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Abstract—This note proves that, for any finite set of correlated discrete

i.i.d. sources, there always exists a sequence of linear encoders over

some finite non-field rings which achieves the data compression limit,
the Slepian–Wolf region.

Based on this, we address a variation of the data compression problem

which considers recovering some discrete function of the data. It is
demonstrated that linear encoder over non-field ring strictly outperforms

its field counterpart for encoding some function in terms of achieving

strictly larger achievable region with strictly smaller alphabet size.

I. INTRODUCTION

Let ti (i ∈ S = {1, 2, · · · , s}) be a discrete memoryless source

generating i.i.d. random data

X
(1)
i , X

(2)
i , · · · , X(n)

i , · · · ,

where X
(n)
i ∈ Xi and

[

X
(n)
1 , X

(n)
2 , · · · , X(n)

s

]

∼ p for all i ∈ S

and n ∈ N+. It is well-known that the limit for compressing data

generated by t1, t2, · · · , ts with independent encoders is character-

ized by the Slepian–Wolf region [1]. Although [1] guarantees that

there always exist encoders achieving the data compression limit, the

structures of the encoders are unclear. This confines the scope of

their applications. Fortunately, [2] and [3] prove that linear encoder

over finite field achieves the same limit, i.e. the Slepian–Wolf region.

In addition, the linear structure of the linear encoder (over field)

offers strict benefit to other problems, e.g. encoding functions of

correlated sources (see Problem 1) [4], [5], [6], [7], [8]. However,

special constraints are casted upon the algebraic structures of finite

fields. For instance, the characteristic of a finite field has to be a

prime; the size of a finite field must be a power of a prime; up

to isomorphism, there is only one finite field of a fixed size and etc.

These restrictions limit the performance of linear encoders over fields

(see Example V.3 or [9]). As a consequence, linear encoder over finite

ring is proposed [9], [10], [11].

Demonstrated in [9], [11], linear encoders over non-field rings

achieve the data compression limit, i.e. the Slepian–Wolf region, in

many circumstances as well. The ring versions are also recommended

because the arithmetic of lots of non-field rings (e.g. modulo integer

rings) is substantially easier to implement than the one for fields.

Nevertheless, although verified in various scenarios, it has not been

proved (neither denied) that linear encoders over non-field rings are

always optimal in the Slepian–Wolf problem, namely achieves the

Slepian–Wolf region. This article will prove that there always exist

linear encoders over non-field rings that achieve the data compression

limit, the Slepian–Wolf region, in any scenarios. In other words, the

achievable region [11, region (8)] (see (2)) is indeed the Slepian–Wolf

region. Therefore, the optimality issue is closed on this regard.

Additionally, this paper also addresses the problem of source

coding for computing (see Problem 1). We propose applying linear
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encoder over ring to the “polynomial approach” introduced in [7], [8]

which originally uses linear encoder over field. We will demonstrate

that linear encoder over non-field ring dominates the field version

in terms of achieving larger achievable regions for encoding many

functions (see Example V.3). In fact, there exist infinitely many

such functions. Thus, it is worthwhile to further investigate this new

encoding technique.

II. LINEAR SOURCE CODING OVER FINITE RINGS

Generally speaking, the datum generated by a source is not

necessarily associated with any specific algebraic structure. In order

to apply the linear encoders (over rings), we assume that there exists

a set Φ = {Φ1,Φ2, · · · ,Φs} of injections Φi : Xi → Ri mapping

Xi to a finite ring Ri of order1 |Ri| ≥ |Xi| for all i ∈ S =
{1, 2, · · · , s}. Thus, Xi can be seen as a subset of Ri for a fixed

