scenario of

Problem 2. The significance of this to other more general settings, where s and g are both arbitrary, will be

seen in Section V.

Theorem IV.1. Assume that s = 1, X1 = Y is some finite ring R and g is an identity function in Problem 2,

and additionally
{

X
(n)
1

}

=
{

Y (n)
}

is irreducible Markov with transition matrix P and invariant distribution
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π. We have that

R > max
06=I≤lR

log |R|

log |I|
min

{

H(SR/I|π), H (P|π) − lim
m→∞

1

m
H
(

Y
(m)
R/I, Y

(m−1)
R/I , · · · , Y

(1)
R/I

)

}

, (10)

where

SR/I = diag
{

{SA}A∈R/I

}

with SA being the stochastic complement of PA,A in P and Y
(i)
R/I = X

(i)
1 + I, is achievable with linear

coding over R. To be more precise, for any ǫ > 0, there is an N0 ∈ N+ such that there exist a linear encoder

φ : Rn → Rk and a decoder ψ : Rk → Rn for all n > N0 with

Pr {ψ (φ (Y n)) 6= Y n} < ǫ,

provided that

k > max
06=I≤lR

n

log |I|
min

{

H(SR/I|π), H (P|π)− lim
m→∞

1

m
H
(

Y
(m)
R/I, Y

(m−1)
R/I , · · · , Y

(1)
R/I

)

}

.

Proof: Let

R0 = max
06=I≤lR

log |R|

log |I|
min

{

H(SR/I|π), H (P|π)− lim
m→∞

1

m
H
(

Y
(m)
R/I, Y

(m−1)
R/I , · · · , Y

(1)
R/I

)

}

and, for any R > R0 and n ∈ N+, let k =

⌊

nR

log |R|

⌋

. Obviously, for any 0 6= I ≤l R and
log |I|

log |R|

R−R0

2
>

η > 0, if n >
2 log |I|

η
, then

(

log |I|

log |R|
R0 −

k

n
log |I|

)

<

(

log |I|

log |R|
R− 2η −

k

n
log |I|

)

≤
log |I|

n
− 2η

<− 3η/2.

Let N ′
0 = max

o 6=I≤lR

2 log |I|

η
. We have that

min

{

H(SR/I|π), H (P|π)− lim
m→∞

1

m
H
(

Y
(m)
R/I, Y

(m−1)
R/I , · · · , Y

(1)
R/I

)

}

+ η −
k

n
log |I|

≤
log |I|

log |R|
R0 + η −

k

n
log |I|

=− η/2 (11)

for all n > N ′
0. The following proves that R is achievable with linear coding over R.

1) Encoding:

Choose some n ∈ N+ and generate a k×n matrix A over R uniformly at random (independently choose

each entry of A from R uniformly at random). Let the encoder be the linear mapping

φ : x 7→ Ax, ∀ x ∈ Rn.

We note that the coding rate is
1

n
log |φ(Rn)| ≤

1

n
log
∣

∣Rk
∣

∣ =
log |R|

n

⌊

nR

log |R|

⌋

≤ R.

2) Decoding:

Choose an ǫ > 0. Assume that z ∈ Rk is the observation, the decoder claims that x ∈ Rn is the original

data sequence encoded, if and only if
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a) x ∈ Sǫ(n,P); and

b) ∀ x′ ∈ Sǫ(n,P), if x′ 6= x, then φ(x′) 6= z. In other words, the decoder ψ maps z to x.

3) Error:

Assume that X ∈ Rn is the original data sequence generated. An error occurs if and only if

E1 X /∈ Sǫ(n,P); or

E2 There exists x′ ∈ Sǫ(n,P) such that φ(x′) = φ(X).

4) Error Probability:

We claim that there exist N0 ∈ N+ and ǫ0 > 0, if n > N0 and ǫ0 > ǫ > 0, then Pr {ψ(φ(X)) 6= X} =

Pr {E1 ∪ E2} < η. First of all, by the AEP of Supremus typicality (Proposition III.4), there exist N ′′
0 ∈

N+ and ǫ′′0 > 0 such that Pr {E1} < η/2 if n > N ′′
0 and ǫ′′0 > ǫ > 0. Secondly, let Ec

1 be the complement

of E1. We have

Pr {E2|E
c
1}

=
∑

x′∈Sǫ\{X}

Pr {φ(x′) = φ(X)|Ec
1}

≤
∑

06=I≤lR

∑

x′∈Sǫ(X,I)\{X}

Pr {φ(x′) = φ(X)|Ec
1} (12)

<
∑

06=I≤lR

exp2
[

n(rR/I + η)
]

|I|−k
(13)

<
(

2|R| − 2
)

max
06=I≤lR

exp2

[

n

(

rR/I + η −
k

n
log |I|

)]

(14)

<
(

2|R| − 2
)

exp2(−nη/2), (15)

where rR/I = min

{

H(SR/I|π), H (P|π)− lim
m→∞

1

m
H
(

Y
(m)
R/I, Y

(m−1)
R/I , · · · , Y

(1)
R/I

)

}

,

(12) follows from the fact that Sǫ(n,P) =
⋃

06=I≤lR

Sǫ(X, I);

(13) is from the typicality lemmas, Lemma III.5 and Lemma III.6, and Lemma II.12, and it is required

that ǫ is smaller than some ǫ′′′0 > 0 and n is larger than some N ′′′
0 ∈ N+;

(14) is due to the fact that the number of non-trivial left ideals of R is bounded by 2|R| − 2;

(15) is from (11), and it is required that n > N ′
0.

Let N0 = max

{

N ′
0, N

′′
0 , N

′′′
0 ,

⌈

2

η
log

[

2

η

(

2|R| − 2
)

]⌉}

and ǫ0 = min{ǫ′′0 , ǫ
′′′
0 }. We have that

Pr {E2|E
c
1} < η/2 and Pr {Ec

1} < η/2

if n > N0 and ǫ0 > ǫ > 0. Hence, Pr {E1 ∪ E2} = Pr {E2|E
c
1}+ Pr {Ec

1} < η.

By 1) – 4), the theorem is established.

Remark 8. From the proof of Theorem IV.1, it is seen that we use the Supremus typicality encoding-decoding

technique, in contrast to the traditional (weakly/strongly) typical sequence argument. Technically speaking, if

one uses a traditional (weakly/strongly) typical sequence argument, Lemma III.5 will not apply. Consequently,

the traditional argument will only achieve the inner bound

R > max
06=I≤lR

log |R|

log |I|

[

H (P|π) − lim
m→∞

1

m
H
(

Y
(m)
R/I, Y

(m−1)
R/I , · · · , Y

(1)
R/I

)

]

, (16)
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of (10). Similarly, the inner bound

R > max
06=I≤lR

log |R|

log |I|
H(SR/I|π), (17)

is achieved if applying only Lemma III.5 (but not Lemma III.6). Obviously, (10) is the union of these two

inner bounds. However, as we have mentioned before, (16) is hard to access in general due to engaging with

the entropy rate. Thus, based on (16), it is often hard to draw a optimality conclusion regarding compressing

a Markov source as seen below.

Example IV.2. Let M be an irreducible Markov chain with state space Z4 = {0, 1, 2, 3} and transition matrix

P = [pi,j ]i,j∈Z4
defined by (9). With simple calculation, (17) says that

R > max{1.8629, 1.7582}= H(P|π),

where π is the invariant distribution of M , is achievable with linear coding over Z4. Optimality is attained,

i.e. (10) and (17) coincide with the optimal achievable region (cf. [10]). On the contrary, the achievable rate

(16) drawn from the traditional typicality argument does not lead to the same optimality conclusion. Because

there is no efficient method to evaluate the entropy rate in (16), since neither the initial distribution is known,

nor P = c1U+ (1− c1)1 for any U and c1.

Generally speaking, X or Y is not necessarily associated with any algebraic structure. In order to apply the

linear encoder, we usually assume that Y in Problem 2 is mapped into a finite ring R of order at least |Y | by

some injection Φ : Y → R and denote the set of all possible injections by I(Y ,R).

