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Abstract. This paper initiates the explicit study of face numbers of matroid poly-

topes and their computation. We prove that, for the large class of split matroid

polytopes, their face numbers depend solely on the number of cyclic flats of each rank

and size, together with information on the modular pairs of cyclic flats. We provide a

formula which allows us to calculate f -vectors without the need of taking convex hulls

or computing face lattices. We discuss the particular cases of sparse paving matroids

and rank two matroids, which are of independent interest due to their appearances in

other combinatorial and geometric settings.

1. Introduction

To every matroid M one may associate its base polytope P(M), carrying all the infor-

mation of the matroid. Not only this polytope plays prominent roles in combinato-

rial otpimization [Sch03], but also is of fundamental importance in tropical geometry

[MS15, Jos21], the theory of valuations [DF10, AS23], combinatorial Hodge theory, and

the study of matroid invariants [BEST23, EHL23, FS22].

A question that arises naturally in the study of a convex polytope P ⊆ Rn is how

many faces of each dimension P has. The f -vector of P is defined by

f(P) := (f0, f1, . . . , fd−1, fd),

where fi := #{i-dimensional faces of P} for each i ∈ {0, . . . , d} and d := dimP. In

particular, the number of vertices of P is just f0, the number of facets of P is fd−1, and

fd = 1.

The difficulty of calculating the f -vector may vary drastically depending on the poly-

tope P, on the properties it possesses, or on how it is described; for some concrete

examples of the computation of f -vectors and certain related problems, see [Zie95]. The

family of possible vectors arising as the f -vector of a polytope is notoriously hard, and

their classification is open in dimensions as low as four, see [Zie07]. Even in the case of

0/1-polytopes of fixed dimension, although the set of possible f -vectors is finite, much

remains to be discovered, see [Zie00].

In this article we will initiate the study of the explicit face enumeration of matroid

polytopes, by focusing on the well-structured subclass of split matroids. The face

structure of some special classes as positroids and lattice path matroids appeared in

previous work, however without an explicit enumeration. The class of split matroids

was introduced by Joswig and Schröter in [JS17] to study tropical linear spaces. They

have received considerable attention in the past few years, including a forbidden minor
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characterization [CM21], hypergraphs descriptions [BKS+23], Tutte polynomial inequal-

ities [FS23], subdivisions and computation of valuations [FS22], and conjectures about

exchange properties on the bases [BS23] which are related to White’s conjecture.

Even though the f -vector of the matroid base polytope constitutes an invariant of the

matroid M under isomorphisms, it is not valuative; see Example 2.2 below. This makes

its computation considerably subtler and difficult. In particular, for the case of split

matroids we require a non-trivial modification of the machinery presented in [FS22].

One important reason why split matroids deserve to be studied is that they encom-

pass the classes of paving and copaving matroids. A long-standing conjecture often

attributed to Crapo and Rota, appearing in print in [MNWW11], predicts that asymp-

totically almost all matroids are sparse paving. There is some evidence supporting this

assertion [PvdP15], but another intriguing conjecture affirms that even restricting to

the enumeration of non sparse paving matroids, the class of split matroids will continue

to be predominant [FS22, Conjecture 4.15].

As of today, the problem of face enumeration of matroid polytopes has not been

approached systematically in the literature, and to the best of our knowledge there

are no prior articles addressing their computation. Nonetheless, there are some results

that could be of interest in the study of f -vectors of certain classes of matroids. The

computation of the cd-index of matroid polytopes of rank two appears in work by Kim

[Kim10]. In [AJK20] An, Jung and Kim investigated the lattice of faces of the base poly-

topes of lattice path matroids. In [ARW16] Ardila, Rincón and Williams approached

the lattice of faces of positroids, whereas in [OX22] Oh and Xiang studied the facets of

positroid polytopes. In [GS17] Grande and Sanyal used the faces of matroid polytopes

to characterize their k-levelness. In all of the aforementioned cases, although combina-

torial descriptions and properties of the faces of the polytope are provided, an explicit

enumeration of them does not seem direct or easy. In [PRW08] Postnikov, Reiner and

Williams described the h-vector of simple generalized permutohedra; however, although

the class of generalized permutohedra encompasses the family of matroid base polytopes,

these fail to be simple when the rank or the corank are greater than one.

In particular, perhaps as a reminiscence of the situation for polytopes in general (and

even for 0/1-polytopes), questions about properties of f -vectors of matroid polytopes

are widely open.

Main results. As mentioned before, the fact that the face numbers are not valuations

makes the computation of the f -vector of matroid polytopes a delicate task. In the case

of split matroids, we need more data than just the number of cyclic flats of each rank

and size. Some information on their pairwise intersection is necessary.

In order to express the f -vector of a polytope P in a more compact fashion, we will

often refer to the f -polynomial, which is defined via:

fP(t) :=

d∑
i=0

fi · ti.

Following the notation and terminology of [FS22], whenever we have a matroid M of

rank k and cardinality n, we will denote by λr,h the number of stressed subsets with

non-empty cusp that M has — for a connected split matroid, the number λr,h counts

the number of proper non-empty cyclic flats of rank r and size h that M has. Although
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one of the main results of that article establishes that the numbers λr,h are enough to

compute any valuative invariant on M, we need further data to compute the f -vector.

For a matroid M as before, we will denote by µα,β,a,b the number of modular pairs

of cyclic flats {F1, F2} such that a = |F1 r F2|, b = |F2 r F1|, α = rk(F1)− rk(F1 ∩ F2),

and β = rk(F2)− rk(F1 ∩ F2); see also equation (?) below.

The following constitutes the main result of this article and is stated as Theorem 2.5

further below. It tells us that the numbers µα,β,a,b are the precise additional datum

needed to perform the computation of the f -vector of a split matroid polytope. More-

over, the statement tells us concretely how to calculate the number of faces of given

dimension.

Theorem Let M be a connected split matroid of rank k on n elements. The number of

faces of its base polytope P(M) is given by the polynomial

fP(M)(t) = f∆k,n
(t)−

∑
r,h

λr,h · ur,k,h,n(t)−
∑
α,β,a,b

µα,β,a,b · wα,β,a,b(t)

where the first sum ranges over all values with 0 < r < h < n and the second sum ranges

over the values 0 < α < a, 0 < β < b for which either a < b or a = b and α ≤ β.

