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Solutions

These are solutions to some problems given as exercise. There might be other
solutions, and these might not be complete.

Exercise 17: Show that for all n € Ny
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Proof: We will show the above using the Well Ordering Principle.
Assume the set of counterexamples
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is nonempty. By the Well Ordering Principle it contains a minimal element
m € C. The element m is not zero, as
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Therefore, m — 1 is a natural number (m — 1 € Ny), and it can not be in C,
as it is smaller than m. Thus
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Contradicting that m € C'. Hence, the set C' is empty and
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for all natural numbers n € Nj.

Here is another solution:
Proof by induction. Our induction hypothesis is the predicate

for the number n.
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Which is true for the base case n =0, as
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Assume that the hypothesis holds for n, then
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Which shows that the hypothesis holds for n + 1, This is the inductive step.
We conclude by induction that
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for all natural numbers n € Nj.