Theorem IV.3. Assume that s = 1, g is an identity function and
{

X
(n)
1

}

=
{

Y (n)
}

is irreducible Markov

with transition matrix P and invariant distribution π in Problem 2. For a finite ring R of order at least |Y |

and ∀ Φ ∈ I(Y ,R), let

rΦ = max
06=I≤lR

log |R|

log |I|
min

{

H(SΦ,I|π), H (P|π)− lim
m→∞

1

m
H
(

Y
(m)
R/I, Y

(m−1)
R/I , · · · , Y

(1)
R/I

)

}

,

where

SΦ,I = diag
{

{

SΦ−1(A)

}

A∈R/I

}

with SΦ−1(A) being the stochastic complement of PΦ−1(A),Φ−1(A) in P and Y
(m)
R/I = Φ

(

X
(m)
1

)

+I, and define

RΦ = {R ∈ R|R > rΦ} .

We have that

⋃

Φ∈I(Y ,R)

RΦ (18)

is achievable with linear coding over R.

Proof: The result follows immediately from Theorem IV.1 by a timesharing argument.

Remark 9. In Theorem IV.3, assume that Y is some finite ring itself, and let τ be the identity mapping in

I(Y ,Y ). It could happen that Rτ ( RΦ for some Φ ∈ I(Y ,Y ). This implies that region given by (10) could
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be strictly smaller than (18). Therefore, a “reordering” of elements in the ring Y is required when seeking for

better linear encoders.

Remark 10. By Lemma B.1, if, in Theorem IV.1, P = c1U + (1 − c1)1 with all rows of U being identical

and 0 ≤ c1 ≤ 1, then

R > max
06=I≤lR

log |R|

log |I|
min

{

H(SR/I|π), H (P|π)− lim
m→∞

H
(

Y
(m)
R/I

∣

∣

∣Y
(m−1)
R/I

)}

is achievable with linear coding over R. Similarly, if P = c1U + (1 − c1)1 in Theorem IV.3, then, for all

Φ ∈ I(Y ,R),

RΦ =

{

R ∈ R

∣

∣

∣R > max
06=I≤lR

log |R|

log |I|
min

{

H(SΦ,I|π), H (P|π)− lim
m→∞

H
(

Y
(m)
R/I

∣

∣

∣Y
(m−1)
R/I

)}

}

.

Although the achievable regions presented in the above theorems are comprehensive, they depict the optimal

one in many situations, i.e. (18) (or (10)) is identical to H(P|π). This has been demonstrated in Example IV.2

above, and more is shown in the following.

Corollary IV.4. In Theorem IV.1 (or Theorem IV.3), if R is a finite field, then

R > H(P|π)

(or RΦ = {R ∈ R |R > H(P|π)} , ∀ Φ ∈ I(Y ,R), )

is achievable with linear coding over R.

Proof: If R is a finite field, then R is the only non-trivial left ideal of itself. The statement follows, since

SR/R = P (SΦ,R = P) and H
(

Y
(m)
R/R

)

= 0 for all feasible m.

Corollary IV.5. In Theorem IV.3, if P describes an i.i.d. process, i.e. the row vectors of P are identical to

π = [pj ]j∈Y , then

RΦ =

{

R ∈ R

∣

∣

∣

∣

R > max
06=I≤lR

log |R|

log |I|
[H(π) −H(πΦ,I)]

}

, ∀ Φ ∈ I(Y ,R),

where πΦ,I =





∑

j∈Φ−1(A)

pj





A∈R/I

, is achievable with linear coding over R. In particular, if

1) R is a field with |R| ≥ |Y |; or

2) R, with |R| ≥ |Y |, contains one and only one proper non-trivial left ideal I0 and |I0| =
√

|R|; or

3) R is a product ring of several rings satisfying condition 1) or 2),

then
⋃

Φ∈I(Y ,R)

RΦ = {R ∈ R |R > H(π)} .

Proof: The first half of the statement follows from Theorem IV.3 by direct calculation. The second half is

from [38].

Remark 11. Concrete examples of the finite ring from Corollary IV.5 includes, but are not limited to:

1) Zp, where p ≥ |Y | is a prime, as a finite field;

2) Zp2 and ML,p =











x 0

y x





∣

∣

∣

∣

∣

∣

x, y ∈ Zp







, where p ≥
√

|Y | is a prime;
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3) ML,p1
× Zp2

, where p1 ≥ |Y | and p2 ≥ |Y | are primes.

Since there always exists a prime p with p2 ≥ |Y | in Theorem IV.3, Corollary IV.5 guarantees that there always

exist optimal linear encoders over some non-field ring, say Zp2 or ML,p, if the source is i.i.d. [38].

Corollary IV.5 can be generalized to the multiple sources scenario in a memoryless setting (see [1], [38]). More

precisely, the Slepian–Wolf region is always achieved with linear coding over some non-field ring. Unfortunately,

it is neither proved nor denied that a corresponding existence conclusion for the (single or multivariate [39])

Markov source(s) scenario holds. Nevertheless, Example IV.2, Corollary IV.5 and [38] do affirmatively support

such an assertion to their own extents.

Even if it is unproved that linear coding over non-field ring is optimal for the scenario of Problem 2 considered

in this section, it will be seen in later sections that linear coding over non-field ring strictly outperforms its

field counterpart in other settings of this problem.

V. SOURCE CODING FOR ENCODING MARKOVIAN FUNCTIONS

We now move on to a more general setting of Problem 2, where both s and g are arbitrary. Generally

speaking, R[g] is unknown when g is not an identity function (e.g. the binary sum), and it is larger (strictly in

many cases) than the Slepian–Wolf region. However, not much is known for the case of sources with memory.

Let

Rs =

{

[R1, R2, · · · , Rs] ∈ Rs

∣

∣

∣

∣

∑

t∈T

Rt > lim
n→∞

1

n

[

H
(

X(n), X(n−1), · · · , X(1)
)

−H
(

X
(n)
T c , X

(n−1)
T c , · · · , X

(1)
T c

) ]

, ∅ 6= T ⊆ S

}

8, (19)

where T c = S \ T and X
(n)
T is the random variable array

∏

t∈T

X
(n)
t . By [10], if the process

· · · , X(1), X(2), · · · , X(n), · · ·

is jointly ergodic9 (stationary ergodic), then Rs = R[g] for an identity function g. Naturally, Rs is an

inner bound for R[g] in the case of an arbitrary g. But Rs is not always tight (optimal), i.e. Rs ( R[g],

as we will demonstrate later in Example V.1. Even for the special scenario of correlated i.i.d. sources, i.e.

· · · , X(1), X(2), · · · , X(n), · · · is i.i.d., Rs, which is then the Slepian–Wolf region, is not tight (optimal) in

general. Unfortunately, little is mentioned in the existing literature regarding the situation that · · · , X(1), X(2),

· · · , X(n), · · · is not memoryless, neither for the case that · · · , Y (1), Y (2), · · · , Y (n), · · · is homogeneous

Markovian (which does not necessarily imply that · · · , X(1), X(2), · · · , X(n), · · · is jointly ergodic or ho-

mogeneous Markov (see Example V.3)).

We begin with briefing the reader on our main idea with Example V.1 in the following. This example shows

that the achievable coding rate region for computing a linear function g of s variables is likely to be strictly

larger than Rs in the setting of sources with memory.

8Assume the limits exist.

