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Abstract—This paper considers the problem of source coding
for computing functions of correlated i.i.d. random sources. The
approach of combining standard and linear random coding for
this problem was first introduced by Ahlswede and Han, in the
special case of computing the modulo-two sum. In this paper,
making use of an adapted version of that method, we generalize
their result to more sophisticated scenarios, where the functions
to be computed are polynomial functions. Since all discrete
functions are fundamentally restrictions of polynomial functions,
our results are universally applied.

I. INTRODUCTION

For each 1 ≤ i ≤ s, let ti be a source that randomly
generates discrete i.i.d. data X(1)

i , X
(2)
i , · · · , X(n)

i , · · · , where
X

(n)
i has sample space Xi and

(
X

(n)
1 , X

(n)
2 , · · · , X(n)

s

)
∼ p,

∀ n ∈ N+. Let f :

s∏
i=1

Xi → Ω be some discrete

function. The source coding problem of computing a function
of correlated sources considers: what is the achievable coding
rate (R1, R2, · · · , Rs) ∈ Rs, such that, ∀ ε > 0, there exists
a big enough n, s encoders E1, E2, · · · , Es, where Ei : X n

i →

[1, 2nRi ], 1 ≤ i ≤ s, and one decoder D :

s∏
i=1

[1, 2nRi ]→ Ωn,

such that Pr

{
D

[
s∏
i=1

Ei (Xn
i )

]
6= ~f

(
s∏
i=1

Xn
i

)}
< ε, where

~f

(
s∏
i=1

Xn
i

)
=
{
f
[
X

(j)
1 , X

(j)
2 , · · · , X(j)

s

]}n
j=1

.

Denote the Slepian–Wolf region [1] by

R[X1, X2, · · · , Xs] =
{

(R1, R2, · · · , Rs) ∈ Rs
∣∣∣∑

j∈J
Rj ≥ H(XJ |XJc),∀ ∅ 6= J ⊆ {1, 2, · · · , s}

}
,

and let R[f ] be the achievable coding rate region for comput-
ing function f . It is expected that R[f ] = R[X1, X2, · · · , Xs]
if f is the identity function, while in general it is readily seen
that R[X1, X2, · · · , Xs] ⊆ R[f ]. Based on the method of
Elias [2] (cf. [3]), Körner and Marton [4] show that if f is the
modulo-two sum ⊕2, R[⊕2] contains the convex hull of the
union R[X1, X2] ∪R⊕2

, where

R⊕2
=
{

(R1, R2) ∈ R2 | R1, R2 ≥ H(X1 ⊕2 X2)
}
.

This work was funded in part by the Swedish Research Council.

Subsequently, by combining standard source coding tech-
niques with Elias’ Lemma, Ahlswede and Han [5] give an
inner bound of R[⊕2] which is larger than Körner and Mar-
ton’s in general. Adopting an approach based on polynomial
representations, the authors in [6] present several conditions
under which the achievable coding rate region is strictly bigger
than the Slepian–Wolf region.

This paper generalizes the method of Ahlswede–Han [5,
Theorem 10] to more general circumstances, where the func-
tions considered are not necessarily linear (the modulo-two
sum in [5]). The fundamental idea of our approach is to
combine the standard and linear random coding techniques, as
first proposed by Ahlswede and Han. To make their method
works in non-linear scenarios, we introduce the modifica-
tions needed and the result from Csiszár [7]. In the case of
computing the modulo-two sum, some minor improvement
is also gained regarding the inner bound of the achievable
coding rate region presented in Ahlswede–Han (see Remark
5). In addition, the observation that all discrete functions
are restrictions of polynomial functions is another important
factor which works underneath our method. In essence, the
structure of the function considered is what distinguishes this
function computing problem from the Slepian–Wolf source
coding problem. Hence, the algebraic structure of a function
unveiled by its polynomial presentation is of great importance.