In the above theorem, the expressions ur,k,h,n(t) and wα,β,a,b(t) are polynomials which

depend only on their subindices. We present in Propositions 2.7 and 2.8 explicit (but

complicated) formulas for them which allow us or a computer to calculate the face

numbers effortlessly. A formula for the f -vector of the hypersimplex ∆k,n is also given

explicitly in Example 2.1. In particular, the entire calculation can be done without the

necessity of building costly face lattices or computing convex hulls.

As two direct but interesting application of our result, we provide closed expressions

for the f -vector of sparse paving matroids, a class that made a prominent appearance

in the theory of the extension complexity of independence polytopes [Rot13]. We also

prove a fairly explicit formula for the f -vector of arbitrary rank two matroids, which is

of independent interest due to the connection of these polytopes with edge polytopes of

complete multipartite graphs [OH00].

2. The number of faces of split matroids

2.1. The set up. Throughout this paper we will assume that the reader is familiar

with the usual terminology and notation in matroid theory. For the notions and ma-

chinery introduced very recently, in particular about stressed subsets, relaxations,

and cuspidal matroids we refer the reader to our previous article [FS22, Sections 3–4].

Regarding split matroids and elementary split matroids the reader can consult the

same article as well as [JS17, BKS+23]. However, basic knowledge on polytopes should

be enough to follow the arguments and methods in this manuscript.

For a d-dimensional polytope P we denote by f(P) := (f0, . . . , fd) its f -vector, and by

fP(t) :=
d∑
i=0

fi t
i

its f -polynomial. In both cases, fi denotes the number of i-dimensional faces of P.

Notice that we omit the inclusion of f−1 := 1 for the empty set in both the f -vector and

the f -polynomial, but we do include fd = 1 for the polytope itself. A basic property
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of f -polynomials that we will use without explicitly mention is the fact that it behaves

multiplicatively under cartesian products of polytopes, i.e., fP1×P2(t) = fP1(t) · fP2(t).

Another basic property that we use implicitly is that a matroid on a ground set of size n

with exactly c connected components has a base polytope of dimension dimP(M) = n−c.

Essential notation Following [FS22], whenever we have a matroid M, unless specified

otherwise, the rank of M is denoted by k and the size of its ground set is denoted by n.

We reserve the letters r and h for the rank and the size of stressed subsets that M may

possess.

Our aim is to find formulas for the number of faces a matroid base polytope P(M)

whenever the matroid M is connected, i.e., P(M) ⊆ Rn is of dimension n − 1, and

split. Note that under the assumption of connectedness the classes of split matroids and

elementary split matroids coincide [BKS+23, Theorem 11]. Since the base polytope of

a direct sum of matroids M1 ⊕ M2 is the cartesian product of P(M1) and P(M2), the

f -vector of any disconnected split matroid can be recovered from the f -vector of the

connected components, all of which are split as well.

The most basic example of a matroid polytope is the hypersimplex ∆k,n, the matroid

base polytope of the uniform matroid Uk,n of rank k on n elements.

Example 2.1 The face enumeration of hypersimplices is encoded in the following f -

polynomial:

fP(Uk,n)(t) = f∆k,n
(t) =

(
n

k

)
+
n−1∑
i=1

(
n

i+ 1

) i∑
j=1

(
n− i− 1

k − j

)
· ti .

This formula can be obtained by contracting and deleting the elements of Uk,n. That

is, by intersecting with hyperplanes of the form xi = 0 or xi = 1 (and forgetting the

coordinate i) which leads to lower dimensional hypersimplices. For a detailed proof see

for example [HLO15, Corollary 1.4].

The next example is similar to the one in [Fer22, Remark 5.9] and gives a glimpse of the

subtlety of the f -vector as a matroid invariant. In general, we see that the assignment

M 7→ fP(M)(t) is an invariant of the matroid M that fails to be valuative. Hence its

computation is a more delicate task, even for the case of paving or split matroids. In

these cases, we cannot rely on the strength of [FS22, Theorem 5.40] — that result asserts

that the evaluation of a valuative invariant on a split matroid M can be achieved by

knowing relatively little about the matroid M, consisting in its rank k, its size n, and

parameters λr,h which denote the number of stressed subsets with non-empty cusp of

rank r and size h that M has. If one is interested in knowing the f -vector of P(M), the

matroidal information we just mentioned is far from enough. One of the main difficulties

in order to carry out the enumeration of the faces of P(M) consists of first identifying

what matroid data we need in addition to the parameters mentioned before.

Example 2.2 Consider the four matroids U3,6, M, N1 and N2 with ground set {1, . . . , 6}
and rank three, whose families of bases are given as follows:

B(U3,6) :=

(
[6]

3

)
, B(N1) :=

(
[6]

3

)
r {{1, 2, 3}, {4, 5, 6}}
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B(M) :=

(
[6]

3

)
r {{1, 2, 3}}, B(N2) :=

(
[6]

3

)
r {{1, 2, 3}, {3, 4, 5}}.

The f -vectors of their base polytopes are respectively:

f(P(U3,6)) = (20, 90, 120, 60, 12, 1), f(P(N1)) = (18, 72, 102, 60, 14, 1),

f(P(M)) = (19, 81, 111, 60, 13, 1), f(P(N2)) = (18, 72, 101, 59, 14, 1).

All of these matroids are sparse paving. In particular, the two matroids N1 and N2 have,

e.g., the same Tutte polynomial and the same Ehrhart polynomial — in fact, via [FS22,

Corollary 5.41] any valuative invariant on these two matroids yields the same result.

Yet, observe that their f -vectors differ in the third and the fourth entries.

2.2. Cuspidal matroids and a technical lemma. By using [FS22, Corollary 5.4],

we see that the intersection of the hypersimplex ∆k,n with the half-space of a single split

hyperplane leads to the polytope:

(1) P(Λk−r,k,n−h,n) =

{
x ∈ ∆k,n :

h∑
i=1

xi ≤ r

}
.

for appropriate values r and h. This is the base polytope of the cuspidal matroid

Λk−r,k,n−h,n, a matroid having exactly three cyclic flats: the empty set, the entire ground

set, and one proper cyclic flat having size h and rank r. For the purposes of this paper,

the reader may regard equation (1) as the definition of cuspidal matroids.

Let us introduce some notation that will help us formulate later our main results in

a more compact way:

(2) ur,k,h,n(t) := f∆k,n
(t)− fP(Λk−r,k,n−h,n)(t).

The i-th coefficient of this polynomial is the difference between the number of i-dimensional

faces of the hypersimplex ∆k,n and the number of i-dimensional faces of the cuspidal

matroid Λk−r,k,n−h,n. A non-obvious property is that some of these coefficients may

be negative while other are positive — moreover, the actual sign of each individual

coefficient a priori depends on the four parameters r, k, h, n.