9Jointly ergodic defined by Cover [10] is equivalent to stationary ergodic, a condition supporting the Shannon–McMillan–Breiman

Theorem. Stationary ergodic is a special case of a.m.s. ergodic [27]. The later is a sufficient and necessary condition for the Point-wise

Ergodic Theorem to hold [27, Theorem 1]. The Shannon–McMillan–Breiman Theorem holds under this universal condition as well [27].
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Example V.1. Consider three sources S1, S2 and S3 generating random data X
(i)
1 , X

(i)
2 and X

(i)
3 (at time

i ∈ N+) whose sample spaces are all X1 = X2 = X3 = {0, 1} ( Z4, respectively. Let g : X1×X2×X3 → Z4

be defined as

g : (x1, x2, x3) 7→ x1 + 2x2 + 3x3, (20)

and assume that
{

X(n)
}

, where X(i) =
(

X
(i)
1 , X

(i)
2 , X

(i)
3

)

, forms a Markov chain with transition matrix

(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)

(0, 0, 0) .1397 .4060 .0097 .0097 .0097 .0097 .4060 .0097

(0, 0, 1) .0097 .5360 .0097 .0097 .0097 .0097 .4060 .0097

(0, 1, 0) .0097 .4060 .1397 .0097 .0097 .0097 .4060 .0097

(0, 1, 1) .0097 .4060 .0097 .1397 .0097 .0097 .4060 .0097

(1, 0, 0) .0097 .4060 .0097 .0097 .1397 .0097 .4060 .0097

(1, 0, 1) .0097 .4060 .0097 .0097 .0097 .1397 .4060 .0097

(1, 1, 0) .0097 .4060 .0097 .0097 .0097 .0097 .5360 .0097

(1, 1, 1) .0097 .4060 .0097 .0097 .0097 .0097 .4060 .1397

In order to recover g at the decoder, one solution is to apply Cover’s method [10] to first decode the original

data and then compute g. This results in an achievable region

R3 =

{

[R1, R2, R3] ∈ R3

∣

∣

∣

∣

∑

t∈T

Rt > lim
m→∞

[

H
(

X
(m)
1 , X

(m)
2 , X

(m)
3

∣

∣

∣X
(m−1)
1 , X

(m−1)
2 , X

(m−1)
3

)

−H
(

X
(m)
T c

∣

∣

∣X
(m−1)
T c

) ]

, ∅ 6= T ⊆ {1, 2, 3}

}

.

However, R3 is not optimal, i.e. coding rates beyond this region can be achieved. Observe that
{

Y (n)
}

,

where Y (i) = g
(

X(i)
)

, is an irreducible Markovian with transition matrix

0 3 2 1

0 .1493 .8120 .0193 .0193

3 .0193 .9420 .0193 .0193

2 .0193 .8120 .1493 .0193

1 .0193 .8120 .0193 .1493

(21)

By Theorem IV.1, for any ǫ > 0, there is an N0 ∈ N+, such that for all n > N0 there exist a linear

encoder φ : Zn
4 → Zk

4 and a decoder ψ : Zk
4 → Zn

4 , such that Pr {ψ (φ (Y n)) 6= Y n} < ǫ, where Y n =
[

Y (1), Y (2), · · · , Y (n)
]

, as long as

k >
n

2
×max {0.3664, 0.3226}= 0.1832n.

Further notice that

φ (Y n) = ~g
(

Zk
1 , Z

k
2 , Z

k
3

)

,



20

where Zk
t = φ (Xn

t ) (t = 1, 2, 3) and ~g
(

Zk
1 , Z

k
2 , Z

k
3

)

=



















g
(

Z
(1)
1 , Z

(1)
2 , Z

(1)
3

)

g
(

Z
(2)
1 , Z

(2)
2 , Z

(2)
3

)

...

g
(

Z
(k)
1 , Z

(k)
2 , Z

(k)
3

)



















, since g is linear. Thus,

another approach 10 is to use φ as encoder for each source. Upon observing Zk
1 , Zk

2 and Zk
3 , the decoder claims

that ψ
(

~g
(

Zk
1 , Z

k
2 , Z

k
3

))

is the desired data ~g (Xn
1 , X

n
2 , X

n
3 ). Obviously

Pr {ψ (~g [φ (Xn
1 ) , φ (X

n
2 ) , φ (X

n
3 )]) 6= Y n}

=Pr {ψ (φ (Y n)) 6= Y n} < ǫ,

as long as k > 0.1832n. As a consequence, the region

RZ4
=

{

[r, r, r] ∈ R3

∣

∣

∣

∣

r >
2k

n
= 0.4422

}

(22)

is achieved. Since

0.4422 + 0.4422 + 0.4422 < lim
m→∞

H
(

X
(m)
1 , X

(m)
2 , X

(m)
3

∣

∣

∣
X

(m−1)
1 , X

(m−1)
2 , X

(m−1)
3

)

= 1.4236,

we have that RZ4
is larger than R3. In conclusion, R3 is suboptimal for computing g.

Compared to the one stated in Example V.1, the native Problem 2 is too arbitrary in the sense that even the

stochastic property of the sources is unspecified. In order to obtain meaningful conclusions, we will further

assume that either condition (c0) or condition (c1) holds. It is easy to see that Example V.1 falls in the category

of (c0) which is in fact a special subclass of (c1). One practical interpretation of the mechanism (c0) illustrates

is as the following:

The datum generated at time n+1 (n ∈ N+) by each source inclines to be the same as the one generated

at time n. However, due to some “interference” introduced by the system, the generated data can vary

based on a distribution [ux]x∈X (a unitary vector). The weights of the two impacts are quantified by

1− c1 and c1, respectively.

As a special case of (c0), if c1 = 1, then the generated data sequence forms a correlated i.i.d. process. On the

other hand, the scene described by (c1) is much broader as mentioned. For instance, g can be a sum of two

sources with non-ergodic stochastic behavior, while the sum itself is Markovian. A very interesting realization

of such a phenomenon is given later in Example V.3 after the following theorem.

Theorem V.2. In Problem 2, assume that g satisfies (c1), and let P and π be the transition matrix and invariant

distribution of

{

Z(n) =
∑

t∈S

kt

(

X
(n)
t

)

}

, respectively. We have

R = {[R,R, · · · , R] ∈ Rs|R > R0} ⊆ R[g],

10 The idea of this approach is first introduced by Körner and Marton [5] for computing the modulo-two sum of two correlated i.i.d.

sources. The idea is to present the function as a sum of linear terms (in other words, an Abelian group function). It has been known for

long from the work of Körner–Marton [5] and Han–Kobayashi [13]. Csiszár mentioned that these phenomena observed by Körner–Marton

partially motivate his investigation on linear encoders over finite fields [3]. In [13, Proof of Theorem 2], an arbitrary function is presented

as a sum, although the word “group” is never mentioned. The same idea is then used in [16] which refers to it as “embedding” (into an

Abelian group function).
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where

R0 = max
06=I≤lR

log |R|

log |I|
min

{

H(SR/I|π), H (P|π) − lim
m→∞

1

m
H
(

Y
(m)
R/I, Y

(m−1)
R/I , · · · , Y

(1)
R/I

)

}

,

SR/I = diag
{

{SA}A∈R/I

}

with SA being the stochastic complement of PA,A in P and Y
(m)
R/I = Z(m) + I.

Moreover, if R is a field, then

R = {[R,R, · · · , R] ∈ Rs |R > H(P|π)} . (23)

Proof: Let Zn = (Z(1), Z(2), · · · , Z(n)). By Theorem IV.1, for any ǫ > 0, there exists an N0 ∈ N+ and

for all n > N0, there exist an linear encoder φ0 : Rn → Rk and a decoder ψ0 : Rk → Rn such that

Pr {ψ0 (φ0 (Z
n)) 6= Zn} < ǫ,

provided that k >
nR0

log |R|
. Choose φt = φ0 ◦ ~kt (t ∈ S) as the encoder for the tth sources and ψ = ψ0 ◦ γ,

where γ : Rs → R is defined as γ(x1, x2, · · · , xs) =
∑

t∈S

xt, as the decoder. We have that

Pr {ψ (φ1 (X
n
1 ) , φ2 (X

n
2 ) , · · · , φs (X

n
s )) 6= Zn}

=Pr
{

ψ0

(

γ
(

φ0

(

~kt (X
n
t )
)))

6= Zn
}

=Pr
{

ψ0

(

φ0

(

γ
(

~kt (X
n
t )
)))

6= Zn
}

=Pr {ψ0 (φ0 (Z
n)) 6= Zn} < ǫ.

Therefore, [r, r, · · · r] ∈ Rs, where r =
k log |R|

n
> R0, is achievable for computing g. As a conclusion,

R ⊆ R[g]. If furthermore R is a field, then R is the only non-trivial left ideal of itself. (23) follows.

