Typos to “Computing Polynomial Functions of Correlated Sources: Inner Bounds”

Sheng Huang, Mikael Skoglund

I. TYPOS IN THE PAPER

1) Lemma IV.1] was stated incorrectly. The corrected statement reads:

Lemma I.1. Let \(\tilde{X}_1^n, \tilde{X}_2^n, \ldots, \tilde{X}_l^n, Y^n \) \(\sim \) \(q \). For any \(\epsilon > 0 \) and positive integer \(n \), choose a sequence \(\tilde{X}_j^n \) \((1 \leq j \leq l) \) randomly from \(T_\epsilon(n, X_j) \) based on a uniform distribution. If \(y \in Y^n \) is an \(\epsilon \)-typical sequence with respect to \(Y \), then

\[
\Pr \{ (\tilde{X}_1^n, \tilde{X}_2^n, \ldots, \tilde{X}_l^n, Y^n) \in T_\epsilon | Y^n = y \} \leq 2^{-n[\sum_{j=1}^l I(X_j; Y, X_1, X_2, \ldots, X_{j-1}) - 3\epsilon]}.
\]

Proof: Let \(F_j \) be the event \(\{ (\tilde{X}_1^n, \tilde{X}_2^n, \ldots, \tilde{X}_j^n, Y^n) \in T_\epsilon \}, 1 \leq j \leq l \), and \(F_0 = \emptyset \). We have

\[
\Pr \{ (\tilde{X}_1^n, \tilde{X}_2^n, \ldots, \tilde{X}_l^n, Y^n) \in T_\epsilon | Y^n = y \} = \prod_{j=1}^l \Pr \{ F_j | Y^n = y, F_{j-1} \}
\]

\[
\leq \prod_{j=1}^l 2^{-n[I(X_j; Y, X_1, X_2, \ldots, X_{j-1}) - 3\epsilon]}
\]

\[
= 2^{-n[\sum_{j=1}^l I(X_j; Y, X_1, X_2, \ldots, X_{j-1}) - 3\epsilon]},
\]

since \(\tilde{X}_1^n, \tilde{X}_2^n, \ldots, \tilde{X}_l^n, y \) are generated independent. \(\blacksquare \)

2) There is an index typo in Lemma IV.2. The corrected statement reads:

Lemma I.2. If \((Y_1, V_1, Y_2, V_2, \ldots, Y_s, V_s) \sim q \), and

\[
q(y_1, v_1, y_2, v_2, \ldots, y_s, v_s) = q(y_1, y_2, \ldots, y_s) \prod_{i=1}^s q(v_i | y_i),
\]

then, \(\forall J = \{ j_1, j_2, \ldots, j_J \} \subseteq \{ 1, 2, \ldots, s \}, \)

\[
I(Y_J; V_J | V_{Jc}) = \sum_{i=1}^{[J]} I(Y_{j_i}; V_{j_i}) - I(V_{j_1}; V_{j_2}, V_{j_3}, \ldots, V_{j_{[J]} - 1}).
\]

REFERENCES