Before we go on with let us introduce a second polynomial, which will play an impor-

tant role in the sequel. For fixed numbers 0 < α < a and 0 < β < b let us define,

wα,β,a,b(t) := f∆α+β,a+b
(t)− f∆α,a(t) · f∆β,b

(t)− uα,α+β,a,a+b(t)− uβ,α+β,b,a+b(t)

= fP(Λβ,α+β,b,a+b)(t) + fP(Λα,α+β,a,a+b)(t)− f∆α+β,a+b
(t)− f∆α,a(t) · f∆β,b

(t).

Later, in Proposition 2.7, we provide a compact formula for the polynomials wα,β,a,b(t)

and a formula for the polynomials ur,k,h,n(t) in Proposition 2.8 both of which can be

used to compute these polynomials, bypassing the computation of f -vectors of cuspidal

matroids using the polytopes themselves.

Remark 2.3 The intuition of why it is reasonable to consider and define the compli-

cated expression above stems from [FS22, Example 5.39]. As follows from the explana-

tion there, if the assignment M 7→ fP(M)(t) were valuative, then the defining formula for

wα,β,a,b(t) would actually be identically zero. The polynomial wα,β,a,b(t) quantifies (in a

certain way) how far the map M 7→ fP(M)(t) is from being valuative.
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The following lemma is the key in the proof of our main result. Its proof constitutes

arguably the most technical part of the paper. In the Lemma and the text below we

denote the cuspidal matroid of rank k on n elements with cyclic flat F by ΛFk,n. This ma-

troid is isomorphic to the matroid Λk−rkF,k,n−|F |,n. Similarly, for a set N of coordinates

we use the notation ∆k,N
∼= ∆k,|N | to indicate the coordinates of the hypersimplex.

Lemma 2.4 Let N be a rank k split matroid on [n] whose cyclic flats are the four sets

∅, F , G, and F ∪G = [n] of rank 0, rF , rG, and k, respectively. Then

fP(N)(t) = fP(ΛFk,n)(t) + fP(ΛGk,n)(t)− f∆k,n
(t)(3)

if |F ∩G|+ k < rF + rG, and

fP(N)(t) = fP(ΛFk,n)(t) + fP(ΛGk,n)(t)− f∆k,n
(t)− wrF−c,rG−c,|F |−c,|G|−c(t)(4)

where c = |F ∩G| if |F ∩G|+ k = rF + rG.

Proof. Note either the matroid N is connected or it is the direct sum UrF ,|F | ⊕ UrG,|G|.

The matroid polytope of the latter is P(UrF ,|F | ⊕ UrG,|G|) = ∆rF ,|F | × ∆rG,|G| with f -

polynomial f∆rF ,|F |
(t) · f∆rG,|G|

(t). Moreover, in this case |F ∩G| = 0 and k = rF + rG.

Thus formula (4) applies by definition of wrF ,rG,|F |,|G|. From now on, we assume that N

is connected.

We will compare the faces of the polytope P(N) with those of ∆k,n. By [JS17,

Proposition 7] every d-face of P(N) = P(ΛFk,n) ∩ P(ΛGk,n), and also PF := P(ΛFk,n) or

PG := P(ΛGk,n) lies in a d-face of the hypersimplex ∆k,n or in at least one of the hyper-

planes HF = {x ∈ Rd |
∑

i∈F xi = rF } and HG = {x ∈ Rd |
∑

i∈G xi = rG}. Notice

further that by [JS17, Proposition 14] we have that |F ∩ G| + k ≤ rF + rG. Thus the

statement of the lemma covers all possible cases, and there is no point in ∆k,n violating

both of the inequalities
∑

i∈F xi ≤ rF and
∑

i∈G xi ≤ rG simultaneously. Therefore, the

two hyperplanes HF and HG split a face of ∆k,n in at most three maximal dimensional

polytopes.

Now, let us analyze the various cases. If Q′ is a d-dimensional face of P(N) and not

contained in a d-face of the hypersimplex ∆k,n. Then either either Q′ lies in exactly

one of the hyperplanes HF and HG, or in both. If it is in exactly one of them, say

HF , then Q′ is a d-dimensional face of PF and not a d-dimensional face of PG. If the

d-dimensional face Q′ lies in both hyperplanes then Q′ lies in a (d+ 1)-dimensional face

Q of ∆k,n which is subdivided into two parts. We discuss this situation in detail further

below in this proof.

Let us now assume Q is a d-dimensional face of ∆k,n. We will go through the three

possibilities of how many cells Q is subdivided into by HF and HG. If Q remains

undivided then either it is a face of P(N) and also of both PF and PG, or it is not a

face of P(N) and thus a face of exactly one of the two polyhedra PF and PG. In the

case that the face Q is subdivided into three parts and of dimension d, it contributes

a d-face to each of the four polytopes as well. It remains to analyze the situation in

which Q is subdivided into two polytopes Q′ and Q′′. It cannot happen that both of

these polytopes are faces of P(N). If one of them, say Q′, is a face of P(N) then Q′ is

a face of one of the polytopes PF and PG, while Q is a face of the other. In total Q

and Q′ contribute a d-dimensional face to each of the four polytopes. If neither Q′ nor

Q′′ is a face of P(N) then Q′ and Q′′ meet in a (d − 1)-face Q̃ ( Q which is a face of
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the three polytopes P(N), PF and PG. Moreover, the d-dimensional face Q′ is a face of

one of the two polytopes PF and PG while Q′′ is a d-dimensional face of the other one.

The (d− 1)-dimensional face Q̃ is not a face of the hypersimplex ∆k,n and sits in both

hyperplanes HF and HG. Every (d− 1)-dimensional face that is not a face of ∆k,n but

lies in both HF and HG must be contained in a d-face of ∆k,n as we mentioned at the

beginning of this proof. Let us investigate the situation further. There must exist four

pairwise disjoint sets A,B,C,D such that

Q = ∆|C|,C ×∆k−|C|,A∪B ×∆0,|D|

where C consists of all coordinates which are one and D of those which are 0, and

Q̃ = ∆|C|,C ×∆α,A ×∆β,B ×∆0,|D|

where α = rF − |C ∩ F |, β = rG − |C ∩G|, A ⊆ F rG and B ⊆ Gr F . The inclusions

follow (up to interchanging the roles of A and B) from the fact that both hyperplanes

HF and HG induce the same split of ∆α+β,A∪B. From this we get k − |C| = α + β =

rF − |F ∩ C|+ rG − |G ∩ C| and hence

|F ∩G| ≤ rF + rG − k = |F ∩ C|+ |G ∩ C| − |C| = |F ∩G ∩ C| − |C r (F ∪G)| .