The following example illustrates a specific instance of (c1) that is not included in (c0). This example is

very interesting because it illustrates a scenario where the sources are not jointly ergodic (stationary ergodic)

nor a.m.s. ergodic. Thus, [10] does not apply. Yet, Theorem V.2 still provides a solution.
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Example V.3. Define Pα and Pβ to be

(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 1) (1, 1, 0) (1, 1, 1) (1, 0, 0)

(0, 0, 0) .2597 .2093 .2713 .2597 0 0 0 0

(0, 0, 1) .1208 .0872 .6711 .1208 0 0 0 0

(0, 1, 0) .0184 .2627 .4101 .3088 0 0 0 0

(0, 1, 1) .0985 .1823 .2315 .4877 0 0 0 0

(1, 0, 1) .12985 .10465 .13565 .12985 .12985 .10465 .13565 .12985

(1, 1, 0) .0604 .0436 .33555 .0604 .0604 .0436 .33555 .0604

(1, 1, 1) .0092 .13135 .20505 .1544 .0092 .13135 .20505 .1544

(1, 0, 0) .04925 .09115 .11575 .24385 .04925 .09115 .11575 .24385

and

(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 1) (1, 1, 0) (1, 1, 1) (1, 0, 0)

(0, 0, 0) 0 0 0 0 .2597 .2093 .2713 .2597

(0, 0, 1) 0 0 0 0 .1208 .0872 .6711 .1208

(0, 1, 0) 0 0 0 0 .0184 .2627 .4101 .3088

(0, 1, 1) 0 0 0 0 .0985 .1823 .2315 .4877

(1, 0, 1) .2597 .2093 .2713 .2597 0 0 0 0

(1, 1, 0) .1208 .0872 .6711 .1208 0 0 0 0

(1, 1, 1) .0184 .2627 .4101 .3088 0 0 0 0

(1, 0, 0) .0985 .1823 .2315 .4877 0 0 0 0

,

respectively. Let M =
{

X(n)
}

be a non-homogeneous Markov chain whose transition matrix from time n to

time n+ 1 is

P(n) =











Pα; n is even,

Pβ ; otherwise.

Consider Example V.1 by replacing the original homogeneous Markov chain
{

X(n)
}

with M defined above. It

is easy to verify that there exists no invariant distribution π′ such that π′P(n) = π′ for all feasible n. This implies

that M is not jointly ergodic (stationary ergodic), nor a.m.s. ergodic. Otherwise, M will always possess an

invariant distribution induced from the stationary mean measure of the a.m.s. dynamical system describing M

[40, Theorem 7.1 and Theorem 8.1]. As a consequence, [10] does not apply. However, g Markovian although M

is not even homogeneous. In exact terms,
{

g
(

X(n)
)}

is homogeneous irreducible Markovian with transition

matrix P given by (9). Consequently, Theorem V.2 offers a solution which achieves

R = {[r, r, r]|r > H(P|π) = 1.8629} ,

where π is the unique eigenvector satisfying πP = π. Once again, the optimal coding rate H(P|π) for compress-

ing
{

g
(

X(n)
)}

is derived from the Supremus typicality argument, other than the classical (strongly/weakly)

typicality argument.

For an arbitrary g, Lemma II.15 promises that there always exist some finite ring R and functions kt : Xt →
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R (t ∈ S) and h : R → Y such that

g = h

(

∑

t∈S

kt

)

.

However, k =
∑

t∈S

kt is not necessarily Markovian, unless the process M =
{

X(n)
}

is Markov with transition

matrix c1U+ (1− c1)1 as stated in (c0). In that case, k is always Markovian so claimed by Lemma B.1.

Corollary V.4. In Problem 2, assume that
{

X(n)
}

forms an irreducible Markov chain with transition matrix

P0 = c1U+ (1− c1)1, where all rows of U are identical to some unitary vector and 0 ≤ c1 ≤ 1. Then there

exist some finite ring R and functions kt : Xt → R (t ∈ S) and h : R → Y such that

g(x1, x2, · · · , xs) = h

(

s
∑

t=1

kt(xt)

)

(24)

and M =

{

Z(n) =

s
∑

t=1

kt

(

X
(n)
t

)

}

is irreducible Markov. Furthermore, let π and P be the invariant

distribution and the transition matrix of M , respectively, and define

R0 = max
06=I≤lR

log |R|

log |I|
min

{

H(SR/I|π), H (P|π) − lim
m→∞

H
(

Y
(m)
R/I

∣

∣

∣Y
(m−1)
R/I

)}

where SR/I = diag
{

{SA}A∈R/I

}

with SA being the stochastic complement of PA,A in P and Y
(m)
R/I =

Z(m) + I. We have that

RR = {[R,R, · · · , R] ∈ Rs|R > R0} ⊆ R[g]. (25)

Proof: The existences of kt’s and h are from Lemma II.15, and Lemma B.1 ensures that M is Markovian.

In addition,
{

X(n)
}

is irreducible, so is M . Finally,

lim
m→∞

1

m
H
(

Y
(m)
R/I, Y

(m−1)
R/I , · · · , Y

(1)
R/I

)

= lim
m→∞

H
(

Y
(m)
R/I

∣

∣

∣Y
(m−1)
R/I

)

,

since
{

Y
(n)
R/I

}

is Markovian by Lemma B.1. This implies that RR ⊆ R[g] by Theorem V.2.

Remark 12. It is easy to verify that the irreducibility requirement in (c0) is equivalent to that ux > 0 for all

x ∈ X . Besides, if c1 = 1, then (c0) renders to the memoryless scenario, [1, Problem 1]. If this is the case,

Corollary V.4 resumes corresponding results of [1, Section VI] (see Corollary V.5).

Remark 13. For the function g in Corollary V.4, it is often the case that there exists more than one finite ring

R or more than one set of functions kt’s and h satisfying corresponding requirements. For example [1], the

polynomial function x + 2y + 3z ∈ Z4[3] admits also the polynomial presentation ĥ (x+ 2y + 4z) ∈ Z5[3],

where ĥ(u) =
∑

a∈Z5

a
[

1− (u− a)4
]

−
[

1− (u− 4)4
]

∈ Z5[1]. As a conclusion, a better inner bound of R[g]

is

Rs

⋃





⋃

R

⋃

PR(g)

RR



 , (26)

where PR(g) denotes all the polynomial presentations of format (24) of g over ring R.

Corollary V.5. In Corollary V.4, let π = [pj ]j∈R. If c1 = 1, namely,
{

X(n)
}

and M are i.i.d., then

RR =

{

[R,R, · · · , R] ∈ Rs

∣

∣

∣

∣

R > max
06=I≤lR

log |R|

log |I|
[H(π)−H(πI)]

}

⊆ R[g], (27)
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where πI =





∑

j∈A

pj





A∈R/I

.

Remark 14. In Corollary V.5, under many circumstances it may hold that max
06=I≤lR

log |R|

log |I|
[H(π)−H(πI)] =

H(π), i.e.

RR = {[R,R, · · · , R] ∈ Rs |R > H(π)} .

For example, when R is a field. However, R being a field is definitely not necessary. For more details, please

kindly refer to [1], [7], [38].

Corollary V.6. In Corollary V.4, R can always be chosen as a field. Consequently,

RR = {[R,R, · · · , R] ∈ Rs |R > H(P|π)} ⊆ R[g].

Remark 15. Although R in Corollary V.4 can always be chosen to be a field, the region RR is not necessarily

larger than when R is chosen as a non-field ring. On the contrary, RR is strictly larger when R is a non-field

ring than when it is chosen as a field in many case. This is because the induced P, as well as π, varies.

As mentioned, in Theorem V.2, Corollary V.4 and Corollary V.5, there may be more than one choice of such

a finite ring R satisfying the corresponding requirements. Among those choices, R can be either a field or a

non-field ring. Surprisingly, it is seen in (infinitely) many examples that using non-field ring outperforms using

a field. In many cases, it is proved that the achievable region obtained with linear coding over some non-field

ring is strictly larger than any that is achieved with its field counterpart, regardless which field is considered. [1,

Example VI.2] has demonstrated this in the setting of correlated i.i.d. sources. In the next section, this will be

once again demonstrated in the setting of sources with memory. In addition, other advantages of the non-field

ring linear coding technique will be investigated in comparing with the field version.

