Math 314: Discrete Mathematics by Benjamin Schroeter

Solutions

These are solutions to some problems given as exercise. There might be other solutions, and these might not be complete.

Exercise 17: Show that for all $n \in \mathbb{N}_{0}$

$$
\sum_{k=0}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Proof: We will show the above using the Well Ordering Principle.
Assume the set of counterexamples

$$
C:=\left\{\begin{array}{l|l}
n \in \mathbb{N}_{0} & \sum_{k=0}^{n} k^{2} \neq \frac{n(n+1)(2 n+1)}{6}
\end{array}\right\}
$$

is nonempty. By the Well Ordering Principle it contains a minimal element $m \in C$. The element m is not zero, as

$$
\sum_{k=0}^{0} k^{2}=0^{2}=0=\frac{0 \cdot(0+1) \cdot(2 \cdot 0+1)}{6}
$$

Therefore, $m-1$ is a natural number $\left(m-1 \in \mathbb{N}_{0}\right)$, and it can not be in C, as it is smaller than m. Thus

$$
\begin{aligned}
m^{2}+\sum_{k=0}^{n} k^{2} & =m^{2}+\frac{(m-1) \cdot m \cdot(2 m-1)}{6} \\
& =\frac{6 m^{2}+m \cdot\left(2 m^{2}-3 m+1\right)}{6} \\
& =\frac{m \cdot\left(6 m+2 m^{2}-3 m+1\right)}{6} \\
& =\frac{m \cdot\left(2 m^{2}+3 m+1\right)}{6} \\
& =\frac{m \cdot(m+1) \cdot(2 m+1)}{6}
\end{aligned}
$$

Contradicting that $m \in C$. Hence, the set C is empty and

$$
\sum_{k=0}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

for all natural numbers $n \in \mathbb{N}_{0}$.

Here is another solution:
Proof by induction. Our induction hypothesis is the predicate

$$
\sum_{k=0}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6} \text { for the number } n
$$

Which is true for the base case $n=0$, as

$$
\sum_{k=0}^{0} k^{2}=0^{2}=0=\frac{0 \cdot(0+1) \cdot(2 \cdot 0+1)}{6}
$$

Assume that the hypothesis holds for n, then

$$
\begin{aligned}
\sum_{k=0}^{n+1} k^{2} & =(n+1)^{2}+\sum_{k=0}^{n} k^{2} \\
& \stackrel{\text { hyp. }}{=}(n+1)^{2}+\frac{n \cdot(n+1) \cdot(2 n+1)}{6} \\
& =\frac{6(n+1)^{2}+(n+1) \cdot\left(2 n^{2}+n\right)}{6} \\
& =\frac{(n+1) \cdot\left(2 n^{2}+7 n+6\right)}{6} \\
& =\frac{(n+1) \cdot\left(2 n^{2}+4 n+3 n+6\right)}{6} \\
& =\frac{(n+1) \cdot(n+2) \cdot(2 n+3)}{6}
\end{aligned}
$$

Which shows that the hypothesis holds for $n+1$, This is the inductive step. We conclude by induction that

$$
\sum_{k=0}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

for all natural numbers $n \in \mathbb{N}_{0}$.

