Dressians and Tropical Grassmannians

Michael Joswig and Benjamin Schröter

Tropicalization of Linear Spaces

Grassmannian $Gr_{\mathbb{K}}(d, n) \triangleright$ the vanishing locus of the Plücker ideal $I_{d,n} \otimes_{\mathbb{Z}} \mathbb{K}$ parametrizes all d-dimensional linear spaces in \mathbb{K}^n

tropicalization \triangleright subfan of the Gröbner fan of a homogeneous ideal I, containing exactly those cones which do not contain any monomial in their initial ideal in $_{\pi}(I)$

tropical Grassmannian $\mathrm{TGr}_p(d, n) \triangleright$ the tropicalization of $\mathrm{Gr}_{\mathbb{K}}(d, n)$ only depends on $p = \text{char } \mathbb{K}$. This is a (d(n - d) + 1)-dimensional pure polyhedral fan with a *n*-dimensional lineality space

[Speyer & Sturmfels 2004]

The Dimension of the Dressian

Theorem A (J.&S. 2015+) For fixed *d* the dimension of Dr(d, n) is of order $\Theta(n^{d-1})$.

Sketch of the Proof:

► A stable set of size *s* of the Johnson graph, i.e. vertex-edge graph of the hypersimplex $\Delta(d, n)$, gives rise to a regular matroid subdivision of $\Delta(d, n)$ with s facets.

[Herrmann, Jensen, Joswig & Speyer 2009] ► stable sets with $\geq \frac{1}{n} \binom{n}{d}$ nodes exist [Knuth 1974]

► There is a bijection between the points of the tropical Grassmannian $TGr_p(d, n)$ and the collection of polyhedral complexes occurring as tropicalization of a *d*-plane in \mathbb{K}^n . [Speyer & Sturmfels 2004]

The combinatorics of $\mathsf{TGr}_0(2,5)$ induced by formal Puiseux series $\mathbb{C}\{\!\{t\}\!\}$:

Matroidal Subdivisions

Dressian Dr(d, n) > tropical prevariety generated by all 3-term Plücker relations

number of facets in a matroid subdivision of $\Delta(d, n)$ is at most $\binom{n-2}{d-1}$ [Speyer 2005]

The Tropical Grassmannian $TGr_{p}(3, 8)$

- corank-vector $\rho_M \triangleright$ assigns the difference $d \operatorname{rank}(S)$ to any d-subset S of [n], for a fixed matroid M of rank d on n elements
 - The corank-vector ρ_M is contained in Dr(d, n), and also in $TGr_p(d, n)$ if and only if M is realizable over an algebraically closed field of characteristic p. [Speyer 2005]

Dr(3, 8) is a non-pure non-simplicial nine-dimensional polyhedral fan with *f*-vector (1, 15470, 642677, 8892898, 57394505,194258750, 353149650, 324404880, 117594645, 113400)[Herrmann, Joswig & Speyer 2012]

 $p_{Sab}p_{Scd} - p_{Sac}p_{Sbd} + p_{Sad}p_{Sbc} \stackrel{trop.}{\rightsquigarrow} \min\{\pi_{Sab} + \pi_{Scd}, \pi_{Sac} + \pi_{Sbd}, \pi_{Sad} + \pi_{Sbc}\}$ This minimum is attained at least twice. The elements π of the Dressian are called tropical Plücker vectors.

matroid \triangleright abstraction of independence for a finite set [n]. Maximal independent subsets of [n] are called bases. Any two bases B_1, B_2 satisfy the (strong) basis exchange property:

 $\forall a \in B_1 \setminus B_2 \exists b \in B_2 \setminus B_1 : b \cup B_1 \setminus a \text{ and } a \cup B_2 \setminus b \text{ are bases}$

The elements of rank 0 in a matroid are called loops. **Fano matroid >** important example of a matroid, which is realizable if and only if p = 2. Therefore there is a tropical Plücker vector in Dr(3, 8) that is not contained in $TGr_0(3, 8)$.

matroid polytope > convex hull of the characteristic vectors of all bases of a matroid. The hypersimplex is the matroid polytope of the uniform matroid.

The following result is based on an explicit computation.

Theorem B (J.&S. 2015+)

The intersection of the relative interior of a cone C of Dr(3,8)and the tropical Grassmannian $TGr_p(3, 8)$ is trivial if p = 0, 3, 5, 7and a corank-vector ρ_M of a Fano matroid extension M is contained in the boundary of C.

note: The corank-vector ρ_M of an Fano extension induces a term ordering. main steps in computation:

> ▶ compute a Gröbner basis of the Plücker ideal $I_{3,8} \otimes_{\mathbb{Z}} \mathbb{Z}_p$ search for a polynomial f in this basis, s.t. the tropicalization of f has an unique minimum at ρ_M and this term is also minimal for all rays in C

The rank 3 extensions of the Fano matroid.

The Dressian Dr(d, n) is the subfan of the secondary fan of the hypersimplex $\Delta(d, n)$ containing exactly those vectors that subdivide the hypersimplex into matroid polytopes.

The following complements Theorem B (again computational).

Liheorem C (J.&S. 2015+)

[Speyer 2005]

tropical linear space \triangleright all vectors $u \in \mathbb{R}^n$ such that all sets S, for which $\pi_S + \sum_{i \in S} u_i$ is minimal, form the bases of a loop-free matroid.

We did our computations in polymake 2.14 and Singular 4.0.2.

Let p = 0, 3, 5 or 7. There are at least two relative interior points in the intersection of each cone of Dr(3, 8) with $TGr_{p}(3, 8)$, that do not contain a corank-vector ρ_M of a Fano matroid extension *M* in the boundary.

main step:

• verify that the ideal in $_{\pi}(I_{3,8})$ of initial forms is monomial-free via Gröbner bases and saturation

Effective Methods in Algebraic Geometry - MEGA 2015