This paper is organized as follows: some needed prelimi-
naries about polynomial functions are given in section II. In
section III, Theorem III.1 and its corollary demonstrate how
the idea works. The proof of Theorem III.1 is provided in
section IV showing the mechanism. In section V, Theorem
V.1, a generalized result of Theorem III.1, is presented without
proof because of space limitation. Section VI is the conclusion.

A. Notation

Capital letters X,Y, Z, · · · are used to denote random
variables and X ,Y ,Z , · · · for their corresponding sample
spaces. Meanwhile, lower case letters x, y, z, · · · are used
to denote instances of random variables. For a fixed n,
Xn, Y n, Zn, · · · represent i.i.d sequences of length n, respec-
tively. X(i) is for the ith term of Xn.

Let X1, X2, · · · , Xs be s correlated random variables. XJ is
defined to be the array of random variables Xj1 , Xj2 , · · · , Xjk ,
where {j1, j2, · · · , jk} = J ⊆ {1, 2, · · · , s}. The def-
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initions of Xn
J and X

(i)
J resemble such a definition. If

(X1, X2, · · · , Xs) ∼ p, then pXJ is defined to be the marginal
regarding XJ , and pXJ is replaced by p when XJ is clearly
referred to. The set of all ε-typical sequences of length n
regarding XJ is define to be

Tε(n,XJ) =

{
xnJ ∈

∏
j∈J

X n
j

∣∣∣∣∣∣∣∣∣− log pXnI (xnI )

n
−H(XI)

∣∣∣∣ < ε,∀ ∅ 6= I ⊆ J

}
,

where pXnI (xnI ) =

n∏
i=1

pXI

(
x

(i)
I

)
. We replace Tε(n,XJ) with

Tε when the length n and the random variable array XJ

referred to are clear from the context.

II. POLYNOMIAL FUNCTIONS

We demonstrated how a discrete function can be treated as a
polynomial function in this section. Readers who are familiar
with algebra may wish to go through quickly to get familiar
with our notation.

Definition II.1. A polynomial function1 of k variables over a
finite field F is a function g : Fk → F of the form

g(x1, x2, · · · , xk) =

m∑
j=0

ajx
m1j

1 x
m2j

2 · · ·xmkjk , (1)

where aj ∈ F and m and mij’s are non-negative integers.

From now on, Zp denotes the field of integers modulo the
prime p, Fq is a finite field of order2 q, and F[k] is defined to
be the set of all the polynomial functions of k variables over
the finite field F.

Definition II.2. Given two functions f :

k∏
i=1

Xi → Ω1 and

g :

k∏
i=1

Yi → Ω2, f and g are said to be equivalent if and

only if there exist bijections φi : Xi → Yi, ∀ 1 ≤ i ≤ k, and
ψ : Ω1 → Ω2, such that

f(x1, x2, · · · , xk) = ψ−1(g(φ1(x1), φ2(x2), · · · , φn(xk))).

Remark 1. The equivalency defined does not preserve all
the mathematical properties of two equivalent functions. For
instance, it does not preserve orders of the domain and the
codomain. However, it does preserve all the mathematical
properties that concern the encoders and the decoder. In
other words, it can be easily proved that two equivalent
functions share the “same” coding method, consequently, their
achievable coding rate regions are the same. From now on, we
will simply refer to two equivalent functions as one function.

1Polynomial and polynomial function are distinct concepts (cf. [8]).
2The number of elements of a finite field.

Definition II.3. Given function f : D → Ω, and let ∅ 6= S ⊆
D. The restriction of f on S is defined to be the function
f |S : S → Ω such that f |S : x 7→ f(x),∀ x ∈ S.

Lemma II.4 (cf. Lemma 7.40 of [8]). Any discrete func-

tion f(x1, x2, · · · , xk) defined on domain D =

k∏
i=1

Xi

is equivalent to a restrictions of some polynomial func-
tion h ∈ Fpm [k], where p is any prime that pm ≥
max {|f(D)|, |Xi| | 1 ≤ i ≤ k }.