VI. ADVANTAGES: NON-FIELD RINGS VERSUS FIELDS

Clearly, our discussion regarding linear coding is mainly based on general finite rings which can be either

fields or non-field rings, each bringing their own advantages. In the setting where g is the identity function

in Problem 2, linear coding over finite field is always optimal in the sense of achieving R[g] if the sources

are jointly ergodic [10]. An equivalent conclusive result is not yet proved for linear coding over non-field

ring. Nevertheless, it is proved that there always exist more than one (up to isomorphism) non-field rings over

which linear coding achieves the Slepian–Wolf region if the sources considered are i.i.d. [38]. Furthermore,

many examples, say Example IV.2, show that non-field ring can be equally optimal when considering Markov

sources. All in all, there is still no conclusive support that linear coding over field is preferable in terms of

achieving the optimal region R[g] with g being an identity function.

On the contrary, there are many drawbacks of using finite fields compared to using non-field rings (e.g.

modulo integer rings):

1) The finite field arithmetic is complicated to implement since the finite field arithmetic usually involves

the polynomial long division algorithm; and

2) The alphabet size(s) of the encoder(s) is (are) usually larger than required [1], [7], [8]; and
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3) In many specific circumstances of Problem 2, linear coding over any finite field is proved to be less

optimal than its non-field rings counterpart in terms of achieving larger achievable region (see [1], [8]

and Example VI.1); and

4) The characteristic of a finite field has to be a prime. This constraint creates shortages in their polynomial

presentations of discrete functions (see Lemma B.3). These shortages confine the performance of the

polynomial approach (if restrict to field) and lead to results like Proposition VI.2. On the other hand, The

characteristic can be any positive integer for a finite non-field ring; and

5) Field (finite or not) contains no zero divisor. This also impares the performance of the polynomial approach

(if restrict to field).

Example VI.1. Consider the situation illustrated in Example V.1, one alternative is to treat that X1 = X2 =

X3 = {0, 1} as a subset of finite field Z5 and the function g can then be presented as

g(x1, x2, x3) = ĥ(x1 + 2x2 + 4x3),

where ĥ : Z5 → Z4 is given by ĥ(z) =











z; z 6= 4,

3; z = 4,

(symbol-wise). By Corollary V.6, linear coding over Z5

achieves the region

RZ5
=
{

[r, r, r] ∈ R3 |r > H (PZ5
|πZ5

) = 0.4623
}

.

Obviously, RZ5
( RZ4

⊆ R[g]. In conclusion, using linear coding over field Z5 is less optimal compared with

over non-field ring Z4. In fact, the region RF achieved by linear coding over any finite field F is always strictly

smaller than RZ4
.

Proposition VI.2. In Example V.1, RF, the achievable region achieved with linear coding over any finite field

F in the sense of Corollary V.4, is properly contained in RZ4
, i.e. RF ( RZ4

.

Proof: Assume that

g(x1, x2, x3) = h (k1(x1) + k2(x2) + k3(x3))

with kt : {0, 1} → F (1 ≤ t ≤ 3) and h : F → Z4. Let

M1 =
{

Y (n)
}

with Y (n) = g
(

X
(n)
1 , X

(n)
2 , X

(n)
3

)

,

M2 =
{

Z(n)
}

with Z(n) = k1

(

X
(n)
1

)

+ k2

(

X
(n)
2

)

+ k3

(

X
(n)
3

)

,

and Pl and πl be the transition matrix and the invariant distribution of Ml, respectively, for l = 1, 2. By

Corollary V.4 (also Corollary V.6), linear coding over F achieves the region

RF = {[R,R, · · · , R] ∈ Rs |R > H(P2|π2)} ,

while linear coding over Z4 achieves

RZ4
=

{

[R,R, · · · , R] ∈ Rs

∣

∣

∣

∣

R > max
06=I≤lZ4

log |Z4|

log |I|
H(SZ4/I|π1) = H(P1|π1)

}

.

Moreover,

H(P1|π1) < H(P2|π2)
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by Lemma B.2 due to Lemma B.3 claims that h|S , where S = k1 ({0, 1}) + k2 ({0, 1}) + k3 ({0, 1}), can

never be injective. Therefore, RF ( RZ4
.

Remark 16. There are infinitely many functions like g defined in Example V.1 such that the achievable region

obtained with linear coding over any finite field in the sense of Corollary V.4 is strictly suboptimal compared

to the one achieved with linear coding over some non-field ring. These functions include

s
∑

t=1

xt ∈ Z2p[s] for

any s ≥ 2 and any prime p > 2. One can always find a concrete example in which linear coding over Z2p

dominates. The reason for this is partially because these functions are defined on rings (e.g. Z2p) of non-prime

characteristic. However, a finite field must be of prime characteristic, resulting in conclusions like Proposition

VI.2.

As a direct consequence of Proposition VI.2, we have

Theorem VI.3. In the sense of (26), linear coding over finite field is not optimal.

VII. CONCLUSIONS

This paper considers the ring linear coding technique introduced in [1] in the setting of compressing data

generated by a single Markov source. An achievability theorem, as a generalization of its field counterpart, is

presented. The paper also demonstrates that the compression limit can be reached with linear encoders over

non-field rings. However, this property is not yet conclusively proved in general.

On the other hand, a variation of the data compression problem, namely Problem 2 is addressed. We apply

the polynomial approach of [14], [18], [1] to the scenarios where sources are with memory. Once again, it is

seen that linear coding technique over non-field ring dominates its field counterpart in terms of achieving better

coding rates for computing (encoding) some functions. On this regard, we claim that linear coding over finite

field is not optimal.

To facilitate our discussions, the concept of Supremus typical sequence and its related asymptotic properties

are introduced. These include the AEP and four generalized typicality lemmas. Compared to the traditional

version, Supremus typicality allows us to draw more accessible results, while corresponding ones of tradi-

tional typicality are often hard to analyze as demonstrated. The new techniques are hopefully helpful also in

understanding and investigating other related problems.
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APPENDIX A

PROOF OF PROPOSITION II.6

1) Let Pr
{

X(1) = x(1)
}

= c. By definition,

Pr
{[

X(1), X(2), · · · , X(n)
]

= x
}

=Pr
{

X(1) = x(1)
}

∏

i,j∈X

p
N(i,j;x)
i,j

=c exp2





∑

i,j∈X

N(i, j;x) log pi,j





=c exp2



−n
∑

i,j∈X

−
N(i;x)

n

N(i, j;x)

N(i;x)
log pi,j





=c exp2



−n
∑

i,j∈X

(

pipi,j −
N(i;x)

n

N(i, j;x)

N(i;x)

)

log pi,j − pipi,j log pi,j



 .

In addition, there exists a small enough ǫ0 > 0 and a N0 ∈ N+ such that

∣

∣

∣

∣

N(i;x)

n

N(i, j;x)

N(i;x)
− pipi,j

∣

∣

∣

∣

<

−η

/

2 |X |2 min
i,j∈X

log pi,j and −
log c

n
< η/2 for all ǫ0 > ǫ > 0 and n > N0. Consequently,

Pr
{[

X(1), X(2), · · · , X(n)
]

= x
}

>c exp2



−n
∑

i,j∈X

η

2 |X |2 mini,j∈X log pi,j
log pi,j − pipi,j log pi,j





≥c exp2



−n





η

2
−
∑

i,j∈X

pipi,j log pi,j









=exp2

[

−n

(

−
log c

n
+
η

2
+H(P|π)

)]

> exp2 [−n (η +H(P|π))] .

Similarly,

Pr
{[

X(1), X(2), · · · , X(n)
]

= x
}

<c exp2



−n
∑

i,j∈X

−η

2 |X |2 mini,j∈X log pi,j
log pi,j − pipi,j log pi,j





≤c exp2



−n



−
η

2
−
∑

i,j∈X

pipi,j log pi,j









≤ exp2

[

−n
(

−
η

2
+H(P|π)

)]

< exp2 [−n (−η +H(P|π))] .



28

2) By Boole’s inequality [41], [42],

Pr {X /∈ Tǫ(n,P)} =Pr











⋃

i,j∈X

∣

∣

∣

∣

N(i, j;X)

N(i;X)
− pi,j

∣

∣

∣

∣

≥ ǫ





⋃

(

⋃

i∈X

∣

∣

∣

∣

N(i;X)

n
− pi

∣

∣

∣

∣

≥ ǫ

)







≤
∑

i,j∈X

Pr

{∣

∣

∣

∣

N(i, j;X)

N(i;X)
− pi,j

∣

∣

∣

∣

≥ ǫ

∣

∣

∣

∣

E

}

+
∑

i∈X

Pr

{∣

∣

∣

∣

N(i;X)

n
− pi

∣

∣

∣

∣

≥ ǫ

}

,

where E =
⋂

i∈X

{∣

∣

∣

∣

N(i;X)

n
− pi

∣

∣

∣

∣

< ǫ

}

for all feasible i.

