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Abstract—This paper studies linear coding (LC) techniques
in the setting of computing functions of correlated memoryless
sources. Instead of linear mappings over finite fields, we consider
using linear mappings over finite rings as encoders. It is shown
that generally the region c×R, where c ≥ 1 is a constant and R
is the Slepian–Wolf (SW) region, is achievable with LC over ring
(LCoR) when the function to compute is the identity function.
c = 1 if the ring used is a field. Hence, LCoR could be suboptimal
in terms of achieving the best coding rates (the SW region) for
computing the identity function.

In spite of that, the ring version shows several advantages. It is
demonstrated that there exists a function that is neither linear nor
can be linearized over any finite field. Thus, LC over field (LCoF)
does not apply directly for computing such a function unless the
polynomial approach [1], [2] is used. On the contrary, such a
function is linear over some ring. Using LCoR, an achievable
region containing the SW region can be obtained for computing
this function. In addition, the alphabet sizes of the encoders are
strictly smaller than using LCoF. More interestingly, LCoF is not
useful if some special requirement is imposed.

I. INTRODUCTION

This paper focuses on applying linear coding (LC) tech-
niques to the coding problem of computing a discrete function
over a noiseless memoryless source network. This computing
problem is formally defined as follows.

Problem 1 (Coding for Computing). Given S = {1, 2, · · · , s}
and (X1, X2, · · · , Xs) ∼ p. Let ti (i ∈ S) be a discrete
memoryless source that randomly generates i.i.d. discrete data
X
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The region R[g] is called the achievable coding rate region for
computing g. A rate tuple R ∈ Rs is said to be achievable for
computing g (or simply achievable) if and only if R ∈ R[g].
A region R ⊂ Rs is said to be achievable for computing g
(or simply achievable) if and only if R ⊆ R[g].

If g is the identity function, it is obvious that such a
computing problem is equivalent to the Slepian–Wolf (SW)
source coding problem. Hence, R[g] is the SW region [3]

R[X1, X2, · · · , Xs] =
{

(R1, R2, · · · , Rs) ∈ Rs
∣∣∣∑

j∈T
Rj ≥ H(XT |XT c),∀ ∅ 6= T ⊆ S

}
,

where T c is the complement of T in S and XT (XT c) is

the random variable array
∏
j∈T

Xj

∏
j∈T c

Xj

. Nevertheless,

based on the scheme used to achieve this region, the structures
of the encoders are unclear, since they are chosen randomly
among all feasible mappings. In the single source scenario,
Elias [4] shows that linear coding over finite field (LCoF),
where Xi’s and Ω are embedded as subsets of this field
and φi’s are linear mappings, is sufficient in achieving the
best coding rate. This idea is then generalised to the multiple
sources scenario by Csiszár [5]. As a consequence of [5], any
rate tuple in the SW region is achievable with LCoF.

Generally speaking, R[X1, X2, · · · , Xs] ⊆ R[g] for an
arbitrary discrete function g. Making use of Elias’ theorem on
binary linear codes [4], Körner–Marton [6] shows that R[⊕2]
(“⊕2” is the modulo-two sum) contains the region

R⊕2
=
{

(R1, R2) ∈ R2 | R1, R2 ≥ H(X1 ⊕2 X2)
}
.

This region is not contained in the SW region for certain
distributions. In other words, R[⊕2] ) R[X1, X2]. Combining
the standard random coding technique and Elias’ result, [7]
shows that R[⊕2] can be strictly larger than the convex hull
of the union R[X1, X2]∪R⊕2

. However, functions considered
in these literature are relatively simple (the modulo-two sum).

Taking a polynomial approach, [1], [2] generalise the re-
sult of Ahlswede–Han [7, Theorem 10] to the most general
scenario. Making use of the fact that a discrete function is
essentially a polynomial function [8, pp. 129] over some finite
field, an achievable region is given for computing an arbitrary
discrete function. Such a region contains and can be strictly
bigger (depending on the precise function and distribution
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under consideration) than the SW region. Conditions under
which R[g] is strictly larger than the SW region are presented
in [9] and [1] from different perspectives, respectively.