In Lemma II.4, polynomial function h is called the polyno-
mial presentation of f .

Remark 2. Lemma II.4 says that all discrete functions are
basically polynomial functions up to the equivalency defined
by Definition II.2. Therefore, we can confine all the functions
considered to polynomial functions.

III. CODING FOR COMPUTING POLYNOMIAL FUNCTIONS

In this section, we consider those polynomial functions f ∈
F[s] with the structure

g

[
h(x1, x2, · · · , xt) +

s∑
j=t+1

kj(xj)

]
, 1 ≤ t < s. (2)

By Lemma A.1 and Lemma A.2 of [6], for any discrete
function f ′, there always exists some finite field F′ and
polynomial function F ′ ∈ F′[s] with structure (2), such that
F ′ gives a polynomial presentation of f ′ (from these two
lemmata, the final presentation has t = 1). On this respect,
consider polynomial functions of format (2) is to treat the
computing problem universally.

Theorem III.1. Let N = {1, 2, · · · , s} and T =
{1, 2, · · · , t}. If f admits a polynomial presentation (2), then
R[f ] is inner bounded by the region given by, ∀ ∅ 6= S ⊆ N ,∑

j∈S
Rj ≥ I(YS ;VS |VSc) + |S \ T | H(Z|VN ), (3)

where ∀ j ∈ T , Vj = Yj = Xj; ∀ j ∈ N \ T , Yj = kj(Xj),
Vj’s are discrete random variables such that

p(y1, y2, · · · , ys, v1, v2, · · · , vs)

=p(y1, y2, · · · , ys)
s∏

j=t+1

p(vj |yj), (4)

and Z = h(X1, X2, · · · , Xt) +
∑s
j=t+1 kj(Xj).

Remark 3. In Theorem III.1, Z can be replaced by
W =

∑s
j=t+1 kj(Xj) while the theorem holds true, since

H(Z|VN ) = H(W |VN ) when VT = XT .

Remark 4. A function could have different polynomial pre-
sentations over distinct finite fields. For example, the function
min{x, y} defined on {0, 1} × {0, 1} can either be seen as
F1(x, y) = xy ∈ Z2[2] or be treated as the restriction
of F2(x, y) = x + y − (x + y)2 ∈ Z3[2] to the domain
{0, 1} × {0, 1} ( Z2

3. Let F be the set of all polynomial
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presentations of f with format (2) and V be the set of all VN
satisfying (4). We have

R[f ] ⊇ cov

( ⋃
F∈F

⋃
VN∈V

R(F, VN )

)
, (5)

where R(F, VN ) is given by (3) and cov(D) is defined to be
the convex hull of the set D ⊆ Rs.

Based on Theorem III.1, one simple conclusion is derived
as follows. For two discrete random variables Y and V , let

I (Y, V ) =

{
0, if pY,V (y, v) = pV (v) or 0;

1, otherwise.
We have

Corollary III.2. Let N = {1, 2, · · · , s}. For the polynomial
function

f(x1, x2, · · · , xs) = g

[
s∑
i=1

hi(xi)

]
∈ F[s], (6)

where g, hi ∈ F[1],∀ 1 ≤ i ≤ s, R[f ] is inner bounded by the
region given by, ∀ ∅ 6= S ⊆ N ,∑

j∈S
Rj ≥ I(VS ;YS |VSc) +H(Z|VN )

∑
j∈S

I (Yj , Vj), (7)

where ∀ 1 ≤ j ≤ s, Yj = hj(Xj), Vj’s are discrete random
variables such that

p(y1, y2, · · · , ys, v1, v2, · · · , vs)

=p(y1, y2, · · · , ys)
s∏
j=1

p(vj |yj), (8)

and Z =
∑s
i=1 Yi.

Remark 5. Corollary III.2 resumes the result of Ahlswede–
Han [5, Theorem 10] if s = 2, F = Z2 and g and hi’s
are identity functions. Actually, (7) gives a potentially bigger
region than the one given by (6.4), (6.5) and (6.6) of [5],
since I will remove one copy of H(Z|VN ) whenever Yj is
a function of Vj for any 1 ≤ j ≤ s.

