Dressians and Tropical Grassmannians

Tropicalization of Linear Spaces

Grassmannian $\operatorname{Gr}_{\mathbb{K}}(d, n)$ the vanishing locus of the Plücker ideal $I_{d, n} \otimes_{\mathbb{Z}} \mathbb{K}$ parametrizes all d-dimensional linear spaces in \mathbb{K}^{n}
tropicalization subfan of the Gröbner fan of a homogeneous ideal I, containing exactly those cones which do not contain any monomial in their initial ideal $\mathrm{in}_{\pi}(I)$
tropical $\operatorname{Grassmannian} \operatorname{TGr}_{p}(d, n)$ the tropicalization of $\operatorname{Gr}_{\mathbb{K}}(d, n)$ only depends on $p=$ char \mathbb{K}. This is a $(d(n-d)+1)$-dimensional
pure polyhedral fan with a n-dimensional lineality space
[Speyer \& Sturmfels 2004]

- There is a bijection between the points of the tropical Grassmannian $\mathrm{TGr}_{p}(d, n)$ and the collection of polyhedral complexes occurring as tropicalization of a d-plane in \mathbb{K}^{n}.
[Speyer \& Sturmfels 2004]
The combinatorics of $\operatorname{TGr}_{0}(2,5)$ induced by formal Puiseux series $\mathbb{C}\{t\}$:

Matroidal Subdivisions

Dressian $\operatorname{Dr}(d, n)$ tropical prevariety generated by all 3-term Plücker relations $p_{S_{a b}} p_{S_{c d}}-p_{S_{a c}} p_{S b d}+p_{S_{a d}} p_{S b c} \stackrel{\text { trop. }}{\rightsquigarrow} \min \left\{\pi_{S_{a b}}+\pi_{S c d}, \pi_{S a c}+\pi_{S b d}, \pi_{S_{a d}}+\pi_{S b c}\right\}$ This minimum is attained at least twice. The elements π of the Dressian are called tropical Plücker vectors.
matroid $>$ abstraction of independence for a finite set $[n]$. Maximal independent subsets of $[n]$ are called bases. Any two bases B_{1}, B_{2} satisfy the (strong) basis exchange property:
$\forall a \in B_{1} \backslash B_{2} \exists b \in B_{2} \backslash B_{1}: b \cup B_{1} \backslash a$ and $a \cup B_{2} \backslash b$ are bases

The Dimension of the Dressian

Theorem A (J.\&S. 2015+) For fixed d the dimension of $\operatorname{Dr}(d, n)$ is of order $\Theta\left(n^{d-1}\right)$.

Sketch of the Proof:

- A stable set of size s of the Johnson graph, i.e. vertex-edge graph of the hypersimplex $\Delta(d, n)$, gives rise to a regular matroid subdivision of $\Delta(d, n)$ with s facets.
[Herrmann, Jensen, Joswig \& Speyer 2009] - stable sets with $\geq \frac{1}{n}\binom{n}{d}$ nodes exist [Knuth 1974] - number of facets in a matroid subdivision of $\Delta(d, n)$ is at most $\binom{n-2}{d-1}$
[Speyer 2005]

The Tropical Grassmannian $\operatorname{TGr}_{p}(3,8)$

corank-vector ρ_{M} assigns the difference $d-\operatorname{rank}(S)$ to any d-subset S of $[n$], for a fixed matroid M of rank d on n elements

- The corank-vector ρ_{M} is contained in $\operatorname{Dr}(d, n)$, and also in $\operatorname{TGr}_{p}(d, n)$ if and only if M is realizable over an algebraically closed field of characteristic p.
[Speyer 2005]
$-\operatorname{Dr}(3,8)$ is a non-pure non-simplicial nine-dimensional polyhedral fan with f-vector
(1, 15470,642677, 8892898, 57394505,
194258750, 353149650, 324404880, 117594645, 113400)
[Herrmann, Joswig \& Speyer 2012]

The following result is based on an explicit computation.
Theorem B (J.\&S. 2015+)
The intersection of the relative interior of a cone C of $\operatorname{Dr}(3,8)$ and the tropical Grassmannian $\operatorname{TGr}_{p}(3,8)$ is trivial if $p=0,3,5,7$ and a corank-vector ρ_{M} of a Fano matroid extension M is contained in the boundary of C.

The elements of rank 0 in a matroid are called loops.
Fano matroid important example of a matroid, which is realizable if and only if $p=2$. Therefore there is a tropical Plücker vector in $\operatorname{Dr}(3,8)$ that is not contained in $\operatorname{TGr}_{0}(3,8)$.
matroid polytope convex hull of the characteristic vectors of all bases of a matroid. The hypersimplex is the matroid polytope of the uniform matroid.

The rank 3 extensions of the Fano matroid.

- The Dressian $\operatorname{Dr}(d, n)$ is the subfan of the secondary fan of the hypersimplex $\Delta(d, n)$ containing exactly those vectors that subdivide the hypersimplex into matroid polytopes.
[Speyer 2005]
tropical linear space all vectors $u \in \mathbb{R}^{n}$ such that all sets S, for which $\pi_{S}+\sum_{j \in S} u_{j}$ is minimal, form the bases of a loop-free matroid.

We did our computations in polymake 2.14 and Singular 4.0.2.

The following complements Theorem B (again computational).
Theorem C (J.\&S. 2015+) \qquad Let $p=0,3,5$ or 7 . There are at least two relative interior points in the intersection of each cone of $\operatorname{Dr}(3,8)$ with $\operatorname{TGr}_{p}(3,8)$, that do not contain a corank-vector ρ_{M} of a Fano matroid extension M in the boundary.
main step:

- verify that the ideal $\mathrm{in}_{\pi}\left(l_{3,8}\right)$ of initial forms is monomial-free via Gröbner bases and saturation