We obtain F ∩G ⊆ C ⊆ F ∪G, and also the equality |F ∩G|+k = rF +rG. Furthermore,

every choice of such C, A ⊆ F r G and B ⊆ G r F leads to a face that sits in both

hyperplanes and in a higher dimensional face of ∆k,n. Hence, for the inclusion-wise

maximal such face we have to pick C = F ∩G and D = [n] r (F ∪G). We see that the

expression

wrF−|C|,rG−|C|,|F |−|C|,|G|−|C|(t)

counts exactly the two types of faces. In summary, our comparison verifies the formulas

of equations (3) and (4) and thus the proof is complete. �

2.3. Face counting of split matroids. For a connected split matroid M, let us define

the following numbers that we have already mentioned in the introduction. The number

of stressed subsets with non-empty cusp having rank r and size h, denoted λr,h — recall

that by [FS22, Proposition 3.10], in a connected split matroid this is the same as the

number of proper non-empty cyclic flats of rank r and size h. We also need the numbers

µα,β,a,b of (unordered) modular pairs {F1, F2} of proper non-empty cyclic flats, i.e., F1

and F2 fulfilling the modularity property,

(?) rk(F1) + rk(F2) = rk(F1 ∩ F2) + rk(F1 ∪ F2),

where the indices denote the following quantities:

a = |F1 r F2|, α = rkF1 − rk(F1 ∩ F2)

b = |F2 r F1|, β = rkF2 − rk(F1 ∩ F2) .

Note that the set F1 ∩ F2 ( F1 ( [n] can not contain a circuit if M is a connected split

matroid, thus it is an independent set, i.e., rk(F1 ∩ F2) = |F1 ∩ F2|.
In terms of these numbers and variables, our main result is the following theorem.

Theorem 2.5 Let M be a connected split matroid of rank k on n elements. The number

of faces of its base polytope P(M) is given by the polynomials

(5) fP(M)(t) = f∆k,n
(t)−

∑
r,h

λr,h · ur,k,h,n(t)−
∑
α,β,a,b

µα,β,a,b · wα,β,a,b(t)
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where the first sum ranges over all values with 0 < r < h < n and the second sum ranges

over the values 0 < α < a, 0 < β < b for which either a < b or a = b and α ≤ β.

Before moving towards the proof of this result, let us digress about the meaning of its

statement. On one hand, note that the polynomials f∆k,n
(t), ur,k,h,n(t) and wα,β,a,b(t)

can be precomputed for all the occurring instances of the variables which appear as

subindices. The first non-trivial fact that is deduced by our statement is that in ad-

dition to the parameters λr,h, which always appear in the computation of a valuative

invariant, the precise additional matroidal datum needed to compute the f -vector con-

sists of the numbers µα,β,a,b. Surprisingly, the last sum in equation (5) does not take

into consideration the rank nor the size of the matroid M itself, only the intersection

data for the modular pairs of flats. The second non-trivial fact is that it explains how

to put together this information in order to effectively computing the f -vector of P(M)

for a split matroid, circumventing the necessity of constructing the polytope.

Proof of Theorem 2.5. We follow the guidance of the proof of Lemma 2.4 and compare

the faces of P(M) with those of ∆k,n taking into account the polytopes P(Λ
Fj
k,n) for the

various cyclic flats Fj . We recall that there is no point in ∆k,n that violates more than

one of the inequalities
∑

i∈Fj xi ≤ rkFj .

Now, if Q is a d-face of ∆k,n that contains a d-face of P(M) then every polytope

P(ΛFik,n) has a d-face that is contained in Q. Hence, these faces do not contribute to any

ur,k,h,n or wα,β,a,b. If Q is a d-face of ∆k,n whose interior has no point in common with

P(M), then all these points lie beyond exactly one of the split hyperplanes
∑

i∈Fj xi =

rkFj . Therefore, Q contributes 1 to f∆k,n
(t) and to urkFj ,k,|Fj |,n

(t), but not to the other

polynomials. It remains again to look at the (d− 1)-faces Q̃ of P(M) that are contained

in the interior of d-face Q of ∆k,n. Note that Q̃ is a hyperplane in Q that separates two

of the vertices of Q. Each of the two vertices can only violate one of the inequalities,

thus Q̃ is a face of exactly two of the polytopes P(Λ
Fj
k,n).

Let us assume that Q is inclusion-wise maximal among all these (d− 1)-faces of P(M)

in the relative interior of d-faces of ∆k,n. Then there must be pairwise disjoint sets C

and D in the complement of F ∪G such that Q is a face of

∆|C|,C ×∆k−|C|,F∪G ×∆0,D

where F and G are the two cyclic flats for which Q is a face of ΛFk,n and ΛGk,n. It follows

that k − |C| ≤ rkM(F ∪ G) as Q is a face of P(M). Furthermore, applying Lemma 2.4

to the matroid (M rD)/C, i.e., the contraction of C and the deletion of D in M, which

is a split matroid of rank k − |C| on F ∪ G, yields that the hyperplanes of F and G

coincide only if k − |C| = rkF + rkG − |F ∩ G|. Moreover, because M is a connected

split matroid we get

|F ∩G|+ rk(F ∪G) ≤ |F ∩G|+ k ≤ rkF + rkG .

Thus k−|C| = rkF ∪G and |F ∩G| = rkF +rkG−rk(F ∪G). Furthermore, Lemma 2.4

shows also that the faces Q̃ andQ contribute a summand td−1 and td to the corresponding

wα,β,a,b(t). This completes our proof. �

Example 2.6 Let us take a look again at Example 2.2. The matroids N1 and N2 are

sparse paving, have rank k = 3 and size n = 6. In each case the proper non-empty cyclic



ENUMERATING THE FACES OF SPLIT MATROID POLYTOPES 9

flats are exactly the non-bases, yielding for both matroids λ2,3,3,6 = 2. One can compute

the corresponding polynomial, u2,3,3,6(t) = 1 + 9t + 9t2 − t4. In N1, the intersection

of the only pair of proper non-empty cyclic flats, F1 = {1, 2, 3} and F2 = {4, 5, 6},
does not satisfy the property (?), because rk(F1 ∩ F2) + rk(F1 ∪ F2) = 0 + 3, whereas

rk(F1) + rk(F2) = 2 + 2 = 4.