IV. PROOF OF THEOREM III.1
It suffices to prove only the strict inequality of (3). Let

(R1, R2, · · · , Rs) ∈ Rs satisfy (3) strictly. Then there exist
δ > 6ε > 0, such that Rj = R′j + R′′j , ∀ j ∈ N ,

∑
j∈S

R′j >

I(YS ;VS |VSc)+2|S|δ, ∀ ∅ 6= S ⊆ N , and R′′j > H(Z|VN )+
2δ, ∀ j ∈ N \ T .

A. Codebook:

Fix the joint distribution p which satisfies (4). For all j ∈ T ,
let Vj,ε be the set of all the ε-typical sequences in X n

j (Note:
Xj ,Yj ,Zj ⊆ F,∀ j ∈ N ). For all j ∈ N \ T , gener-
ate randomly 2n[I(Yj ;Vj)+δ] ε-typical sequences according to
distribution pV nj and let Vj,ε be the set of these generated
sequences. Define mapping φj : X n

j → Vj,ε as follows:

1) If j ∈ T , then, ∀ x ∈ X n
j , φj(x) =

{
x, if x ∈ Tε;
x0, otherwise,

where x0 is some fixed ε-typical sequence.

2) If j ∈ N \ T , then for every x ∈ X n
j , let Lx = {v ∈

Vj,ε|(~kj(x),v) ∈ Tε}. If x ∈ Tε and Lx 6= ∅, then
φj(x) is set to be some element in Lx; otherwise φj(x)
is some fixed v0 ∈ Vj,ε.

Define mapping ηj : Vj,ε → [1, 2nR
′
j ] by randomly choosing

the value for each v ∈ Vj,ε according to a uniform distribution.

Let k = min
j∈N\T

{⌊
nR′′j

log |F|

⌋}
. When n is big enough, k >

n[H(Z|VN ) + δ]

log |F|
. Randomly generate a k × n matrix M ∈

Fk×n, and for j ∈ N \ T , let θj : X n
j → Fk be the funciton

θj : x 7→M~kj(x),∀ x ∈X n
j .

B. Encoding:

For j ∈ T , the encoder Ej = ηj◦φj , a scale-valued function.
For j ∈ N \ T , Ej = (ηj ◦ φj , θj), a vector-valued function.
Assume that Xn

j is the data generated by the jth source,
then A = (a1, a2, · · · , at, (at+1, bt+1), · · · , (as, bs)) =
(E1(Xn

1 ), E2(Xn
2 ), · · · , Es(Xn

s )) is sent.

C. Decoding:

Upon observing A at the decoder, the decoder claims that
~g(Ẑn) is the function of the generated data, i.e., ~g(Ẑn) =
~f(Xn

1 , X
n
2 , · · · , Xn

s ), if and only if there exists one and

only one V̂ = (v̂1, v̂2, · · · , v̂s) ∈
s∏
j=1

Vj,ε, such that aj =

ηj(v̂j),∀ j ∈ N and Ẑn is the only element in the set

LV̂ =
{
z ∈ Z n

∣∣∣(z, V̂) ∈ Tε,

Mz = M~h(v̂1, v̂2, · · · , v̂t) +

s∑
j=t+1

bj

}
.