This paper focuses on linear coding over finite ring (LCoR)
which serves as an alternative technique for the computing
problem. In Section III, we present an achievable region for
computing the identity function with LC over a finite ring,
namely, all encoders are linear mappings over this ring (see
Definition II.4). It is proved that this region resumes the SW
region if this ring is a field. Thus, the results of [4], [5]
become special cases of ours on this respect. As an application,
Problem 1 with a non-trivial g is considered in Section IV.
After giving two generalised results of [7, Theorem 10] and
Körner–Marton [6], respectively, an example is constructed
exhibiting several superiorities of LCoR compared to LCoF.
In this example, a discrete function is defined. Since this
function is neither linear nor linearizable over any finite field,
the methods of [7, Theorem 10] or Körner–Martion [6] do
not apply directly. However, it is linear over some finite ring.
LCoR can then be used to achieve coding rates beyond the SW
region for computing this function. Though LCoF can also be
applied to achieve coding rates beyond the SW region if the
polynomial approach [1], [2] is used, the encoders using LCoF
require strictly bigger alphabet sizes than using LCoR. Under
special circumstance, LCoF is not even useful (Remark 11).

II. PRELIMINARIES

Some needed algebraic concepts and results are given in this
section. More fundamentals can be found in [8], [10]. Readers
who are familiar with abstract algebra can go through quickly.

Definition II.1. The tuple [R,+, ·] is called a ring if and only
if it satisfies the follows:

1) [R,+] is a group;
2) ∀ a, b, c ∈ R, a · b ∈ R and (a · b) · c = a · (b · c).

Moreover, there exists a multiplicative unit1 1 ∈ R, i.e.,
1 · a = a · 1 = a, ∀ a ∈ R;

3) ∀ a, b, c ∈ R, a ·(b+c) = (a ·b)+(a ·c) and (b+c) ·a =
(b · a) + (c · a).

We often write R for [R,+, ·] when the operations (opera-
tors) considered are known from the context. The operator “·”
is usually written by juxtaposition, ab for a·b, for all a, b ∈ R.

A ring [R,+, ·] is said to be commutative if ∀ a, b ∈ R,
a · b = b · a. In Definition II.1, the identity of the group
[R,+], namely 0, is called the zero. A ring [R,+, ·] is said to
be finite if the cardinality |R| is finite, and |R| is called the
order of R. The set Zq of integers modulo q is a commutative
finite ring with respect to the modular arithmetic. For any
ring R, the set of all polynomials of s indeterminants, namely
R[X1, X2, · · · , Xs], is an infinite ring. Meanwhile, we denote
the set of all the polynomial functions of s variables over ring
R by R[s].

Let R∗ = R \ {0}. The ring [R,+, ·] is a field if and only
if R∗ is an Abelian group with respect to the multiplicative

1In some literature, a ring is defined without multiplicative unit. We only
consider rings with multiplicative units in this paper.

operation “·”. All fields are commutative rings. Zq is a field
if and only if q is a prime. Up to isomorphism, all finite fields
are unique [10, pp. 549]. We use Fq to denote this “unique”
field of order q. It is necessary that q is a power of a prime.
More details of finite field can be found in [10, 14.3].

Definition II.2 (c.f. [10]). The characteristic of a finite ring
R is defined to be the smallest positive integer m, such that
m∑
j=1

1 = 0, where 0 and 1 are the zero and the multiplicative

unit of R, respectively. The characteristic of R is often denoted
by Char(R).

Remark 1. Clearly, Char(Zq) = q. For a finite field Fq ,
Char(Fq) is always the prime q0 such that q = qn0 for some
integer n [8, Proposition 3.113].

Proposition II.3. Let Fq be a finite field. For any 0 6= a ∈ Fq ,
m = Char(Fq) if and only if m is the smallest positive integer

such that
m∑
j=1

a = 0.

Proof: Since a 6= 0,
m∑
j=1

a = 0⇒ a−1
m∑
j=1

a = a−1 · 0⇒
m∑
j=1

1 = 0⇒
m∑
j=1

a = 0

The statement is proved.