Φ. To facilitate our discussion, we define Φ(xT ) = {Φi(xi)}i∈T ,

where xT =
∏

i∈T xi ∈
∏

i∈T Xi, for any ∅ 6= T ⊆ S . Let RT be

the ring
∏

i∈T Ri (direct product) for ∅ 6= T ⊆ S . It is well-known

that I is a left ideal of RT if and only if I =
∏

i∈T Ii and Ii is a

left ideal of Ri (see [11, Proposition II.4]). Similarly, we often write

IT for the left ideal
∏

i∈T Ii. Meanwhile, we usually write 0 for

the trivial ideal {0}, use I ≤l R to indicate that the subset I is a

left ideal of the ring R and designate R/I as the quotient group R

mod I. Let [X1, X2, · · · , Xs] ∼ p and

RΦ =

{

[R1, R2, · · · , Rs] ∈ R
s

∣

∣

∣

∣

∑

i∈T

Ri log |Ii|

log |Ri|
> H(XT |XTc )−H(YRT /IT

|XTc ),

∀ ∅ 6= T ⊆ S ,∀ 0 6= Ii ≤l Ri

}

, (1)

where T c = S \ T , XT is the random variable array
∏

i∈T Xi and

YRT /IT
= Φ(XT ) + IT is a random variable with sample space

RT /IT . [11, Theorem IV.1] proves that RΦ is achievable with linear

encoders over R1,R2, · · · ,Rs. In exact terms, ∀ ǫ > 0, there exists

N0 ∈ N+, for all n > N0, there exist linear encoders (left linear

mappings [11, Definition II.5] to be more precise) φi : R
n
i → R

ki
i

(i ∈ S) and a decoder ψ, such that

Pr

{

ψ

(

∏

i∈S

φi (Xi)

)

6=
∏

i∈S

Xi

}

< ǫ,

where Xi =
[

Φi

(

X
(1)
i

)

,Φi

(

X
(2)
i

)

, · · · ,Φi

(

X
(n)
i

)]t

, as long as
[

k1 log |R1|

n
,
k2 log |R2|

n
, · · · ,

ks log |Rs|

n

]

∈ RΦ. By simple time

1The number of elements of a finite group / field / ring / left (right) ideal.
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sharing argument, it is noticeable that

Rl = cov

(

⋃

Φ∈M

RΦ

)

, (2)

where M is the family of all possible Φ’s and cov(A) is the convex

hull of a set A ⊆ Rs, is also achievable. For convenience, a coding

rate R ∈ Rs is said to be achievable with linear encoders over

R1,R2, · · · ,Rs if R ∈ Rl. However, R is said to be directly

achievable with linear encoders over R1,R2, · · · ,Rs if R ∈ RΦ

for some fixed Φ ∈ M .

Clearly, for every Φ ∈ M , RΦ is the Slepian–Wolf region

R[X1, X2, · · · , Xs] =

{

[R1, R2, · · · , Rs] ∈ R
s

∣

∣

∣

∣

∑

j∈T

Rj > H(XT |XTc ),∀ ∅ 6= T ⊆ S

}

,

if all R1,R2, · · · ,Rs are all fields [9], [11]. We claim, in this paper,

the existence of optimal linear encoders over non-field rings for any

data compression scenario of Slepian–Wolf, i.e. Rl is indeed the

Slepian–Wolf region. Proofs of this are presented in the Section III

and Section IV.

III. EXISTENCE THEOREM I: SINGLE SOURCE

For any single source scenario, the assertion that there always exists

a finite ring R1, such that Rl is the Slepian–Wolf region

R[X1] = {R1 ∈ R|R1 > H(X1)},

is equivalent to claiming that there always exists a finite ring R1 and

an injection Φ1 : X1 → R1, such that

max
06=I1≤lR1

log |R1|

log |I1|

[

H(X1)−H(YR1/I1
)
]

= H(X1), (3)

where YR1/I1
= Φ1(X1) + I1.

Theorem III.1. Let R1 be a finite ring of order |R1| ≥ |X1|. If R1

contains one and only one proper non-trivial left ideal I0 and |I0| =
√

|R1|, then region (2) coincides with the Slepian–Wolf region, i.e.

there exists an injection Φ1 : X1 → R1, such that (3) holds.