By the Ergodic Theorem of Markov chains [29, Theorem 1.10.2], Pr

{∣

∣

∣

∣

N(i;X)

n
− pi

∣

∣

∣

∣

≥ ǫ

}

→ 0 as

n→ ∞ for any ǫ > 0. Thus, there is an integer N ′
0, such that for all n > N ′

0, Pr

{∣

∣

∣

∣

N(i;X)

n
− pi

∣

∣

∣

∣

≥ ǫ

}

<

η

2 |X |
. On the other hand, for min

i∈X
pi/2 > ǫ > 0, N(i;x) → ∞ as n→ ∞, conditional on E. Therefore,

by the Strong Law of Large Numbers [29, Theorem 1.10.1], Pr

{∣

∣

∣

∣

N(i, j;X)

N(i;X)
− pi,j

∣

∣

∣

∣

≥ ǫ

∣

∣

∣

∣

E

}

→ 0,

n → ∞. Hence, there exists N ′′
0 , for all n > N ′′

0 , Pr

{∣

∣

∣

∣

N(i, j;X)

N(i;X)
− pi,j

∣

∣

∣

∣

≥ ǫ

∣

∣

∣

∣

E

}

<
η

2 |X |2
. Let

N0 = max{N ′
0, N

′′
0 } and ǫ0 = min

i∈X
pi/2 > 0. We have Pr {X /∈ Tǫ(n,P)} < η for all ǫ0 > ǫ > 0 and

n > N0.

3) Finally, let ǫ0 and N0 be defined as in 1). |Tǫ(n,P)| < exp2 [n (H(P|π) + η)] follows since

1 ≥
∑

x∈Tǫ(n,P)

Pr {X = x}

> |Tǫ(n,P)| exp2 [−n (H(P|π) + η)] ,

if ǫ0 > ǫ > 0 and n > N0.

Let ǫ0 be the smallest one chosen above and N0 be the biggest one chosen. The statement is proved.

APPENDIX B

SUPPORTING LEMMAS

Lemma B.1. Let
{

X(n)
}

be a Markov chain with countable state space X and transition matrix P0. If

P0 = c1U+(1− c1)1, where U is a matrix all of whose rows are identical to some countably infinite unitary

vector and 0 ≤ c1 ≤ 1, then
{

Γ
(

X(n)
)}

is Markov for all feasible function Γ.
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Proof: Let Y (n) = Γ
(

X(n)
)

, and assume that [ux]x∈X is the first row of U. For any a, b ∈ Γ (X ),

Pr
{

Y (n+1) = b
∣

∣

∣Y (n) = a
}

=
∑

x∈Γ−1(a)

Pr
{

X(n) = x, Y (n+1) = b
∣

∣

∣Y (n) = a
}

=
∑

x∈Γ−1(a)

Pr
{

Y (n+1) = b
∣

∣

∣X(n) = x, Y (n) = a
}

Pr
{

X(n) = x
∣

∣

∣Y (n) = a
}

=
∑

x∈Γ−1(a)

Pr
{

Y (n+1) = b
∣

∣

∣X(n) = x
}

Pr
{

X(n) = x
∣

∣

∣Y (n) = a
}

=



























∑

x∈Γ−1(a)

∑

x′∈Γ−1(b)

c1ux′ Pr
{

X(n) = x
∣

∣

∣Y (n) = a
}

; a 6= b

∑

x∈Γ−1(a)



1− c1 +
∑

x′∈Γ−1(b)

c1ux′



Pr
{

X(n) = x
∣

∣

∣Y (n) = a
}

; a = b

=



























c1
∑

x′∈Γ−1(b)

ux′

∑

x∈Γ−1(a)

Pr
{

X(n) = x
∣

∣

∣Y (n) = a
}

; a 6= b



1− c1 + c1
∑

x′∈Γ−1(b)

ux′





∑

x∈Γ−1(a)

Pr
{

X(n) = x
∣

∣

∣Y (n) = a
}

; a = b

=























c1
∑

x′∈Γ−1(b)

ux′; a 6= b

1− c1 + c1
∑

x′∈Γ−1(b)

ux′ ; a = b

=
∑

x′∈Γ−1(b)

Pr
{

X(n+1) = x′
∣

∣

∣X(n) = x
}

(

∀ x ∈ Γ−1(a)
)

=
∑

x′∈Γ−1(b)

Pr
{

X(n+1) = x′
∣

∣

∣X(n) = x
}

Pr
{

Y (n) = a
∣

∣

∣Y (n) = a, Y (n−1), · · ·
}

(

∀ x ∈ Γ−1(a)
)

=
∑

x∈Γ−1(a)

∑

x′∈Γ−1(b)

Pr
{

X(n+1) = x′
∣

∣

∣
X(n) = x, Y (n) = a, Y (n−1), · · ·

}

Pr
{

X(n) = x
∣

∣

∣Y (n) = a, Y (n−1), · · ·
}

=
∑

x∈Γ−1(a)

∑

x′∈Γ−1(b)

Pr
{

X(n+1) = x′, X(n) = x
∣

∣

∣Y (n) = a, Y (n−1), · · ·
}

=Pr
{

Y (n+1) = b
∣

∣

∣
Y (n) = a, Y (n−1), · · ·

}

Therefore,
{

Γ
(

X(n)
)}

is Markov.

Remark 17. Lemma B.1 is enlightened by [11, Theorem 3]. However,
{

X(n)
}

in this lemma is not necessarily

stationary or finite-state.

Lemma B.2. Let Z be a countable set, π = [p(z)]z∈Z and P = [p(z1, z2)]z1,z2∈Z be a non-negative unitary

vector and a stochastic matrix, respectively. For any function h : Z → Y , if for all y1, y2 ∈ Y

p(z1, y2)

p(z1)
= cy1,y2

, ∀ z1 ∈ h−1(y1), (28)
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where cy1,y2
is a constant, then

H
(

h
(

Z(2)
) ∣

∣

∣h
(

Z(1)
))

≤ H(P|π), (29)

where
(

Z(1), Z(2)
)

∼ πP. Moreover, (29) holds with equality if and only if

p(z1, h(z2)) = p(z1, z2), ∀ z1, z2 ∈ Z with p(z1, z2) > 0. (30)

Proof: By definition,

H
(

h
(

Z(2)
) ∣

∣

∣h
(

Z(1)
))

=−
∑

y1,y2∈Y

p(y1, y2) log
p(y1, y2)

p(y1)

=−
∑

y1,y2∈Y

∑

z1∈h−1(y1)

p(z1, y2) log





∑

z′

1
∈h−1(y1)

p(z′1, y2)

/

∑

z′′

1
∈h−1(y1)

p(z′′1 )





(a)
= −

∑

y1,y2∈Y

∑

z1∈h−1(y1)

p(z1, y2) log
p(z1, y2)

p(z1)

=−
∑

y1,y2∈Y

∑

z2∈h−1(y2),

z1∈h−1(y1)

p(z1, z2) log

∑

z′

2
∈h−1(y2)

p(z1, z
′
2)

p(z1)

(b)

≤ −
∑

y1,y2∈Y

∑

z2∈h−1(y2),

z1∈h−1(y1)

p(z1, z2) log
p(z1, z2)

p(z1)

=−
∑

z1,z2∈Z

p(z1, z2) log
p(z1, z2)

p(z1)

=H(P|π),

where (a) is from (28). In addition, equality holds, i.e. (b) holds with equality, if and only if (30) is satisfied.

Remark 18. P in the above lemma can be interpreted as the transition matrix of some Markov process.

However, π is not necessarily the corresponding invariant distribution. It is also not necessary that such a

Markov process is irreducible. In the meantime, (29) can be seen as a “data processing inequality”. In addition,

(28) is sufficient but not necessary for (29), even though it is sufficient and necessary for (a) in the above proof.