Definition II.4. A mapping f : Rn → Rm given as:

f(x1, x2, · · · , xn) =

 n∑
j=1

a1,jxj , · · · ,
n∑
j=1

am,jxj

T

, (1)

∀ (x1, x2, · · · , xn) ∈ Rn,

where ai,j ∈ R, 1 ≤ i ≤ m, 1 ≤ j ≤ n, is called a linear
mapping over ring R. If m = 1, then f is called a linear
function over R.

Remark 2. The mapping f in Definition II.4 is called linear
in accordance with the definition of linear mapping (linear
function) over a field. In fact, they do possess a lot of similar
properties. Besides, (1) is equivalent to

f(x1, x2, · · · , xn) =A (x1, x2, · · · , xn)
T
, (2)

∀ (x1, x2, · · · , xn) ∈ Rn,

where A is an m× n matrix over R and [A]i,j = ai,j for all
feasible i and j. The linear mapping f is said to be trivial,
denoted by 0, if A is the zero matrix, i.e., [A]i,j = 0 for all
feasible i and j. A is named the coefficient matrix.

Let A be an m × n matrix over ring R and f(x) = Ax,
∀ x ∈ Rn. For the system of linear equations

f(x) = Ax = 0, where 0 = (0, 0, · · · , 0)T ∈ Rm,

let S(f) be the set of all solutions, namely S(f) =
{x ∈ Rn|f(x) = 0}. It is obvious that S(f) = Rn if f is
trivial, i.e., A is the zero matrix. If R is a field, then S(f)
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is a subspace of Rn. In fact, S(f) is an R-submodule [10]
of Rn in general. We conclude this section with a lemma
regarding the cardinalities of Rn and its R-submodule S(f)
in the following.

Lemma II.5. A linear function f : Rn → R over a ring
R is non-trivial, if and only if the set S(f) is proper, i.e,
S(f) ( Rn.

Proof: Let f(x) = Ax, ∀ x ∈ Rn, where A =
(a1, a2, · · · , an). For necessity ⇒, without loss of general-
ity, assume that a1 6= 0, since f is non-trivial. Show by
contradiction, suppose that S(f) = Rn. Then let x0 =
(x1, x2, · · · , xn) = (1, 0, · · · , 0) ∈ S(f). We have 0 =

f(x0) =

n∑
i=1

aixi = a1, a contradiction. Sufficiency (⇐) is

obvious.

III. RANDOM LINEAR CODING OVER RINGS

This section considers Problem 1 with g being the identity
function, namely the SW source coding problem. The case
that g is an arbitrary function is left to Section IV.

Given a ring R, it is easily seen from Remark 2 that
a linear mapping f : Rn → Rm is uniquely determined
by the coefficient matrix A, and vice versa. Thus, we can
define S(A) to be S(f). In particular, A is a row vector
when m = 1. Let LRn be the set of all linear functions
f : Rn → R. Then LRn can be seen as an R-module
with respect to the function addition and scalar-function
multiplication. Consequently, every x ∈ Rn can be treated
as a linear function x : LRn → R given by x : f 7→ f(x),
∀ f ∈ LRn . This is the so-called duality.

Let κ(R, n) = max
f∈LRn\{0}

|S(f)|
|Rn|

= max
x∈Rn\{0}

|S(x)|
|Rn|

, and

κR = lim inf
n→∞

κ(R, n).

Lemma III.1. Let R be a commutative finite ring. For any f ∈
LRn \ {0}, we have

|S(f)|
|Rn|

≤ κ(R, n) ≤ 1

2
. Furthermore, if

R is a field, then
|S(f)|
|Rn|

=
1

|R|
= κ(R, n) = κR.

Proof: ∀ x,y ∈ S(f) and ∀ a, b ∈ R, f(ax + by) =
A(ax + by) = a(Ax) + b(Ay) = 0 implies that ax + by ∈
S(f). Therefore, S(f) is a R-submodule of Rn, hence, S(f)
is a subgroup Rn. By Lagrange’s Theorem [11, 1.3.2], there
exists a positive integer l, such that l×|S(f)| = |Rn|. On the
other hand, by Lemma II.5, |S(f)| < |Rn| since R is finite.