Remark 1. Let Zq be the modulo integer ring of order q. Ex-

amples of such a ring R1 in the above theorem include ML,p =
{[

x 0
y x

]
∣

∣

∣

∣

x, y ∈ Zp

}

and Zp2 , where p is any prime. For any single

source scenario, one can always choose R1 to be either ML,p or Zp2

with a big enough p. Consequently, optimality is attained.

Proof of Theorem III.1: Notice that the random variable

YR1/I0
depends on the injection Φ1, so does its entropy H(YR1/I0

).
Let Φ̃1 ∈ argmaxΦ1∈M H(YR1/I0

), where M is the set of all

possible Φ1’s (maximum can always be reached because |M | =
|R1|!

(|R1| − |X1|)!
is finite, but it is not uniquely attained by Φ̃1 in

general). We claim that (3) is valid, i.e. (2) is the Slepian–Wolf region,

if Φ1 = Φ̃1. Obviously H(YR1/R1
) = 0, since the sample space of

the random variable YR1/R1
contains only one element. Therefore,

log |R1|

log |R1|

[

H(X1)−H(YR1/R1
)
]

= H(X1).

Hence, (3) is equivalent to

log |R1|

log |I0|

[

H(X1)−H(YR1/I0
)
]

≤ H(X1) (4)

⇔H(X1) ≤ 2H(YR1/I0
), (5)

since |I0| =
√

|R1|. Let q = |I0|, I0 = {r1, r2, · · · , rq} and

R1/I0 = {a1 + I0, a2 + I0, · · · , aq + I0}. We have that

H(X1) =−

q
∑

i,j=1

pi,j log pi,j and

H(YR1/I0
) =−

q
∑

i=1

pi log pi,

where pi,j = Pr
{

Φ̃1(X1) = ai + rj
}

and pi =
∑q

j=1 pi,j . (Note:

Pr
{

Φ̃1(X1) = r
}

= 0 if r ∈ R1 \ Φ̃1(X1); every element in R1

can be uniquely expressed as ai+rj .) Therefore, (5) is equivalent to

−

q
∑

i,j=1

pi,j log pi,j ≤− 2

q
∑

i=1

pi log pi ⇔

q
∑

i=1

piH

(

pi,1
pi
,
pi,2
pi
, · · · ,

pi,q
pi

)

≤H (p1, p2, · · · , pq) , (6)

where H (v1, v2, · · · , vq) = −
∑q

j=1 vj log vj . Let A =

H
(
∑q

i=1 pi,1,
∑q

i=1 pi,2, · · · ,
∑q

i=1 pi,q
)

. The concavity of the

function H implies that

q
∑

i=1

piH

(

pi,1
pi
,
pi,2
pi
, · · · ,

pi,q
pi

)

≤ A. (7)

At the same time, H (p1, p2, · · · , pq) = maxΦ1∈M H(YR1/I0
) by

the definition of Φ̃1 and YR1/I0
. We now claim that

A ≤ H (p1, p2, · · · , pq) . (8)

Suppose otherwise, i.e. A > H (p1, p2, · · · , pq). Let Φ′
1 : X1 → R1

be defined as

Φ′
1 : x 7→ aj + ri if and only if Φ̃1(x) = ai + rj .

When Φ1 = Φ′
1,

H(YR1/I0
) =H

(

q
∑

i=1

pi,1,

q
∑

i=1

pi,2, · · · ,

q
∑

i=1

pi,q

)

= A

>H (p1, p2, · · · , pq) = max
Φ1∈M

H(YR1/I0
).

H(YR1/I0
) > maxΦ1∈M H(YR1/I0

) is absurd! Therefore, (6) is

valid by (7) and (8), so are (5) and (4).