For N2, the situation is different, as F1 = {1, 2, 3} and F2 = {3, 4, 5} indeed satisfy

(?), and we have a = |F1rF2| = 2, b = |F2rF1| = 2, α = rk(F1)−|F1∩F2| = 2−1 = 1,

and β = rk(F2) − |F1 ∩ F2| = 2 − 1 = 1, so that µ1,1,2,2 = 1 and we need to subtract

w1,1,2,2(t) = t2 + t3 to obtain the correct f -polynomial, as we expected.

2.4. Explicit formulas. The polynomials ur,k,h,n(t) and wα,β,a,b(t) in Theorem 2.5 are

defined in terms of f -vectors of specific matroid polytopes. In this subsection we will

present explicit descriptions for these polynomials, enabling us to do the face enumer-

ation of a split matroid polytope, without any convex hull or face lattice computation.

To express the formulas in a compact form, we will make use of multinomial coefficients.

Let i, j, ` be non negative integers, then(
i+ j + `

i, j

)
:=

(
i+ j + `

i, j, `

)
=

(i+ j + `)!

i!j!`!
.

We begin with an explicit formula for the polynomials wα,β,a,b(t).

Proposition 2.7 For any 0 < α < a and 0 < β < b, the following formula holds:

wα,β,a,b(t) =
a−α−1∑
i=0

α−1∑
j=0

b−β−1∑
i′=0

β−1∑
j′=0

(
a

i, j

)(
b

i′, j′

)
· (1 + t) · ta+b−i−j−i′−j′−2 .

Proof. We are revisiting the proof of Lemma 2.4. We observe the following: the faces

counted by wα,β,a,b(t) come in pairs, namely the faces of ∆α,a ×∆β,b that do not lie in

the boundary of ∆α+β,a+b and the faces of ∆k,n one dimension higher. Furthermore,

these faces are obtained by deleting and contracting elements such that the hyperplane∑a
`=1 x` = α still induces a split. Deleting i and contracting j of the first a elements as

well as deleting i′ and contracting j′ of the other b elements then leads to such a pair of

faces of dimension a+b−i−j−i′−j′−2 and a+b−i−j−i′−j′−1. Expressing the ways

of choosing the elements with multinomial coefficients leads to the desired formula. �

For the polynomials ur,k,h,n(t) we provide the following formula.

Proposition 2.8 For any 0 < r < k < n and r < h < n the following formula holds

ur,k,h,n(t) = pr,k,h,n(t)− p′r,h(t) · p′k−r,n−h(t) · (1 + t) +

k∑
i=r+1

(
h

i

)(
n− h
k − i

)

where p′r,h(t) = f∆r,h
(t)−

(
h
r

)
and

pr,k,h,n(t) =
h−r−1∑
j=0

min{h−j,k−1}∑
i=0

min{k−i−1,k−r−1}∑
`=0

min{n−h−`,n−k−j−1}∑
m=0

(
h

i, j

)(
n− h
`,m

)
· tn−1−i−j−`−m.
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Proof. We begin by counting the faces of ∆k,n that are not faces of P(Λk−r,k,n−h,n).

There are two types of such faces. Those that are entirely beyond the splitting hyper-

plane, and the ones that are separated by the hyperplane. Clearly there are
∑k

i=r+1

(
h
i

)(
n−h
k−i
)

vertices of ∆k,n that are cut off by the hyperplane
∑h

i=1 xi = r. The other faces are

precisely those containing such a vertex. Hence we count faces for which more than r

of the first h coordinates can be chosen to be one, where in total we have k coordinates

equal to one. We do so by picking coordinates whose value we fix, the remaining coor-

dinates can either be zero or one, and the total number of ones is precisely k. Moreover,

we do not want to fix all coordinates, i.e., we can fix at most k − 1 coordinates to be

equal to one and at most n− k − 1 of them to be zero.

Say we fix i coordinates in {1, . . . , h} to be one and j to be zero. Then 0 ≤ j < h− r
and 0 ≤ i < k as well as i + j ≤ h, since there are only h coordinates to select from.

Similarly, we fix ` ones in the last n−h coordinates and m ≥ 0 zeros. Then 0 ≤ ` < k−i
and ` < k − r as it must be allowed to move another 1 to the first coordinates to get

there more than r out of the k ones. Furthermore, ` + m ≤ n − h as we select ` + m

out of {h + 1, . . . , n} and m + j < n − k because otherwise we would have fixed all

zeros and hence also the ones. Clearly, there are
(
h
i,j

)
ways to select the i and j first

coordinates and
(
h
`,m

)
ways to fix the ` ones and m zeros in the last coordinates. Every

fixed coordinate reduces the dimension and hence counts pr,k,h,n(t) these type of faces

that are not vertices.

Now we count the (d−1)-faces of Λr,k,h,n that split a d-face of ∆k,n. These are exactly

the faces of ∆r,h × ∆k−r,n−h that contain a product of edges, i.e., are not of the from

∆r,h×{v} or {w}×∆k−r,n−h for vertices v of ∆k−r,n−h and w of ∆k,h. Thus these faces

are enumerated by the polynomial p′r,h(t)× p′k−r,n−h(t). Each of these faces contributes

−td−1 to ur,k,h,n(t). Furthermore, the d-faces of ∆k,n that are separated by such a split

do not contribute to ur,k,h,n(t). Therefore we subtract p′r,h(t) · p′k−r,n−h(t) · (1 + t) from

pr,k,h,n(t) to obtain the polynomial ur,k,h,n(t). �

In the following we will specialize Theorem 2.5 to some common and interesting classes

of matroids. We begin with an example.

Example 2.9 Let M be the projective geometry PG(2, 3). This is a matroid on n = 13

elements of rank k = 3. It is split as it is in fact paving. This matroid has 13 stressed

hyperplanes, i.e., rank k−1 = 2 flats, all of which have cardinality h = 4. In other words,

we have λ2,4 = 13. In particular, to use the formula of Theorem 2.5, the polynomial

u2,3,4,13(t) = − t11 − 11 t10 − 54 t9 − 156 t8 − 294 t7 − 378 t6

− 336 t5 − 195 t4 + t3 + 166 t2 + 114 t+ 4

is required. Since projective geometries are modular matroids, any pair of distinct proper

non-empty cyclic flats fulfills the property (?). Also, every pair of them intersect in a

single element. Moreover, for every pair of these cyclic flats we have a = |F1 r F2| = 3,

and by symmetry b = |F1rF2| = 3. Additionally, α = rk(F1)−|F1∩F2| = 2−1 = 1 and

again by symmetry β = rk(F2)−|F1∩F2| = 1. Therefore there is a single non-vanishing

coefficient µα,β,a,b which is

µ1,1,3,3 =

(
13

2

)
= 78 .
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It remains to compute:

w1,1,3,3(t) = t5 + 7t4 + 15t3 + 9t2 .