Thus, l ≥ 2. Therefore,
|S(f)|
|Rn|

=
1

l
≤ κ(R, n) ≤ 1

2
.

Observe that Rn is a vector space and S(f) is one of
its subspaces of codimension 1. Then the second half of the
statement follows.

Remark 3. The conclusion drawn in Lemma III.1 is of great
importance. The achievability result Theorem III.3 deeply
depends on the upper bound of κ(R, n). Besides, 2−1 is a
very loose upper bound on κ(R, n) and κR in general (e.g.,
κZ35

≤ 5−1).

Lemma III.2. Given a commutative finite ring R, for the
linear mapping f : Rn → Rk randomly chosen according

to a uniform distribution, Pr{f(x) = 0} =

(
|S(x)|
|Rn|

)k
≤

[κ(R, n)]
k ≤ 2−k,∀ 0 6= x ∈ Rn. Moreover, if R is a field,

then Pr{f(x) = 0} = |R|−k,∀ 0 6= x ∈ Rn.

Proof: Let f = (f1, f2, · · · , fk)T , where fi : Rn → R
is a linear function over R for all feasible i. By a simple
counting argument, it is easy to verify that

Pr{f(x) = 0} = Pr

 ⋂
1≤i≤k

{fi(x) = 0}

 =

(
|S(x)|
|Rn|

)k
The lemma follows from Lemma III.1 since x 6= 0.

Remark 4. Consider using f in Lemma III.2 as the encoder,
and assume that x0 is the original data generated by the source.
The probability that the decoder mistakes x′ 6= x0 as the
original data, namely Pr{f(x0 − x′) = 0}, is then bounded
by [κ(R, n)]

k ≤ 2−k. Thus, if k is big enough, then the total
probability of decoding error for decoding all feasible x0 is
very small. For such a reason, we name the lower limit κR
the fundamental error factor, because the error exponent of a
random linear code over R is closely related to it (see Theorem
III.3 for more details).

Theorem III.3. In Problem 1, if g is the identity function,

then
(
− log |R|

log κR

)
R, where R = R [X1, X2, · · · , Xs] , is

achievable with linear coding over commutative finite ring R
of order |R| ≥ max

1≤i≤s
|Xi|. Furthermore, R is achievable with

linear coding over R if R is a field.

Sketch of the Proof: Since |R| ≥ max
1≤i≤s

|Xi|, Xi can

be seen as a subset of R for each 1 ≤ i ≤ s. If R is

a finite field, then
(
− log |R|

log κR

)
R = R. Hence, it suffices

to prove that
(
− log |R|

log κR

)
R is achievable. Since the lower

limit lim inf
m→∞

κ(R,m) always exists, we can define QR =

{nl1 , nl2 , · · · , nlj , · · · } ⊆ N+, such that lim
j→∞

κ(R, nlj ) =

κR. ∀ (R1, R2, · · · , Rs) ∈ R, let ki =
nRi

− log κ(R, n)
,

1 ≤ i ≤ s, where n ∈ QR is the length of the codewords.
Construct the encoders and decoder as for LC over a finite
field. In particular, choose randomly and independently for
each source ti a linear mapping fi : Rn → Rki as its

encoders. For all x = (x1,x2, · · · ,xs) ∈
s∏
i=1

X n
i and

∀ ∅ 6= S ⊆ S, let D(x, S) be the set{
(x′1,x

′
2, · · · ,x′s) ∈

s∏
i=1

X n
i

∣∣∣∣∣x′i 6= xi if and only if i ∈ S

}
.

By Lemma III.2, for any two sequences x = (x1, · · · ,xs) ∈
s∏
i=1

X n
i and (x′1,x

′
2, · · · ,x′s) ∈ D(x, S), the probability that
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[f1(x′1), f2(x′2), · · · , fs(x′s)] = [f1(x1), f2(x2), · · · , fs(xs)] ,
i.e., [f1(x′1 − x1), f2(x′2 − x2), · · · , fs(x′s − xs)]

T
= 0, is∏

i∈S

(
|S(x′i − xi)|
|Rn|

)ki
≤ [κ(R, n)]

∑
i∈S ki

=2−
∑

i∈S −ki log κ(R,n)

=2−n
∑

i∈S Ri .