Up to isomorphism, there are exactly 4 distinct rings of order p2

for any prime p. They include 3 non-field rings, Zp ×Zp, ML,p and

Zp2 , in addition to the unique field Fp2 (Fq is defined to be a field

of order q). It has been proved that, with linear encoders over the

last three, optimality can always be achieved in the single source

scenario. In next section, we will see that linear encoders over any

of this three are also optimal for any multiple sources scenario (see

Theorem IV.1). In addition, we prove that the same holds true for

Zp ×Zp in appropriate situation (detailed in Remark 3). In fact, this

follows as a special case of a much stronger result, Theorem IV.2. It

includes but is not limited to the assertion that linear encoders over
∏m

j=1 Zp (m ∈ N+) are optimal for any suitable (detailed in Remark

3) data compression circumstance of Slepian–Wolf.

IV. EXISTENCE THEOREM II: MULTIPLE SOURCES

We present the existence results of the multiple sources scenario

in this section.

Theorem IV.1. Let R1,R2, · · · ,Rs be s finite rings with |Ri| ≥
|Xi|. If Ri is isomorphic to either a field; or a ring containing one

and only one proper non-trivial left ideal I0i and |I0i| =
√

|Ri|,
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for all feasible i, then (2) coincides with the Slepian–Wolf region

R[X1, X2, · · · , Xs].

Remark 2. Obvious that Theorem IV.1 includes Theorem III.1 as a

special case. In fact, its proof resembles the one of Theorem III.1.

Examples of Ri’s also include ML,p and Zp2 , where p is a prime.

However, Theorem IV.1 does not guarantee that all rates, except

the vertexes, in the polytope of the Slepian–Wolf region are directly

achievable for the multiple sources case. A time sharing scheme is

required in our current proof (see [12]). Nevertheless, all rates are

directly achievable if Ri’s are fields or if s = 1 (see Theorem III.1).

Theorem IV.2. Let L be any finite index set, Rl1,Rl2, · · · ,Rls

(l ∈ L ) be a set of finite rings of equal size, and Ri =
∏

l∈L
Rli

for all feasible i. If the coding rate R ∈ Rs is directly achievable

with linear encoders over Rl1,Rl2, · · · ,Rls for all l ∈ L , then R

is directly achievable with linear encoders over R1,R2, · · · ,Rs.

Proof: Let R = [R1, R2, · · · , Rs]. By definition, there exist

injections Φl = {Φl1,Φl2, · · · ,Φls} (l ∈ L ), where Φli : Xi →
Rli, such that, ∀ ∅ 6= T ⊆ S , ∀ 0 6= Ili ≤l Rli,

∑

i∈T

Ri log |Ili|

log |Rli|
> H(XT |XTc )−H(YRlT/IlT

|XTc ),

where RlT =
∏

i∈T Rli, IlT =
∏

i∈T Ili and YRlT /IlT
=

Φl(XT ) + IlT . Let Φ = {Φ′
1,Φ

′
2, · · · ,Φ

′
s}, where

Φ′
i : xi 7→

∏

l∈L

Φli(xi);∀ xi ∈ Xi (1 ≤ i ≤ s).

For any 0 6= Ii ≤l Ri, we have that Ii =
∏

l∈L
Ili for some Ili ≤l

Rli by [11, Proposition II.4]. Consequently, for any ∅ 6= T ⊆ S ,

∑

i∈T

Ri log |Ii|

log |Ri|
=
∑

l∈L

∑

i∈T

Ri log |Ili|

log |Rli|

cl
∑

l∈L
cl

>H(XT |XTc )−
1

∑

l∈L
cl

∑

l∈L

clH(YRlT/IlT
|XTc )

>H(XT |XTc )−H(YRT/IT
|XTc )

where cl = log |Rl1| and the last inequality follows from the fact

that YRlT /IlT
is a function of YRT /IT

. Therefore, R is contained in

the region (1), namely R is directly achievable with linear encoders

over R1,R2, · · · ,Rs.

Remark 3. The situation Theorem IV.2 illustrates is delicate. Let Xi

(1 ≤ i ≤ s) be the set of all symbols generated by the ith source. The

hypothesis of Theorem IV.2 implicitly implies the constraint |Xi| ≤
|Rli| for all feasible i and l. As a consequence, Theorem IV.2 does not

imply that linear encoders over ML,p × Zp2 (p is a prime) always

achieve the Slepian–Wolf region (since linear encoders over ML,p

and Zp2 always achieve the Slepian–Wolf region by Theorem IV.1).