Lemma B.3. For g given by (20) and any finite field F, if there exist functions kt : {0, 1} → F and h : F → Z4,

such that

g(x1, x2, · · · , xs) = h

(

s
∑

t=1

kt(xt)

)

,

then h|S , where S = k1 ({0, 1}) + k2 ({0, 1}) + k3 ({0, 1}), is not injective.

Proof: Suppose otherwise, i.e. h|S is injective. Let h′ : h (S ) → S be the inverse mapping of h : S →
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h (S ). Obviously, h′ is bijective. By (20), we have

h′ [g(1, 0, 0)] = k1(1) + k2(0) + k3(0)

=h′ [g(0, 1, 1)] = k1(0) + k2(1) + k3(1)

6=h′ [g(1, 1, 0)] = k1(1) + k2(1) + k3(0)

=h′ [g(0, 0, 1)] = k1(0) + k2(0) + k3(1).

Let τ = h′ [g(1, 0, 0)]− h′ [g(1, 1, 0)] = h′ [g(0, 1, 1)]− h′ [g(0, 0, 1)] ∈ F. We have that

τ = k2(0)− k2(1) = k2(1)− k2(0) = −τ

=⇒ τ + τ = 0. (31)

(31) implies that either τ = 0 or Char(F) = 2 by [1, Proposition II.6]. Noticeable that k2(0) 6= k2(1), i.e.

τ 6= 0, by the definition of g. Thus, Char(F) = 2. Let ρ = k3(0) − k3(1). Obviously, ρ 6= 0 by the definition

of g, and ρ+ ρ = 0 since Char(F) = 2. Consequently,

h′ [g(0, 0, 0)] =k1(0) + k2(0) + k3(0)

=k1(0) + k2(0) + k3(1) + ρ

=h′ [g(0, 0, 1)] + ρ

=h′ [g(1, 1, 0)] + ρ

=k1(1) + k2(1) + k3(0) + ρ

=k1(1) + k2(1) + k3(1) + ρ+ ρ

=h′ [g(1, 1, 1)] .

Therefore, g(0, 0, 0) = g(1, 1, 1) since h′ is bijective. This is absurd!

APPENDIX C

TYPICALITY LEMMAS OF SUPREMUS TYPICAL SEQUENCES

Given a set X , a partition
∐

k∈K

Ak of X is a disjoint union of X , i.e. Ak′ ∩ Ak′′ 6= ∅ ⇔ k′ = k′′,

⋃

k∈K

Ak = X and Ak’s are not empty. Obviously,
∐

A∈R/I

A is a partition of a ring R given the left (right)

ideal I.

Lemma C.1. Given an irreducible Markov chain M =
{

X(n)
}

with finite state space X , transition matrix P

and invariant distribution π = [pj ]j∈X
. Let

m
∐

k=1

Ak be any partition of X . For any η > 0, there exist ǫ0 > 0

and N0 ∈ N+, such that, ∀ ǫ0 > ǫ > 0, ∀ n > N0 and ∀ x =
[

x(1), x(2), · · · , x(n)
]

∈ Sǫ(n,P),

|Sǫ(x)| < exp2







n





m
∑

k=1

∑

j∈Ak

pjH(Sk|πk) + η











(32)

=exp2 {n [H(S|π) + η]} (33)
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where

Sǫ(x) =
{[

y(1), y(2), · · · , y(n)
]

∈ Sǫ(n,P)
∣

∣

∣ y(l) ∈ Ak ⇔ x(l) ∈ Ak, ∀ 1 ≤ l ≤ n, ∀ 1 ≤ k ≤ m
}

,

Sk is the stochastic complement of PAk,Ak
in P, πk =

[pi]i∈Ak
∑

j∈Ak
pj

is the invariant distribution of Sk and

S = diag
{

{Sk}1≤k≤m

}

.

Proof: Let

xAk
=
[

x(n1), x(n2), x(nmk
)
]

be the subsequence of x formed by all those x(l)’s belong to Ak in the original ordering. Obviously,

m
∑

k=1

mk = n

and

∣

∣

∣

∣

∣

∣

mk

n
−
∑

j∈Ak

pj

∣

∣

∣

∣

∣

∣

< |Ak| ǫ+
1

n
. For any y =

[

y(1), y(2), · · · , y(n)
]

∈ Sǫ(x),

yAk
=
[

y(n1), y(n2), y(nmk
)
]

∈ Amk

k

is a strongly Markov ǫ-typical sequence of length mk with respect to Sk by Proposition III.2, since y is

Supremus ǫ-typical. Additionally, by Proposition II.6, there exist ǫk > 0 and positive integer Mk such that the

number of strongly Markov ǫ-typical sequences of length mk is upper bounded by exp2 {mk [H(Sk|πk) + η/2]}

if 0 < ǫ < ǫk and mk > Mk. Therefore, if 0 < ǫ < min
1≤k≤m

ǫk, n > M = max
1≤k≤m







1 +Mk
∣

∣

∣

∑

j∈Ak
pj − |Ak| ǫ

∣

∣

∣







(this guarantees that mk > Mk for all 1 ≤ k ≤ m), then

|Sǫ(x)| ≤ exp2

{

m
∑

k=1

mk [H(Sk|πk) + η/2]

}

=exp2

{

n

[

m
∑

k=1

mk

n
H(Sk|πk) + η/2

]}

.

Furthermore, choose 0 < ǫ0 ≤ min
1≤k≤m

ǫk and N0 ≥ M such that
mk

n
<
∑

j∈Ak

pj +
η

2
∑m

k=1H(Sk|πk)
for all

0 < ǫ < ǫ0 and n > N0 and 1 ≤ k ≤ m, we have

|Sǫ(x)| < exp2







n





m
∑

k=1

∑

j∈Ak

pjH(Sk|πk) + η











,

(32) is established. Direct calculation yields (33).

By definition, Sǫ(x) in Lemma C.1 contains Supremus ǫ-typical sequences whose have the same sequential

pattern as x regarding the partition

m
∐

k=1

Ak. Similarly, let Tǫ(x) be the set of strongly Markov ǫ-typical sequences

with the same sequential pattern as x regarding the partition

m
∐

k=1

Ak, namely

Tǫ(x) =
{[

y(1), y(2), · · · , y(n)
]

∈ Tǫ(n,P)
∣

∣

∣ y(l) ∈ Ak ⇔ x(l) ∈ Ak, ∀ 1 ≤ l ≤ n, ∀ 1 ≤ k ≤ m
}

.

We have that

Lemma C.2. In Lemma C.1, define Γ(x) = l ⇔ x ∈ Al. We have that

|Sǫ(x)| ≤ |Tǫ(x)| < exp2

{

n

[

H(P|π)− lim
w→∞

1

w
H
(

Y (w), Y (w−1), · · · , Y (1)
)

+ η

]}

,
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where Y (w) = Γ
(

X(w)
)

.

Proof: |Sǫ(x)| ≤ |Tǫ(x)| is trivial. Let

y =
[

Γ
(

x(1)
)

,Γ
(

x(2)
)

, · · · ,Γ
(

x(n)
)]

.

By definition,
[

Γ
(

y(1)
)

,Γ
(

y(2)
)

, · · · ,Γ
(

y(n)
)]

= y,

for any y =
[

y(1), y(2), · · · , y(n)
]

∈ Sǫ(x). y is jointly typical [10] with y with respect to the process

· · · ,





X(1)

Y (1)



 ,





X(2)

Y (2)



 , · · · ,





X(n)

Y (n)



 , · · ·

Therefore, there exist ǫ0 > 0 and N0 ∈ N+, such that, ∀ ǫ0 > ǫ > 0 and ∀ n > N0,

|Sǫ(x)| < exp2

{

n

[

lim
w→∞

1

w
H
(

X(w), X(w−1), · · · , X(1)
)

− lim
w→∞

1

w
H
(

Y (w), Y (w−1), · · · , Y (1)
)

+ η

]}

=exp2

{

n

[

H (P|π)− lim
w→∞

1

w
H
(

Y (w), Y (w−1), · · · , Y (1)
)

+ η

]}

,

where the equality follows from the fact that lim
w→∞

1

w
H
(

X(w), X(w−1), · · · , X(1)
)

= H (P |π ) since M is

irreducible Markov.