Thus, the probability of decoding error of decoding all strongly
typical sequences [12] is bounded around 0 when n is big
enough. Meanwhile, the rate of this code is (R′1, R

′
2, · · · , R′s),

where R′i =
ki
n

log |R| = − Ri log |R|
log κ(R, n)

for all feasible i.

Since κR = lim inf
m→∞

κ(R,m), the theorem follows.

Remark 5. Let q = max
1≤i≤s

|Xi| and p1 be the smallest prime

that divides q. In the above theorem, R can be set to Zq . Thus,(
log q

log p1

)
R is achievable with LC over Zq , since κZq

≤ p−11 .

If − log q

log κZq

> 1, then
(
− log q

log κZq

)
R is strictly smaller than

R. However, this can be improved if a tighter bound on κR is
obtained. For the special case where R is a field, making use
of the tightest bound, we have the whole region R achievable
with LC as it is stated in Theorem III.3 ([4] as well).

IV. APPLICATION: SOURCE CODING FOR COMPUTING

Problem 1 with an arbitrary g is considered in this section.
A source coding theorem of LCoR for computing an arbitrary
function will be presented. Meanwhile, an example is given
to demonstrate some advantages of LCoR compared to LCoF.

Theorem IV.1. Let R be a commutative finite ring. In Problem
1, if g ∈ R[s] admits the structure

g(x1, · · · , xs) = h

k0(x1, · · · , xt) +

s∑
j=t+1

kj(xj)

 , (3)

where k0 ∈ R[t] and h, kj ∈ R[1] for all 1 ≤ t < j ≤ s, then

R[g] ⊇ R =
{

(R1, R2, · · · , Rs) ∈ Rs
∣∣∣∀ ∅ 6= S ⊆ S,∑

j∈S
Rj > I(YS ;VS |VSc)− |S \ T | log |R|

log κR
H(Z|VS)

}
,

where T = {1, 2, · · · , t}; ∀ j ∈ T , Vj = Yj = Xj; ∀ t < j ≤
s, Yj = kj(Xj), Vj’s are discrete random variables such that

p(y1, v1, · · · , ys, vs) = p(y1, · · · , ys)
s∏

j=t+1

p(vj |yj);

and Z = kt+1(Xt+1) + kt+2(Xt+2) + · · ·+ ks(Xs).

Remark 6. Obviously, if Vj = Yj , ∀ j ∈ S, in Theorem
IV.1, then R = R[X1, X2, · · · , Xs], the SW region. Thus, R
contains the SW region if Vj’s are chosen properly. Theorem
IV.1 can be identified as a ring version of [2, Theorem III.1] (a
generalisation of [7, Theorem 10]). They can be proved with

parallel techniques. The proof of the above theorem is omitted
because of space limitation. However, we provide the proof of
its corollary (Corollary IV.4) showing the mechanism of how
LCoR works in the computing problem.

Definition IV.2. Let g1 :

s∏
i=1

Xi → Ω1 and g2 :

s∏
i=1

Yi → Ω2

be two functions. If there exist bijections µi : Xi → Yi,
∀ 1 ≤ i ≤ s, and ν : Ω1 → Ω2, such that

g1(x1, x2, · · · , xs) = ν−1(g2(µ1(x1), µ2(x2), · · · , µs(xs))),

then g1 and g2 are said to be equivalent (via µ1, µ2, · · · , µs
and ν).

Definition IV.3. Given function g : D → Ω, and let ∅ 6= S ⊆
D . The restriction of g on S is defined to be the function
g|S : S → Ω such that g|S : x 7→ g(x),∀ x ∈ S .