The correct statement is that linear encoders over ML,p×Zp2 always

achieve the Slepian–Wolf region if |Xi| ≤ p2 for all feasible i.

Remark 4. Let R1,R2, · · · ,Rs be a set of finite rings each of which

is isomorphic to either

1) a ring R containing one and only one proper non-trivial left

ideal I0 and |I0| =
√

|R|, e.g. ML,p and Zp2 ; or

2) a ring of a finite product of finite field(s) and ring(s) satisfying

1), e.g. ML,p ×
∏m

j=1 Zpj (p and pj’s are prime).

Theorem IV.1 and Theorem IV.2 ensure that linear encoders over ring

R1,R2, · · · ,Rs are always optimal in any applicable Slepian–Wolf

coding scenario. Moreover, it is clear that Ri (1 ≤ i ≤ s), e.g. ML,p

and Zp2 , is not necessary a field or a product of rings.

So far, we have only shown that there exist linear encoders over

non-field rings that are equally good as their field counterparts. In next

section, a variation of the Slepian–Wolf coding problem is considered.

It will be demonstrated that the non-field ring version can strictly

outperform the field version in (infinitely) many circumstances.

V. APPLICATION: SOURCE CODING FOR COMPUTING

This section considers the problem of source coding for computing

defined as follows:

Problem 1 (Source Coding for Computing). Given S =
{1, 2, · · · , s} and (X1, X2, · · · , Xs) ∼ p. Let ti (i ∈ S) be a

discrete memoryless source that randomly generates i.i.d. discrete

data X
(1)
i , X

(2)
i , · · · , X(n)

i , · · · , where X
(n)
i has a finite sample

space Xi and
[

X
(n)
1 , X

(n)
2 , · · · , X(n)

s

]

∼ p, ∀ n ∈ N+. For a

discrete function g :
∏

i∈S Xi → Ω, what is the largest region

R[g] ⊂ Rs, such that, ∀ (R1, R2, · · · , Rs) ∈ R[g] and ∀ ǫ > 0,

there exists an N0 ∈ N+, such that, for all n > N0, there exist

s encoders φi : X
n
i →

[

1, 2nRi
]

, i ∈ S , and one decoder

ψ :
∏

i∈S

[

1, 2nRi
]

→ Ωn with

Pr {~g (Xn
1 , · · · , X

n
s ) 6= ψ [φ1 (X

n
1 ) , · · · , φs (X

n
s )]} < ǫ,

where Xn
i =

[

X
(1)
i , X

(2)
i , · · · , X(n)

i

]

and

~g (Xn
1 , · · · , X

n
s ) =











g
(

X
(1)
1 , · · · , X(1)

s

)

..

.

g
(

X
(n)
1 , · · · , X(n)

s

)











∈ Ωn?

The region R[g] is called the achievable coding rate region for

computing g. A region R ⊂ Rs is said to be achievable for

computing g (or simply achievable) if and only if R ⊆ R[g].
Obviously, R[g] always contains the Slepian–Wolf region, and it

coincides with the Slepian–Wolf region if g is an identity function.

Unfortunately, R[g] is unknown for an arbitrary g in general. One

of the difficulties of tackling the general problem is that g is often

with an unclear structure, e.g. the g given by (13). Fortunately, [7,

Lemma A.2] points out that any discrete function with a finite domain

is essentially a polynomial function over some finite ring (including

field). Moreover, such a polynomial function always admits a pre-

sentation as ĝ in (9) (a concrete example is given in Example V.3).

Therefore, we can shrink the domain of consideration of Problem 1

to polynomial functions with presentation (9).

Let R[s] be the set of all polynomial functions of s variables over

ring R.

