Math 314: Discrete Mathematics

Exercies Sheet 2

Write your name on every sheet that you hand in. Do not use a pencil or a red colored ink. Write down your solution by yourself and do not copy it. Hand in your solution before Friday April 22 - 8 am. Have fun!

Exercies 1: Visit the website https://courses.csail.mit.edu/6.042/ spring18/mcs.pdf. Look at the SSL Server Certificate of that page.
a) What is its date of expiration and the used algorithm?
b) How many bits long is the modulus n of the public key?
c) How many digits long is n in the decimal system?
d) Which number is the exponent e in the decimal system?

Remark: How to find the certificate and information depends on your browser. Take a look into the details of the certificate.

Exercies 2: (RSA with small numbers) Assume $p=11$ and $q=13$.
a) Find the modulus n. How many different public keys exits with this modulus in the range $0,1, \ldots, \varphi(n)-1$?
b) Decide which of the following exponents are valid $e_{1}=0, e_{2}=1, e_{3}=5$, $e_{4}=17, e_{5}=119$ and $e_{6}=123$. Justify your answer.
c) Find the private key d when the exponent e is 103 . Include all necessary steps.
d) Decrypt the ciphertext $\hat{m}_{1}=2$ and $\hat{m}_{2}=139$.
e) Encypt the plaintext message $m_{1}=16$ and $m_{2}=17$ with the public key ($n=943, e=3$).

Exercies 3: Assume someone forgot to take the modulus and sent $\widehat{m}=m^{e}$ instead. Explain how you can use this to get the plain-text message m.