Now applying Theorem 2.5, we obtain:

fP(PG(2,3))(t) = f∆3,13(t)− 13u2,3,4,13(t)− 78w1,1,3,3(t)

= t12 + 39 t11 + 455 t10 + 2704 t9 + 9893 t8 + 24414 t7 + 42666 t6+

54054 t5 + 49608 t4 + 31707 t3 + 12870 t2 + 2808 t+ 234 .

2.5. Face numbers of sparse paving matroids. As mentioned in the introduction,

it is conjectured that almost all matroids are sparse paving; see [MNWW11] for the

details. Furthermore, many famous examples of matroids fall into this class; notable

examples are the Fano matroid, the Vámos matroid, the complete graph on four vertices,

and the duals of each of them. Sparse paving and paving matroids are split, so we can

make use of our main result. For sparse paving matroids all the proper cyclic flats are

circuit hyperplanes, i.e., of rank r = k − 1 and size h = k. Using these parameters,

Theorem 2.5 simplifies to the following statement.

Corollary 2.10 Let M be a connected sparse paving matroid of rank k on n elements

having exactly λ circuit-hyperplanes, and let µ count the pair of circuit-hyperplanes which

have k − 2 elements in common. Then

fP(M)(t) = f∆k,n
(t)− λ · u(t)− µ · (t2 + t3)

where u(t) is given by

1− k · (n− k) · (t+ 1) +
(

(n− k) · (t+ 1)k+1 + k · (t+ 1)n−k+1 − n · (t+ 1)
)
· t−1

+
(

(t+ 1)k + (t+ 1)n−k − (t+ 1)n − 1
)
· t−2 .

Proof. By substituting r by k − 1 and h with k in Proposition 2.8 we obtain

u(t) = uk−1,k,k,n(t) = pk−1,k,k,n(t)− p′k−1,k(t) · p′1,n−k(t) · (1 + t) + 1

where pk−1,k,k,n(t) is equal to

k−1∑
i=0

(
k

i

) n−k−1∑
m=0

(
n− k
m

)
· tn−k−m · tk−i · t−1 =

(
(t+ 1)k − 1

)
·
(

(t+ 1)n−k − 1
)
· t−1 .

Furthermore, the polytope ∆k−1,k is a affine transformation of ∆1,k hence

p′k−1,k(t) = p′1,k(t) =
k∑
i=2

(
k

i

)
· ti−1 =

(
(t+ 1)k − 1− k · t

)
· t−1 .

Using the same formula for p′1,n−k(t) leads to the desired formula. �

As was mentioned earlier, there are many famous matroids that are sparse paving. We

saw four sparse paving matroids in the running Example 2.2. In the next example we take

a look at family of sparse paving matroids with maximum number of circuit-hyperplanes.

This example demonstrates that one can derive a bit more from our calculations.
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Example 2.11 Let m ≥ 3. Consider the rank k = 4 matroid M whose bases are

the quadruples of affinely independent binary vectors of length m. This is a sparse

paving matroid on n = 2m elements with the maximum number λ = 1
4

(
n
3

)
of circuit-

hyperplanes, as every three points define a circuit. A simple double counting argument

reveals that the number of pairs of these circuit-hyperplanes that share two elements is

µ = 3n−12
8

(
n
3

)
. The polytope P(M) has 6n2−57n+132

8

(
n
3

)
many square faces all of which

are induced by split hyperplanes, and hence can be read off from the quadratic term of

the product p′3,4(t) ·p′1,n−4(t), and
(
4
(
n−3

2

)
−
(
n−4

4

)
+
(
n
4

)
− 3n2 + 17n− 20

)
1
4

(
n
3

)
many

triangular faces that are also faces of the hypersimplex ∆4,n, e.g., for m = 3 the matroid

is the binary affine cube and its polytope has 420 square and 448 triangular faces.

2.6. Face numbers of rank two matroids. A loopless matroid of rank two is trivially

paving, and hence a split matroid. This allows us to use the strength of Theorem 2.5 to

compute their f -vectors.

The key is the following elementary observation. The hyperplanes, i.e., the flats of

rank one, of a loopless matroid of rank two form a partition of the ground, and conversely,

any partition of the ground set defines precisely a single rank two matroid having each

part as a flat. The bases of the matroid are obtained by taking two elements of the

ground set, not belonging to the same part.

Base polytopes of matroids of rank two have made prominent appearances throughout

algebraic combinatorics, under various guises. Notably, as is pointed out in [FH23,

Section 6.1], they coincide with edge polytopes of complete multipartite graphs — we

refer to that paper for the precise definition of edge polytopes and a short overview of

them. In this vein, the work of Ohsugi and Hibi [OH00] addresses the edge polytopes

of complete multipartite graphs, motivated both from toric geometry and graph theory.

In particular, the content of [OH00, Theorem 2.5] provides a formula for the f -vector

of the edge polytope of an arbitrary complete multipartite graph, and thus for general

rank two matroid polytopes. Let us point out that there appears to be an error in the

formula as they stated it — in particular within the quantity they denote by αi. As

an application of Theorem 2.5 we can give another formula for the f -vector of these

polytopes.

Corollary 2.12 Let M be a loopless matroid of rank two having s hyperplanes with car-

dinalities h1, . . . , hs. Then, the number of i-dimensional faces of P(M) or, equivalently,

the edge polytope of a complete multipartite graph with parts of sizes h1, . . . , hs is given

by:

fi(P(M)) =

(
n+ 1

i+ 2

)
+ (s− 1)

(
n

i+ 2

)
−
∑
j<`

(
hj + h` + 1

i+ 2

)

+ (s− 2)

s∑
j=1

(
hj + 1

i+ 2

)
−

s∑
j=1

(
n− hj
i+ 2

)
.