Theorem V.1. If ĝ ∈ R[s] admits

ĝ = h ◦ k, where k(x1, x2, · · · , xs) =

s
∑

i=1

ki(xi), (9)

and h, ki ∈ R[1] for all feasible i, then

Rĝ =
{

(r, r, · · · , r) ∈ R
s
∣

∣

∣
r >

max
06=I≤lR

log |R|

log |I|

[

H(X)−H(YR/I)
]

}

⊆ R[ĝ],
(10)

where X = k(X1, X2, · · · , Xs) and YR/I = X + I is a random

variable with sample space R/I.

Proof: By [11, Theorem IV.1], ∀ ǫ > 0, there exists a

large enough n, an m × n matrix (linear encoder) A ∈ R
m×n

and a decoder ψ, such that Pr {Xn 6= ψ (AXn)} < ǫ, if m >

511



max06=I≤lR

n
[

H(X)−H(YR/I)
]

log |I|
. Let φi = A ◦ ~ki (1 ≤ i ≤ s)

be the encoder of the ith source. Upon receiving φi(X
n
i ) from

the ith source, the decoder claims that ~h(X̂n), where X̂n =
ψ
[
∑s

i=1 φi (X
n
i )
]

, is the function, namely ĝ, subject to computation.

The probability of decoding error is

Pr
{

~h
[

~k (Xn
1 , X

n
2 , · · · , X

n
s )
]

6= ~h(X̂n)
}

≤Pr
{

Xn 6= X̂n
}

=Pr

{

Xn 6= ψ

[

s
∑

i=1

φi (X
n
i )

]}

=Pr

{

Xn 6= ψ

[

s
∑

i=1

A~ki (X
n
i )

]}

=Pr

{

Xn 6= ψ

[

A

s
∑

i=1

~ki (X
n
i )

]}

=Pr
{

Xn 6= ψ
[

A~k (Xn
1 , X

n
2 , · · · , X

n
s )
]}

=Pr {Xn 6= ψ (AXn)} < ǫ.

From this we conclude that (r, r, · · · , r) ∈ Rs with r =
m log |R|

n
>

max06=I≤lR

log |R|

log |I|

[

H(X)−H(YR/I)
]

is achievable, i.e. Rĝ ⊆

R[ĝ].

Remark 5. In fact, Rĝ in Theorem V.1 is not the largest achievable

region we can achieve. One can reprove all results in [8] by simply

replacing the linear encoder over field used in that work by linear

encoder over ring. This leads to solutions applied to polynomial

functions presented in other formats, e.g.

h

[

k0(x1, x2, · · · , xs0),
s
∑

j=s0+1

kj(xj)

]

, 0 ≤ s0 < s, (11)

where h, k0, kj’s (s0 < j ≤ s) are polynomial functions over the

same ring. The new achievable region always includes Rĝ and the

Slepian–Wolf region. Due to space limitation, we can only prove

Theorem V.1 with the purpose of showing the mechanism while

include one modified theorem from [8] without proof in the following.

Notice that [7, Lemma A.2] guarantees that every discrete function

with a finite domain admits a polynomial presentation of format (9), a

special case of (11) and other formats in [8]. Hence, the “polynomial

approach” always offers a universal solution to Problem 1.

Theorem V.2. Let S0 = {1, 2, · · · , s0} ⊆ S = {1, 2, · · · , s}. If

ĝ ∈ R[s] is given by (11), then R[ĝ] is inner bounded by the region

given by,

∑

j∈T

Rj ≥ |T \ S0| max
06=I≤lR

log |R|

log |I|

[

H(X|VS)−H(YR/I|VS)
]

+ I(YT ;VT |VTc ),∀ ∅ 6= T ⊆ S , (12)

where ∀ j ∈ S0, Vj = Yj = Xj ; ∀ j ∈ S \ S0, Yj = kj(Xj), Vj’s

are discrete random variables such that

p(y1, y2, · · · , ys, v1, v2, · · · , vs)

=p(y1, y2, · · · , ys)
s
∏

j=s0+1

p(vj |yj),

and X =
∑s

j=s0+1 Yj , YR/I = X + I.