Remark 7. Up to equivalence, a function can be presented in
many different formats. For example, the function min{x, y}
defined on {0, 1} × {0, 1} can either be seen as F1(x, y) =
xy ∈ Z2[2] or be treated as the restriction of F2(x, y) =
x+y−(x+y)2 ∈ Z3[2] to the domain {0, 1}×{0, 1} ⊂ Z2

3. We
refer to each presented format of a function as a presentation
of this function.

The following is a corollary (special case) of Theorem IV.1.
It can also be seen as a generalisation of Körner–Martion [6].

Corollary IV.4. Given a discrete function g :

s∏
i=1

Xi → Ω,

and let q = max

{
|X1|, |X2|, · · · , |Xs|,

∣∣∣∣∣g
(

s∏
i=1

Xi

)∣∣∣∣∣
}

, R

be a communicative finite ring of order |R| ≥ q. If g is
equivalent to some restriction of a polynomial function

ĝ = h ◦ k, where k(x1, x2, · · · , xs) =

s∑
i=1

ki(xi), (4)

and h, ki ∈ R[1] for all feasible i, then (r, r, · · · , r) ∈ R[g],

for all r > − log |R|
log κR

H(Z), where Z = k(X1, X2, · · · , Xs).

Proof: Let R be a finite commutative ring, such that
|R| ≥ q. Up to equivalence, Xi can be seen as a subset of
R for 1 ≤ i ≤ s. By Theorem III.3, ∀ ε > 0, there exists a
big enough n, an m × n matrix A ∈ Rm×n and a decoder

ψ, such that Pr {Zn 6= ψ (AZn)} < ε, if m > −nH(Z)

log κR
. Let

φi = A◦~ki (1 ≤ i ≤ s) be the encoder of the ith source. Upon
receiving φi(X

n
i ) from the ith source, the decoder claims

that ~h
(
Ẑn
)

, where Ẑn = ψ

[
s∑
i=1

φi (Xn
i )

]
, is the function

required to compute. The probability of decoding error is

Pr
{
~h
[
~k (Xn

1 , X
n
2 , · · · , Xn

s )
]
6= ~h

(
Ẑn
)}

≤Pr
{
Zn 6= Ẑn

}
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= Pr

{
Zn 6= ψ

[
s∑
i=1

φi (Xn
i )

]}

= Pr

{
Zn 6= ψ

[
s∑
i=1

A~ki (Xn
i )

]}

= Pr

{
Zn 6= ψ

[
A

s∑
i=1

~ki (Xn
i )

]}
= Pr

{
Zn 6= ψ

[
A~k (Xn

1 , X
n
2 , · · · , Xn

s )
]}

= Pr {Zn 6= ψ (AZn)} < ε.

Therefore, all (r, r, · · · , r) ∈ Rs, where r =
m log |R|

n
>

− log |R|
log κR

H(Z) are achievable, i.e., (r, r, · · · , r) ∈ R[g].

Remark 8. By Theorem III.3, LCoR may not be as good
as LCoF in terms of achieving optimal coding rates in the
SW source coding problem. Nevertheless, LCoR can also
be applied to obtain achievable region larger than the SW
region in the computing problem. It is easy to find such
a distribution (X1, X2, · · · , Xs) ∼ p, such that, in Corol-
lary IV.4, sr < H(X1, X2, · · · , Xs). Hence (r, r, · · · , r) /∈
R[X1, X2, · · · , Xs], i.e., Corollary IV.4 offers coding rates
beyond the SW region.

Remark 9. [1, Lemma A.2] implies that every discrete
function is equivalent to some restriction of a polynomial
function of format (4) ((3) as well) over some finite field (or
ring). Hence, Theorem IV.1 and Corollary IV.4 are universally
applied for computing any discrete function.

In the rest of this section, a discrete function is constructed.
This function is equivalent to a linear function over some
finite ring. It is proved that this function is neither linear
nor can be linearized over any finite field (see Lemma IV.7).
Consequently, the results of Körner–Martion [6] or Ahlswede–
Han [7, Theorem 10] do not apply directly. However, it will
be shown that LCoR offers a promising solution.

