Math 314: Discrete Mathematics by Benjamin Schroeter

In Class Practice Problems 2

Solve and discuss the following questions in small groups of 2-4.
Problem 1: Prove that for all $a, b \in \mathbb{Z}, n \in \mathbb{N}$ holds $\operatorname{gcd}\left(a^{n}, b^{n}\right)=\operatorname{gcd}(a, b)^{n}$. Hint: First consider the case $\operatorname{gcd}(a, b)=1$

Problem 2:

i) Use Euclid's extended algorithm to find s, t s.t. $30 s+22 t=\operatorname{gcd}(30,22)$.
ii) Find s^{\prime}, t^{\prime} such that $0 \leq t^{\prime} \leq 30$ and $30 s^{\prime}+22 t^{\prime}=\operatorname{gcd}(30,22)$.
iii) Is there a multiplicative inverse of $[22]_{30}$ in \mathbb{Z}_{30} ? If not briefly explain why, otherwise find it.

Problem 3: What is the remainder of 63^{9601} divided by 220 .
Problem 4: Find a solution to each of the following congruence relations. Express your solution x by a minimal non-negative integer.
a) $x \equiv 35829 \bmod 11$
b) $x \equiv 12 \cdot(17+21) \bmod 13$
c) $x \equiv 6^{18} \bmod 7$
d) $x \equiv 2^{2018} \bmod 31$
e) $x \equiv 11^{19} \bmod 12$
f) $3 \cdot x \equiv 1 \bmod 10$
g) $3^{x} \equiv 4 \bmod 7$
h) $2 x+1 \equiv 0 \bmod 5$

Problem 5: Let P be the following recussivly defined set of functions.

1. $\mathrm{Id}_{\mathbb{Z}} \in P$, where $\mathrm{Id}_{\mathbb{Z}}: \mathbb{Z} \rightarrow \mathbb{Z}$, with $x \mapsto x$
2. for every $k \in \mathbb{Z}$ the constant function c_{k} is in P, where $c_{k}: \mathbb{Z} \rightarrow \mathbb{Z}$, with $x \mapsto k$.

Moreover, for $f, g \in P$ the two functions
3. $(f+g): \mathbb{Z} \rightarrow \mathbb{Z}$, with $x \mapsto f(x)+g(x)$, and
4. $(f \cdot g): \mathbb{Z} \rightarrow \mathbb{Z}$, with $x \mapsto f(x) \cdot g(x)$ are in P.

Prove that for all $a, b \in \mathbb{Z}, n>1$ and $p \in P$

$$
a \equiv b \quad \bmod n \Longrightarrow p(a) \equiv p(b) \quad \bmod n .
$$

Hint: Use structural induction.