D. Error:

Assume that Xn
j is the data generated by the jth source

and let Zn = ~h (Xn
1 , X

n
2 , · · · , Xn

t ) +

s∑
j=t+1

~kj(X
n
j ). An error

happens if and only if one of the following events happens.
E1: (Xn

1 , X
n
2 , · · · , Xn

s , Y
n
1 , Y

n
2 , · · · , Y ns , Zn) /∈ Tε;

E2: There exists some j0 ∈ N , such that LXnj0 = ∅;
E3: (Y n1 , Y

n
2 , · · · , Y ns , Zn,V) /∈ Tε, where V =

(v1,v2, · · · ,vs) and vj = φj(X
n
j ),∀ j ∈ N ;

E4: There exists V′ = (v′1,v
′
2, · · · ,v′s) ∈

s∏
j=1

Vj,ε, V′ 6=

V, such that ηj(v′j) = ηj(vj), ∀ j ∈ N and V′ ∈ Tε;
E5: Zn /∈ LV or |LV| > 1, i.e., there exists Zn0 ∈ Z n,

Zn 6= Zn0 , such that MZn0 = MZn and (Zn0 ,V) ∈ Tε.

Let γ = Pr

{
5⋃
l=1

El

}
=

5∑
l=1

Pr {El|El,c}, where E1,c = ∅

and El,c =

l−1⋂
τ=1

Ecτ for 1 < l ≤ 5. In the following, we show

that γ → 0, n→∞.
(a). By the joint AEP, Pr{E1} → 0, n→∞.
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(b). Let E2,j =
{
LXnj = ∅

}
, ∀j ∈ N . Then

Pr{E2|E2,c} ≤
∑
j∈N

Pr {E2,j |E2,c} . (9)

If j ∈ T , then LXnj = {Xn
j }, thus Pr{E2,j} = 0. If j ∈ N\T ,

then

Pr {E2,j |E2,c} = Pr
{
LXnj = ∅ | E2,c

}
=
∏

v∈Vj,ε

Pr
{(
~kj(X

n
j ),v

)
/∈ Tε

}
<
{

1− 2−n[I(Yj ;Vj)+δ/2]
}2n[I(Yj ;Vj)+δ]

(10)

→ 0, n→∞.

Notice that the sequence v ∈ Vj,ε and Y nj = ~kj(X
n
j ) are

drawn independently, therefore,

Pr{(Y nj ,v) ∈ Tε} ≥(1− ε)2−n[I(Yj ;Vj)+3ε]

=(1− ε)2−n[I(Yj ;Vj)+δ/2]+n(δ/2−3ε)

>2−n[I(Yj ;Vj)+δ/2]

when n is big enough, thus, (10) holds true for all big enough
n. Now, we use the fact that (1− 1/a)

a → e−1, a → ∞, to
show that the sum on the right hand side of inequality (10)
has limit 0. By (9), Pr{E2|E2,c} → 0, n→∞.

(c). By (4), it is obvious that VJ1−YJ1−YJ2−VJ2 forms a
Markov chain for any two disjoint nonempty sets J1, J2 ( N .
Thus, if (Y nj ,vj) ∈ Tε for all j ∈ N and (Y n1 , Y

n
2 , · · · , Y ns ) ∈

Tε, then (Y n1 , Y
n
2 , · · · , Y ns ,V) ∈ Tε. In the meantime, Z −

(Y1, Y2, · · · , Ys)− (V1, V2, · · · , Vs) is a Markov chain, hence,
(Y n1 , Y

n
2 , · · · , Y ns , Zn,V) ∈ Tε if (Y n1 , Y

n
2 , · · · , Y ns , Zn) ∈

Tε. Therefore, Pr{E3|E3,c} = 0.
(d). For all ∅ 6= J ⊆ N , let J = {j1, j2, · · · , j|J|} and

ΓJ =
{
V′ = (v′1,v

′
2, · · · ,v′s) ∈

s∏
j=1

Vj,ε

∣∣∣
v′j = vj if and only if j ∈ N \ J

}
.