Remark 6. The achievable region given by (12) always contains the

Slepian–Wolf region and is in general larger than the Rĝ from (10).

We conclude our discussion with the following example and some

related propositions. This example draws a comparison between fields

and non-field rings in the setting of a computing problem. It shows

that linear encoder over non-field ring is strictly better than over

field (any field). To be more precise, the first achieves strictly larger

achievable region with strictly smaller alphabet size.

Example V.3. Let g : {α0, α1}
3 → {β0, β1, β2, β3} (Fig 1) be a

function such that

g : (α0, α0, α0) 7→ β0; g : (α0, α0, α1) 7→ β3;

g : (α0, α1, α0) 7→ β2; g : (α0, α1, α1) 7→ β1;

g : (α1, α0, α0) 7→ β1; g : (α1, α0, α1) 7→ β0;

g : (α1, α1, α0) 7→ β3; g : (α1, α1, α1) 7→ β2.

(13)

Define µ : {α0, α1} → Z4 and ν : {β0, β1, β2, β3} → Z4 by

µ : αj 7→ j, ∀ j ∈ {0, 1}, and

ν : βj 7→ j, ∀ j ∈ {0, 1, 2, 3},
(14)

respectively. Obviously, g is equivalent ([9, Definition VI.3]) to

x + 2y + 3z ∈ Z4[3] (Fig 2) via µ1 = µ2 = µ3 = µ
and ν. However, there exists no ĝ ∈ F4[3] of format (9) so

that g is equivalent to any restriction of ĝ by Proposition V.4.

Although, by [7, Lemma A.2], there always exists a bigger field

Fq such that g admits a presentation for some ĝ ∈ Fq[3] of

format (9), the size q must be strictly bigger than 4. For instance,

let ĥ(x) =
∑

a∈Z5
a
[

1− (x− a)4
]

−
[

1− (x− 4)4
]

∈ Z5[1].

Then, g has presentation ĥ(x + 2y + 4z) ∈ Z5[3] (Fig 3) via

µ1 = µ2 = µ3 = µ : {α0, α1} → Z5 and ν : {β0, β1, β2, β3} → Z5

defined (symbolic-wise) by (14).

Proposition V.4 ([10]). There exists no polynomial function ĝ ∈
F4[3] of format (9), such that a restriction of ĝ is equivalent to the

function g defined by (13).

As a consequence of Proposition V.4, in order to use linear encoder

over field to compute function g, the alphabet sizes of the three

encoders need to be at least 5. However, ring version offers a

solution in which the alphabet sizes are 4, strictly smaller than

using its field counterpart. Most importantly, the region achieved with

linear encoders over a finite field Fq, is always a subset of the one

achieved with linear encoders over Z4. This is proved in the following

proposition.

Proposition V.5. Let g be the function defined by (13), {α0, α1}
3 be

the sample space of (X1, X2, X3) ∼ p and pX be the distribution

of X = g(X1, X2, X3). If
{

0 ≤ max{pX(β1), pX(β3)} 6< min{pX(β0), pX(β2)} ≤ 1

0 ≤ max{pX(β0), pX(β2)} 6< min{pX(β1), pX(β3)} ≤ 1

then the region R1 achieved with linear encoders over Z4 contains

the one, that is R2, obtained with linear encoders over any finite field

Fq for computing g. Moreover, if p is strictly positive, then R1 ) R2.

Proof: Proof can be found in [9, Proposition VI.7].

Regarding Proposition V.5, a more intuitive comparison can be

identified from the presentations of g given in Fig 2 and Fig 3.