Proof. It is straightforward to check the formula for the case s = 2, that is P(M) =

∆1,h1 ×∆1,h2 . If s > 2 then M is connected and we may apply Theorem 2.5. Observe

that all pairs of flats are trivially modular, and they are pairwise disjoint. Thus, the

non-vanishing coefficients are µ1,1,hj ,h` . In the following we omit parts of the long and
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tedious calculations but indicate the main steps. For k = 2 and r = 1 using some change

of summation and the Vandermonde identity we obtain∑
j<l

w1,1,hj ,h`(t) =

n−1∑
i=2

∑
j<`

(
hj + h`
i+ 2

)
−

s∑
j=1

(
(s− 1)

(
hj
i+ 2

)
+ (n− hj)

(
hj
i+ 1

)) · ti (1 + t) .

Similarly, we get this formula for p′1,hj (t) · p
′
1,n−hj (t) · (1 + t)

n−1∑
i=2

((
n

i+ 2

)
−
(
n− hj
i+ 2

)
− h
(
n− hj
i+ 1

)
− (n− hj)

(
hj
i+ 1

)
−
(
hj
i+ 2

))
· ti (1 + t)

and for p1,2,hj ,n(t) the expression

n−1∑
i=1

((
n

i+ 2

)
−
(
n− hj
i+ 2

)
− h
(
n− hj
i+ 1

))
ti+1 +

n−1∑
i=1

(
hj

(
n− 1

i+ 1

)
− hj

(
n− hj
i+ 1

))
· ti

where the two sums correspond to the indices i = 0 and i = 1 in the definition of

pr,k,h,n(t). This gives us u1,2,hj ,n(t) = p1,2,hj ,n(t) − p′1,hj (t)p
′
1,n−hj (t)(t + 1) +

(hj
2

)
and

hence
∑s

j=1 u1,2,hj ,n. We also need

f∆2,n(t) =

(
n

2

)
+
n−1∑
i=1

(
n

i+ 1

) i∑
j=1

(
n− i− 1

2− j

)
· ti

=

(
n

2

)
+ 3

(
n

3

)
t+

n−1∑
i=2

(
n

i+ 1

)
(n− i) · ti .

Now putting the pieces together, applying Pascal’s identity, and cancelling many terms,

one may obtain the desired formula of the statement (where additional effort is required

for the constant, linear and quadratic term). �

Remark 2.13 Kim described in [Kim10] how the cd-indices of polytopes change when

performing hyperplane splits. From this, he derived a formula for the cd-index of rank

two matroid base polytopes. This formula depends on the cd-index of polytopes of rank

two matroids with 1, 2 and 3 hyperplanes. While there are explicit expressions for the

cd-index when the matroid has 1 or 2 hyperplanes, the case with 3 hyperplanes remains

unsolved. We point out that the cd-index contains more information than the f -vector

— however, recovering the f -vector from the cd-index is often a very laborious task.

3. Final remarks and open problems

Steinitz characterized f -vectors of 3-polytopes. Since then the f -vectors of 4-polytopes

have been intensively studied. In spite of the great interest from mathematicians, only

little is known about the face numbers of higher dimensional polytopes [Zie07] or 0/1-

polytopes [Zie00]. The contribution of this paper is an explicit formula for f -vectors

of split matroids. However, many questions and problems regarding f -vectors of 0/1-

polytopes, or even the class of matroid polytopes itself, remain broadly open. This last

section aims to propose a few problems and questions in this underexplored area of

discrete geometry.
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3.1. Explicit formulas for other polytopes. Besides the base polytope studied in

this paper, another famous polytope that one may associate to a matroid is the so-

called independence polytope. This polytope is defined as the convex hull of the indicator

vectors of all the independent sets, i.e., subsets of bases, of the matroid, and it contains

the base polytope as a facet.

A natural challenge that we raise is to provide a good way of computing the f -vectors

of these polytopes.

Problem 3.1 Find a formula for the f -vector of the independent set polytope of a

(connected) split matroid.

We speculate that one can approach this problem by using modifications of the ideas

and the techniques that we presented in this article.

On the other hand, it is also natural to ask about the problem of finding a formula for

f -vectors of matroid base polytopes or independence polytopes for arbitrary matroids.

These two problems appear to be considerably more difficult. Nonetheless, we pose the

following broad question.

Question 3.2 Can the approach of splitting polytopes, or treating the f -vector as a

valuation with an error term, be used to obtain an explicit formula for the f -vector of

an arbitrary matroid polytope? Independently of the details of the computation, what

is the precise matroidal data that one needs in order to recover the f -vector?

Note that all matroid polytopes are cut out of the hypersimplex by intersecting it

with split hyperplanes — or, more precisely, with half-spaces whose boundary is a split

hyperplane — which are weakly compatible, i.e., that may intersect in the interior of

the hypersimplex.

Also, every matroid base polytopes can be obtained by slicing pieces off of a unit

cube. Unit cubes themselves possess many split hyperplanes; see [HJ08] for more details.

Therefore, it seems reasonable to attempt to generalize the techniques and ideas of the

present paper beyond the class of matroid polytopes, in order to include other classes

of 0/1-polytopes.

Problem 3.3 Describe the f -vectors of 0/1-polytopes in terms of their supporting split

hyperplanes.

3.2. The shape of f -vectors of matroid polytopes. A recent trend in matroid

theory is that of proving unimodal and log-concave inequalities for various vectors of

numbers associated to matroids. A finite sequence of numbers (a0, . . . , an) is said to be

unimodal if there exists some index 0 ≤ j ≤ n with the property that

a0 ≤ · · · ≤ aj−1 ≤ aj ≥ aj+1 ≥ · · · ≥ an.

If all the ai’s are positive, a stronger condition is that of log-concavity, which asserts

that for each index 1 ≤ j ≤ n− 1 the inequalities a2
j ≥ aj−1aj+1 hold.

There are two objects that, in other contexts, can be referred to as “the f -vector of a

matroid,” though they hold no direct relation with the f -vector we studied in this paper.

The first of them comes from considering a matroid as a pure simplicial complex with

the property that each vertex-induced subcomplex is shellable [Bjö92]. In this case, one
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can define the f -vector of a matroid to be the f -vector of this simplicial complex. This

has been object of intensive research and several open problems and conjectures exist in

the literature regarding this f -vector, for instance Stanley’s conjecture asserting that the

corresponding h-vector is a pure O-sequence (see [Sta96]). In [AHK18] these f -vectors

are proved to be log-concave. The second object that sometimes is referred to as “the

f -vector of a matroid” is the vector having as coordinates the number of flats of the

matroid of each rank, i.e., the Whitney numbers of the second kind of M. This object

has also received some attention in the recent years; one of the main open problems

regarding this f -vector was the so-called “Top-Heavy Conjecture,” which was settled in

[BHM+20]. It remains as an open problem to prove or disprove the unimodality of the

Whitney numbers of the second kind.