Then |ΓJ | =

∣∣∣∣∣∏
j∈J

Vj,ε

∣∣∣∣∣− 1 = 2n[
∑
j∈J I(Yj ;Vj)+|J|δ] − 1 and

Pr{E4|E4,c}

=
∑
∅6=J⊆N

∑
V′∈ΓJ

Pr
{
ηj(v

′
j) = ηj(vj),∀ j ∈ J,V′ ∈ Tε|E4,c

}
=

∑
∅6=J⊆N

∑
V′∈ΓJ

Pr
{
ηj(v

′
j) = ηj(vj),∀ j ∈ J

}
× Pr {V′ ∈ Tε|E4,c} (11)

<
∑
∅6=J⊆N

∑
V′∈ΓJ

2−n
∑
j∈J R

′
j

× 2
−n

[∑|J|
i=1 I(Vji ;VJc ,Vj1 ,··· ,Vji−1

)−|J|δ
]

(12)

<
∑
∅6=J⊆N

2n[
∑
j∈J I(Yj ;Vj)+|J|δ] × 2−n

∑
j∈J R

′
j

× 2
−n

[∑|J|
i=1 I(Vji ;VJc ,Vj1 ,··· ,Vji−1

)−|J|δ
]

≤C max
∅6=J⊆N

2−n[
∑
j∈J R

′
j−I(YJ ;VJ |VJc )−2|J|δ] (13)

→ 0, n→∞,

where C = 2s − 1. Equality (11) holds because the processes
of choosing ηj’s and generating V′ are done independently.
(12) follows from Lemma IV.1 and the definitions of ηj’s. (13)
is from Lemma IV.2.

Lemma IV.1. Let X1, X2, · · · , Xl, Y be l + 1 independent
random variables. For any ε > 0 and positive integer n, if
y ∈ Y n is an ε-typical sequence, then

Pr {(Xn
1 , X

n
2 , · · · , Xn

l , Y
n) ∈ Tε|Y n = y}

≤2−n[
∑l
j=1 I(Xj ;Y,X1,X2,··· ,Xj−1)−3lε].

Proof: Let Fj be the event {(Xn
1 , X

n
2 , · · · , Xn

j , Y
n) ∈

Tε}, 1 ≤ j ≤ l, and F0 = ∅. We have

Pr {(Xn
1 , X

n
2 , · · · , Xn

l , Y
n) ∈ Tε|Y n = y}

=
l∏

j=1

Pr {Fj |Y n = y, Fj−1}

≤
l∏

j=1

2−n[I(Xj ;Y,X1,X2,··· ,Xj−1)−3ε]

=2−n[
∑l
j=1 I(Xj ;Y,X1,X2,··· ,Xj−1)−3lε],

since X1, X2, · · · , Xl, Y are independent.

Lemma IV.2. If (Y1, V1, Y2, V2, · · · , Ys, Vs) ∼ q, and

q(y1, v1, y2, v2, · · · , ys, vs) = q(y1, y2, · · · , ys)
s∏
i=1

q(vi|yi),

then, ∀ J = {j1, j2, · · · , j|J|} ⊆ {1, 2, · · · , s},

I(YJ ;VJ |VJc) =

|J|∑
i=1

I(Yji ;Vji)− I(Vji ;VJc , V1, · · · , Vji−1).

(e). Let E5,1 = {LV = ∅} and E5,2 = {|LV| > 1}. We
have Pr{E5,1|E5,c} = 0, because E5,c contains the event that

V is the only element in
s∏
j=1

Vj,ε satisfying (Zn,V) ∈ Tε and

MZn =M

~h(Xn
1 , X

n
2 , · · · , Xn

t ) +

s∑
j=t+1

~kj(X
n
j )


=M~h(Xn

1 , X
n
2 , · · · , Xn

t ) +

s∑
j=t+1

M~kj(X
n
j )

=M~h(v1,v2, · · · ,vt) +

s∑
j=t+1

θj(X
n
j ).

Therefore,

Pr {E5|E5,c} = Pr {E5,2|E5,c}

=
∑

Zn0 6=Zn,(Zn0 ,V)∈Tε

Pr {MZn0 = MZn}

<2n[H(Z|VN )+δ] × 2−k log |F|
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=2−n[k log |F|/n−H(Z|VN )−δ] → 0, n→∞,

where Pr {MZn0 = MZn} < 2−k log |F| is from [2] (cf. [3]).
To summarize, by (a)–(e), we have γ → 0, n → ∞. The

theorem is established.