According to Theorem V.1, linear encoders over field Z5 achieves

the region

RZ5
=
{

(R1, R2, R3) ∈ R
3
∣

∣Ri > H(X1 + 2X2 + 4X3)
}

.
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1
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y
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z

2

1 0

3 = ĥ(4)

0

1

x

2

y

3

z

(X1, X2, X3) p
(α0, α0, α0) 1/90
(α1, α0, α1) 1/90
(α1, α0, α0) 42/90
(α0, α1, α1) 42/90
(α0, α1, α0) 1/90
(α1, α1, α1) 1/90
(α0, α0, α1) 1/90
(α1, α1, α0) 1/90

Fig 1: g : {α0, α1}3 → {β0, β1, β2, β3} Fig 2: x+ 2y + 3z ∈ Z4[3] Fig 3: ĥ(x+ 2y + 4z) ∈ Z5[3] Table 1

The one achieved by linear encoders over ring Z4 is

RZ4
=
{

(R1, R2, R3) ∈ R
3
∣

∣Ri > H(X1 + 2X2 + 3X3)
}

.

Clearly, H(X1+2X2+3X3) ≤ H(X1+2X2+4X3), thus, RZ4
⊇

RZ5
. Furthermore, RZ4

is strictly larger than RZ5
as long as

0 < Pr {α0, α0, α1} ,Pr {α1, α1, α0} < 1,

(which implies H(X1 + 2X2 + 3X3) < H(X1 + 2X2 + 4X3)). To

be specific, assume that (X1, X2, X3) ∼ p satisfies Table 1. Then

RZ5
=
{

(R1, R2, R3) ∈ R
3
∣

∣Ri > 0.4812
}

(RZ4
=
{

(R1, R2, R3) ∈ R
3
∣

∣Ri > 0.4590
}

.

Based on Proposition V.4 and Proposition V.5, we conclude that

linear encoder over non-field ring dominates its field counterpart, in

terms of achieving better coding rates with smaller alphabet sizes

used in the encoders for computing g.

Remark 7. As mentioned in Remark 5, it is possible to obtain larger

achievable region in computing g in Example V.3 by applying the

linear encoder over ring to the “polynomial approach” introduced in

[8]. In this sense, one can still prove that Proposition V.5 holds true.

Interested reader can verify this with Theorem V.2.

Remark 8. In the sense of Theorem V.1 or Theorem V.2, there are

infinitely many discrete functions for which using linear encoder over

field always leads to suboptimal achievable region compared to linear

encoder over some non-field ring. Examples include
∑s

i=1 xi ∈
Z2p[s] for any prime p > 2. One can always find an explicit example

in which linear encoder over Z2p dominates. We omit the details

because of space limitation.

Remark 9. It is not correct to draw the conclusion that the linear

coding technique considered in this paper, [9] and [11] is included

as a subclass of the group coding technique introduced in [13] since

“a ring is a group”. The difference can be seen via the example

presented in [13, Section VIII.A]. [13, row 2 of TABLE III] says

that group code over group Z4 ⊕ Z4 can leads to strictly worse rate

compared to group code over group Z4. On the contrary, we claim

that linear encoder over ring Z4 × Z4 is always at least as good

as the one over ring Z4 by Theorem IV.2. The essential reason for

this is that a ring is not a group. An algebraic structure needs to

be considered with the associated operations. This is why one can

define at least 3 non-isomorphic rings on the group Zq ⊕Zq . A ring

with two operations is not a group which associates with only one

operation. After all, consider coding over the set Z4 × Z4 for the

mentioned example, [13, row 2 of TABLE III]. Our ring approach

gives sum rate 3 (the less better rate achieved by Theorem V.1, not

even the better one from Theorem V.2). This is strictly better than

the group approach which achieves sum rate 3.5.

VI. CONCLUSION

For any data compression problem of Slepian–Wolf, we have

proved that there always exist linear encoders over non-field rings

which achieve the Slepian–Wolf region. Therefore, the optimality

issue considered is closed on the regard of existence. However, the

ultimate target is to verify (or deny) that (2) is the Slepian–Wolf

region for all possible choices of rings. From this viewpoint, the

problem remains open.

Additionally, we have also demonstrated that linear encoder over

non-field ring strictly outperforms its field counterpart in (infinitely)

many circumstances regarding the computing problem, Problem 1.
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