Example IV.5. Let g : {α0, α1}3 → {β0, β1, β2, β3} (Fig 1)
be a function such that

g : (α0, α0, α0) 7→ β0; g : (α0, α0, α1) 7→ β3;

g : (α0, α1, α0) 7→ β2; g : (α0, α1, α1) 7→ β1;

g : (α1, α0, α0) 7→ β1; g : (α1, α0, α1) 7→ β0;

g : (α1, α1, α0) 7→ β3; g : (α1, α1, α1) 7→ β2.

(5)

Define µ : {α0, α1} → Z4 and ν : {β0, β1, β2, β3} → Z4 by

µ : αj 7→ j, ∀ j ∈ {0, 1}, and
ν : βj 7→ j, ∀ j ∈ {0, 1, 2, 3},

(6)

respectively. Obviously, g is equivalent to x+2y+3z ∈ Z4[3]
(Fig 2) via µ1 = µ2 = µ3 = µ and ν. However, by Proposition
IV.6, there exists no ĝ ∈ F4[3] of format (4) so that g is
equivalent to any restriction of ĝ. Although, by [1, Lemma
A.2], there always exists a bigger field Fq such that g admits

a presentation for some ĝ ∈ Fq[3] of format (4), the size q
must be strictly bigger than 4. For instance, let

ĥ(x) =
∑
a∈Z5

a
[
1− (x− a)4

]
−
[
1− (x− 4)4

]
∈ Z5[1]. (7)

Then, g has presentation ĥ(x + 2y + 4z) ∈ Z5[3] (Fig
3) via µ1 = µ2 = µ3 = µ : {α0, α1} → Z5 and
ν : {β0, β1, β2, β3} → Z5 defined (symbolic-wise) by (6).

Proposition IV.6. There exists no polynomial function ĝ ∈
F4[3] of format (4), such that a restriction of ĝ is equivalent
to the function g defined by (5).

Proof: Suppose ν◦g = ĝ◦(µ1, µ2, µ3), where µ1, µ1, µ3 :
{α0, α1} → F4, ν : {β0, · · · , β3} → F4 are injections and
ĝ = h◦ (k1 +k2 +k3) with h, ki ∈ F4[1] for all feasible i. We
claim that ĝ and h are both surjective, since

∣∣g ({α0, α1}3
)∣∣ =

|{β0, β1, β2, β3}| = 4 = |F4| . In particular, h is bijective.
Therefore, h−1 ◦ ν ◦ g = k1 ◦ µ1 + k2 ◦ µ2 + k3 ◦ µ3, i.e.,
g admits a presentation k1(x) + k2(y) + k3(z) ∈ F4[3]. A
contradiction to Lemma IV.7.

Lemma IV.7. No matter which finite field Fq is chosen, g
given by (5) admits no presentation k1(x) + k2(y) + k3(z),
where ki ∈ Fq[1] for all feasible i.

Proof: Suppose otherwise, i.e., k1◦µ1+k2◦µ2+k3◦µ3 =
ν ◦ g for some injections µ1, µ1, µ3 : {α0, α1} → Fq and
ν : {β0, · · · , β3} → Fq . By (5), we have

ν(β1) =(k1 ◦ µ1)(α1) + (k2 ◦ µ2)(α0) + (k3 ◦ µ3)(α0)

=(k1 ◦ µ1)(α0) + (k2 ◦ µ2)(α1) + (k3 ◦ µ3)(α1) and
ν(β3) =(k1 ◦ µ1)(α1) + (k2 ◦ µ2)(α1) + (k3 ◦ µ3)(α0)

=(k1 ◦ µ1)(α0) + (k2 ◦ µ2)(α0) + (k3 ◦ µ3)(α1)

=⇒ ν(β1)− ν(β3) = τ = −τ
=⇒ τ + τ = 0, (8)

where τ = k2(µ2(α0)) − k2(µ2(α1)). Since µ2 is injective,
(8) implies that either τ = 0 or Char(Fq) = 2 by Proposition
II.3. Noticeable that k2(µ2(α0)) 6= k2(µ2(α1)), i.e., τ 6= 0,
otherwise, ν(β1) = ν(β3) which contradicts the assumption
ν is injective. Thus, Char(Fq) = 2. Let ρ = (k3 ◦ µ3)(α0) −
(k3 ◦ µ3)(α1). Obviously, ρ 6= 0 because of the same reason
that τ 6= 0, and ρ+ ρ = 0 since Char(Fq) = 2. Therefore,