In a similar vein, it is quite inviting to ask the following question.

Question 3.4 Are the f -vectors of matroid base polytopes unimodal, or even log-

concave?

It is known that there are simplicial polytopes having a non-unimodal f -vector; see

[Zie95, Chapter 8.6]. However, let us point out that, within the existing literature, we

were not able to find any examples of non-unimodal f -vectors for the general class of

all 0/1-polytopes. We have been able to verify the log-concavity of the f -vectors of the

following classes of matroids, in some cases relying critically on the results of this paper:

• All matroids on a ground set of size at most 9.

• Split matroids on a ground set of size at most 15.

• Sparse paving matroids on a ground set of size at most 40.

• Split matroids with four cyclic flats as in Lemma 2.4 of size at most 50.

• Cuspidal matroids on a ground set of size at most 100.

• Lattice path matroids on a ground set of size at most 13.

• Rank two matroids on a ground set of size at most 60.

Matroid base polytopes have many remarkable properties. One that is particularly

relevant is that their vertex-edge graph, i.e., the 1-skeleton of the polytope, determines

the entire polytope up to a rigid transformation; see [HNT73, PVS22] for more precise

statements. Similarly, the data of the 2-skeleton of a matroidal subdivision describes the

subdivision completely; this technique has been used in several articles, see for example

[HJS14]. It is tempting to ask whether the enumerative information encoded in the first

few entries of the f -vector of a matroid base polytope is already sufficient to derive the

remaining entries. More precisely, we ask for the following constant.

Problem 3.5 Is it true that there exists a number c such that the first c entries of the

f -vector of some matroid M, i.e., f0, . . . , fc−1, are enough to determine the complete

f -vector of M? If it is true, what is the smallest such c?

Our experiments indicate that c = 7 suffices for all matroids on up to nine elements.

3.3. A digression on the extension complexity of split matroids. A motivation

to study the face enumeration of matroid polytopes stems from the work of Rothvoss

[Rot13], Conforti, Kaibel, Walter and Weltge [CKWW15], and Kaibel, Lee, Walter

and Weltge [KLWW16] on the extension complexity of matroid polytopes (see also the
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corrigendum [KLWW20], and the article by Aprile and Fiorini [AF22]). The special case

of hypersimplices is discussed in work by Grande, Padrol and Sanyal [GPS18], and the

case of 2-level matroids is the main focus of [ACF18, ACF+22].

Given a lattice polytope P ⊆ Rn, an extended formulation of P is another lattice

polytope Q ⊆ Rm together with a projection map π : Rm → Rn which projects Q onto

P. The complexity of an extended formulation is the number of facets of the polytope Q.

The extension complexity of P, denoted xc(P), is the minimum complexity of an extended

formulation of P.

One of the main tools for finding lower bounds on the extension complexity are the

rectangular covering numbers, but these numbers grow at most quadratically in the size

of the ground set [KLWW16, Proposition 2]. Furthermore, the extension complexity of

regular matroids is polynomial [AF22]. The extension complexity of matroid polytopes

is also related to the “hitting number” of the base polytope, see [Apr22].

Rothvoss [Rot13, Corollary 6] proved1 that for all n there exists a matroid M on n

elements whose base polytope has extension complexity xc(P(M)) ∈ Ω

(
2n/2

n5/4
√

log(2n)

)
.

Moreover, Rothvoss’ proof is non-constructive and relies only on an enumerative result of

matroids, that therefore guarantees that whatever these examples are, they must belong

to the class of sparse paving matroids, and are therefore split matroids. Thus it remains

a notorious open problem to find an explicit family of matroids having exponential

extension complexity. In fact, having one would yield an explicit infinite family of

Boolean functions requiring superlogarithmic depth circuits, according to an observation

attributed to Göös in [AF22, Section 8] and [Mat]; see also the relevant [GJW18].

Although we cannot compute explicitly the extension complexity of split matroid

polytopes, we conjecture that the following natural family of sparse paving matroids

might have the desired exponential extension complexity.

Conjecture 3.6 For each positive integer n, let us denote Sn the sparse paving matroid

on [n] of rank bn2 c, having the maximal possible number of circuit-hyperplanes, and whose

set of bases is lexicographically minimal2. Then

xc(P(Sn)) ∈ Ω

(
2n/2

n5/4
√

log(2n)

)
.

Observe that the explicit determination of the matroid Sn is yet another open problem,

related to the construction of binary codes with constant weight and Hamming distance

4, as well as stable subsets of Johnson graphs. In particular, we point out that it

remains an open problem to determine the matroid S20 — in fact, its number of circuit-

hyperplanes seems to be unknown, though it is between 13452 and 16652 (see [AVZ00,

Table I]).

Although we cannot prove this conjecture, at least we can prove that the number of

facets of P(Sn) is indeed exponential.

1To be precise, Rothvoss proved that the extension complexity of the independence polytope of some

matroid is exponential, but an elementary reasoning shows that this is equivalent to an analogous

statement for the base polytope. See for example the short explanation in [AF22, p. 1].
2In the sense that if we write each individual basis B ∈ B with their elements in increasing order,

and sort the set B lexicographically, then B is minimal.
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Proposition 3.7 Let Sn the matroid described in the prior statement. The number of

facets of P(Sn) satisfies:

fn−2(Sn) ≥ 2n+
1

n

(
n

bn2 c

)
∼ c 2n

n3/2
.

Proof. By Corollary 2.10 the number of facets of Sn is 2n + λ (whenever n > 4) where

λ is the number of circuit-hyperplanes of Sn. As follows from a result of Graham and

Sloane in [GS80], the maximal possible value of λ is at least 1
n

(
2n
n

)
; see for example

[FS22, Lemma 4.6]. �

Remark 3.8 Even though the number of facets of a matroid polytope can be expo-

nential, for arbitrary 0/1-polytopes in Rn it is known that the number of facets can be

larger than
(

cn
logn

)n/4
, via a random construction [BP01].
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[BS23] K. Bérczi and T. Schwarcz, Exchange distance of basis pairs in split matroids, 2023+. 2

[CKWW15] M. Conforti, V. Kaibel, M. Walter, and S. Weltge, Subgraph polytopes and independence

polytopes of count matroids, Oper. Res. Lett. 43 (2015), no. 5, 457–460. 15

[CM21] A. Cameron and D. Mayhew, Excluded minors for the class of split matroids, Australas. J.

Combin. 79 (2021), 195–204. 2



18 L. FERRONI & B. SCHRÖTER
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