Remark 6. The main idea of the above proof is to combine
the standard and linear random coding techniques, as originally
proposed by Ahlswede and Han [5]. In order to deal with the
non-linear phenomenon, a trick is introduced. Observe that,
in the proof, before decoding Zn, V = (V n1 , V

n
2 , · · · , V ns )

has to be decoded correctly. Here, we gain the opportunity
to “eliminate” the non-linear effect from the function, if Vj
is set to be Xj for all 1 ≤ j ≤ t when constructing the
codebook. Once V is correctly decoded, the value of ~h is
known to the decoder. At this point, to decode Zn is seen
as a linear computation problem from the decoder’s point of
view. However, it will be difficult to cope with the non-linear
effect without making use of a polynomial presentation.

V. GENERALIZATION

The approach used to obtaining a inner bound of R[f ] for
computing a function f with presentation (2) is applicable to
many other scenarios. Later on, we present another theorem
for functions with presentation

g

[
h~m(x01, x02, · · · , x0r),

l1∑
j=1

k1j(x1j),

l2∑
j=1

k2j(x2j), · · · ,
lt∑
j=1

ktj(xtj)

]
∈ F

[
r +

t∑
i=1

li

]
, (14)

where h~m is defined to be a vector-valued function
(h1, h2, · · · , hm) and hi ∈ F[r],∀ 1 ≤ i ≤ m. It is easily
seen that (2) is a special case of (14).

Theorem V.1. Let T0 = {01, 02, · · · , 0r}, Ti =

{i1, i2, · · · , ili} and N =

t⋃
i=0

Ti. If f ∈ F

[
r +

t∑
i=1

li

]
has

presentation (14), then R[f ] contains the region given by∑
j∈S

Rj ≥I(YS ;VS |VSc) +

t∑
i=1

ρi
∑

j∈S∩Ti

I (Yj , Vj),

∀ ∅ 6= S ⊆ N , (15)

where ∀ j ∈ T0, Vj = Yj = Xj; ∀ j ∈ N \ T0, Yj = kj(Xj),
Vj’s are discrete random variables such that

p ((yj)j∈N , (vj)j∈N ) = p ((yj)j∈N )
∏

j∈N\T0

p(vj |yj); (16)

Zi =
∑
j∈Ti

Yj , ∀ 1 ≤ i ≤ t; and
∑
i∈I

ρi = H(ZI |VN , ZIc),

∀ ∅ 6= I ⊆ {1, 2, · · · , t}.

Remark 7. Instead of using Elias’ Lemma, the linear tech-
nique used to prove the above theorem is from Csiszár [7].
The proof is omitted because of limitation of space.

Remark 8. Let F ′ be the set of all polynomial presentations
of f with format (14) and V ′ be the set of all VN satisfying
(16). We have

R[f ] ⊇ cov

( ⋃
F∈F ′

⋃
VN∈V′

R′(F, VN )

)
, (17)

where R′(F, VN ) is given by (15). It is mentioned before
that any discrete function has a polynomial presentation with
structure (2). However, it does not seem straightforward that
inner bound (5) is as good as (17), nor (17) is strictly better
than (5).

VI. CONCLUSION

The essence that separates the function computing problem
from the Slepian–Wolf source coding problem is the structure
of the function considered. One of the most important structure
regarding a function is its polynomial structure. As shown in
Theorem III.1, Corollary III.2 and Theorem V.1, the polyno-
mial presentation unveils valuable information which can be
used in the construction of codebooks, encoders and decoder.
It is likely that similar polynomial approaches can also be
employed to reach performance gains for function computing
problems in the general channel or network coding settings.

The situation that is hard to handle with our approach is ei-
ther when a function is not given by a polynomial presentation,
for instance min(x, y), or when known coding methods are
not directly applicable to the given polynomial structure, for
example xy. Therefore, reformulating the function is required
in order to apply existing methods. However, this seems to be
a less handy task.
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