ν(β0)

=(k1 ◦ µ1)(α0) + (k2 ◦ µ2)(α0) + (k3 ◦ µ3)(α0)

=(k1 ◦ µ1)(α0) + (k2 ◦ µ2)(α0) + (k3 ◦ µ3)(α1) + ρ

=ν(β3) + ρ

=(k1 ◦ µ1)(α1) + (k2 ◦ µ2)(α1) + (k3 ◦ µ3)(α0) + ρ

=(k1 ◦ µ1)(α1) + (k2 ◦ µ2)(α1) + (k3 ◦ µ3)(α1) + ρ+ ρ

=ν(β2) + 0 = ν(β2).

This contradicts that ν is injective.

Remark 10. This lemma says that no matter which finite field
Fq is chosen, g defined by (5) has no presentation that is linear
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Fig 1: g : {α0, α1}3 → {β0, β1, β2, β3} Fig 2: x+ 2y + 3z ∈ Z4[3] Fig 3: ĥ(x+ 2y + 4z) ∈ Z5[3]

over Fq . Thus, [6] or [7, Theorem 10] do not directly apply. In
contrast, g is equivalent to linear function x+2y+3z ∈ Z4[3].
Theorem IV.1 and Corollary IV.4 apply if R is set to be Z4.
Although a solution of using LCoF is guaranteed by taking
the polynomial approach [1], [2], the alphabet sizes required
by the encoders are at least 5 strictly bigger then using LCoR.

Remark 11. As mentioned, using the polynomial approach,
LCoF can be applied for computing g defined by (5). However,
there is a critical drawback of the polynomial approach. To use
this approach for computing a discrete function g, one needs to
search for a polynomial presentation h ◦ (k0, kt+1, · · · , ks) ∈
R[s], where k0 ∈ R[t] and h, kj ∈ R[1] (t < j ≤ s),
of g over some ring (or field) R, then unveil the structure
of h to the decoder. For instance, g admits presentation
ĥ(x + 2y + 4z) ∈ Z5[3], where ĥ is given by (7). In order
to use the polynomial approach in the setting of Z5, formula
(7) must be known by the decoder. Unfortunately, there
exist circumstances forbidding releasing (partial) information
of g. Lemma IV.7 implies that any polynomial presentation
h ◦ (k1, k2, k3) of g over any finite field admits a non-trivial
h (h is not the superposition of k1, k2, k3). Assume that the
formula defining h can not be released to the decoder for
some reason (security, communication impossible, etc). Then
LCoF can not be applied for computing g with or without
the polynomial approach. On the contrary, g is equivalent to
x + 2y + 3z ∈ Z4[3]. Using LC over Z4, all the decoder
needs to do is to add the messages observed from the encoders
together then apply the decoding mapping. Neither the formula
defining g, namely (5), nor the fact that g is equivalent to a
linear function over Z4 is known by the decoder.

V. CONCLUSION

This paper considers LCoR and its application to the
problem of coding for computing (see Problem 1). Source
coding theorems of LCoR regarding computing the identity
function or an arbitrary function are given. In addition, a
non-linear (over any finite field) function is constructed. It
is shown that methods of [6] and [7, Theorem 10], which
depend on LCoF, do not directly applied for computing this
function. Even though when the polynomial approach [1], [2]
is used, LCoF can be applied for computing this function.

The decoders require strictly bigger alphabet sizes compared
to applying LCoR.

We mentioned that LCoR could be suboptimal in SW source
coding scenario. We have not compared LCoF and LCoR
with respect to their abilities of achieving larger achievable
region for computing a non-identity function. However, we
strongly believe that there exist non-field rings over which LC
is optimal for the SW source coding scenario. Furthermore,
there exists an example demonstrating that LCoR outperforms
LCoF in achieving larger achievable region for computing
some discrete function.
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