In Class Practice Problems 2

Solve and discuss the following questions in small groups of 2-4.

Problem 1: Prove that for all $a, b \in \mathbb{Z}$, $n \in \mathbb{N}$ holds $gcd(a^n, b^n) = gcd(a, b)^n$. *Hint:* First consider the case gcd(a, b) = 1

Problem 2:

- i) Use Euclid's extended algorithm to find s, t s.t. 30s + 22t = gcd(30, 22).
- ii) Find s', t' such that $0 \le t' \le 30$ and $30s' + 22t' = \gcd(30, 22)$.
- iii) Is there a multiplicative inverse of $[22]_{30}$ in \mathbb{Z}_{30} ? If not briefly explain why, otherwise find it.

Problem 3: What is the remainder of 63^{9601} divided by 220.

Problem 4: Find a solution to each of the following congruence relations. Express your solution x by a minimal non-negative integer.

a) $x \equiv 35829 \mod 11$	e) $x \equiv 11^{19} \mod 12$
b) $x \equiv 12 \cdot (17 + 21) \mod 13$	f) $3 \cdot x \equiv 1 \mod 10$
c) $x \equiv 6^{18} \mod 7$	g) $3^x \equiv 4 \mod 7$
d) $x \equiv 2^{2018} \mod 31$	h) $2x + 1 \equiv 0 \mod 5$

Problem 5: Let P be the following recussively defined set of functions.

- 1. $\mathrm{Id}_{\mathbb{Z}} \in P$, where $\mathrm{Id}_{\mathbb{Z}} \colon \mathbb{Z} \to \mathbb{Z}$, with $x \mapsto x$
- 2. for every $k \in \mathbb{Z}$ the constant function c_k is in P, where $c_k \colon \mathbb{Z} \to \mathbb{Z}$, with $x \mapsto k$.

Moreover, for $f, g \in P$ the two functions

- 3. $(f+g): \mathbb{Z} \to \mathbb{Z}$, with $x \mapsto f(x) + g(x)$, and
- 4. $(f \cdot g) \colon \mathbb{Z} \to \mathbb{Z}$, with $x \mapsto f(x) \cdot g(x)$ are in P.

Prove that for all $a, b \in \mathbb{Z}$, n > 1 and $p \in P$

$$a \equiv b \mod n \implies p(a) \equiv p(b) \mod n$$
.

Hint: Use structural induction.