Remark 19. Given a left ideal I of a finite ring R, R/I gives raise to a partition of R. Let X = R, m = |R/I|

and Ak (1 ≤ k ≤ m) be an element (which is a set) of R/I. One has Lemma III.5 and Lemma III.6 proved

immediately. In fact, Lemma C.1 and Lemma C.2 can be easily tailored to corresponding versions regarding

other algebraic structures, e.g. group, rng11, vector space, module, algebra and etc, in a similar fashion.

11A ring without multiplicative identity.



34

REFERENCES

[1] S. Huang and M. Skoglund, On Linear Coding over Finite Rings and Applications to Computing, KTH Royal Institute of

Technology, October 2012. [Online]. Available: http://people.kth.se/∼sheng11

[2] C. E. Shannon and W. Weaver, The mathematical theory of communication. Urbana: University of Illinois Press, 1949.

[3] I. Csiszár, “Linear codes for sources and source networks: Error exponents, universal coding,” IEEE Transactions on Information

Theory, vol. 28, no. 4, pp. 585–592, Jul. 1982.

[4] D. Slepian and J. K. Wolf, “Noiseless coding of correlated information sources,” IEEE Transactions on Information Theory, vol. 19,

no. 4, pp. 471–480, Jul. 1973.

[5] J. Körner and K. Marton, “How to encode the modulo-two sum of binary sources,” IEEE Transactions on Information Theory, vol. 25,

no. 2, pp. 219–221, Mar. 1979.

[6] I. Csiszár, Private Communication, Jul. 2013.

[7] S. Huang and M. Skoglund, “On achievability of linear source coding over finite rings,” in 2013 IEEE International Symposium on

Information Theory Proceedings (ISIT), 2013, pp. 1984–1988.

[8] ——, “On existence of optimal linear encoders over non-field rings for data compression with application to computing,” in IEEE

Information Theory Workshop, September 2013.

[9] C. D. Meyer, “Stochastic complementation, uncoupling Markov chains, and the theory of nearly reducible systems,” SIAM Rev.,

vol. 31, no. 2, pp. 240–272, Jun. 1989. [Online]. Available: http://dx.doi.org/10.1137/1031050

[10] T. M. Cover, “A proof of the data compression theorem of slepian and wolf for ergodic sources,” IEEE Transactions on Information

Theory, vol. 21, no. 2, pp. 226–228, Mar. 1975.

[11] C. J. Burke and M. Rosenblatt, “A Markovian function of a Markov chain,” The Annals of Mathematical Statistics, vol. 29, no. 4,

pp. 1112–1122, Dec. 1958. [Online]. Available: http://www.jstor.org/stable/2236949

[12] R. Ahlswede and T. S. Han, “On source coding with side information via a multiple-access channel and related problems in multi-user

information theory,” IEEE Transactions on Information Theory, vol. 29, no. 3, pp. 396–411, May 1983.

[13] T. S. Han and K. Kobayashi, “A dichotomy of functions f(x, y) of correlated sources (x, y) from the viewpoint of the achievable rate

region,” IEEE Transactions on Information Theory, vol. 33, no. 1, pp. 69–76, Jan. 1987.

[14] S. Huang and M. Skoglund, “Polynomials and computing functions of correlated sources,” in IEEE International Symposium on

Information Theory, Jul. 2012, pp. 771–775.

[15] H. Yamamoto, “Wyner–ziv theory for a general function of the correlated sources,” IEEE Transactions on Information Theory, vol. 28,

no. 5, pp. 803–807, 1982.

[16] D. Krithivasan and S. Pradhan, “Distributed source coding using Abelian group codes: A new achievable rate-distortion region,” IEEE

Transactions on Information Theory, vol. 57, no. 3, pp. 1495–1519, 2011.

[17] M. Sefidgaran and A. Tchamkerten, “Computing a function of correlated sources: A rate region,” in IEEE International Symposium

on Information Theory, Aug. 2011, pp. 1856–1860.

[18] S. Huang and M. Skoglund, “Computing polynomial functions of correlated sources: Inner bounds,” in International Symposium on

Information Theory and its Applications, Oct. 2012, pp. 160–164.

[19] ——, “Linear source coding over rings and applications,” in IEEE Swedish Communication Technologies Workshop, Oct. 2012, pp.

1–6.

[20] G. Como and F. Fagnani, “The capacity of finite Abelian group codes over symmetric memoryless channels,” IEEE Transactions on

Information Theory, vol. 55, no. 5, pp. 2037–2054, May 2009.

[21] A. Orlitsky and R. Roche, “Coding for computing,” IEEE Transactions on Information Theory, vol. 47, no. 3, Mar. 2001.

[22] B. Nazer and M. Gastpar, “Computation over multiple-access channels,” IEEE Transactions on Information Theory, vol. 53, no. 10,

pp. 3498 –3516, Oct. 2007.

[23] R. Appuswamy, M. Franceschetti, N. Karamchandani, and K. Zeger, “Network coding for computing: Cut-set bounds,” IEEE

Transactions on Information Theory, vol. 57, no. 2, pp. 1015–1030, 2011.

[24] V. Lalitha, N. Prakash, K. Vinodh, P. Kumar, and S. Pradhan, “Linear coding schemes for the distributed computation of subspaces,”

IEEE Journal on Selected Areas in Communications, vol. 31, no. 4, pp. 678–690, 2013.

[25] L. D. Davisson, G. Longo, and A. Sgarro, “The error exponent for the noiseless encoding of finite ergodic Markov sources,” IEEE

Transactions on Information Theory, vol. 27, no. 4, pp. 431–438, Jul. 1981.

[26] I. Csiszár, “The method of types,” IEEE Transactions on Information Theory, vol. 44, no. 6, pp. 2505–2523, 1998.

[27] R. M. Gray and J. C. Kieffer, “Asymptotically mean stationary measures,” The Annals of Probability, vol. 8, no. 5, pp. 962–973,

Oct. 1980. [Online]. Available: http://www.jstor.org/stable/2242939

http://people.kth.se/~sheng11
http://dx.doi.org/10.1137/1031050
http://www.jstor.org/stable/2236949
http://www.jstor.org/stable/2242939


35

[28] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed. Wiley-Interscience, Jul. 2006.

[29] J. R. Norris, Markov Chains. Cambridge University Press, Jul. 1998.

[30] L. Breuer and D. Baum, An Introduction to Queueing Theory: and Matrix-Analytic Methods, 2005th ed. Springer, Dec. 2005.

[31] D. S. Dummit and R. M. Foote, Abstract Algebra, 3rd ed. Wiley, 2003.

[32] J. J. Rotman, Advanced Modern Algebra, 2nd ed. American Mathematical Society, Aug. 2010.

[33] T. W. Hungerford, Algebra (Graduate Texts in Mathematics). Springer, Dec. 1980.

[34] T.-Y. Lam, A First Course in Noncommutative Rings, 2nd ed. Springer, Jun. 2001.

[35] R. C. Buck, “Nomographic functions are nowhere dense,” Proceedings of the American Mathematical Society, vol. 85, no. 2, pp.

195–199, Jun. 1982. [Online]. Available: http://www.jstor.org/stable/2044280

[36] S. Huang and M. Skoglund, Induced Transformations of Recurrent A.M.S. Dynamical Systems, KTH Royal Institute of Technology,

October 2013. [Online]. Available: http://people.kth.se/∼sheng11

[37] J. Aaronson, An Introduction to Infinite Ergodic Theory. Providence, R.I.: American Mathematical Society, 1997.

[38] S. Huang and M. Skoglund, On Existence of Optimal Linear Encoders over Non-field Rings for Data Compression, KTH Royal

Institute of Technology, December 2012. [Online]. Available: http://people.kth.se/∼sheng11

[39] E. Fung, W. K. Ching, S. Chu, M. Ng, and W. Zang, “Multivariate Markov chain models,” in 2002 IEEE International Conference

on Systems, Man and Cybernetics, vol. 3, Oct. 2002.

[40] R. M. Gray, Probability, Random Processes, and Ergodic Properties, 2nd ed. Springer, Aug. 2009.

[41] G. Boole, An investigation of the laws of thought on which are founded, the mathematical theories of logic and probabilities. [S.l.]:

Watchmaker, 2010.
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