

Navigation in Decentralized Online Social Networks

Sarunas Girdzijauskas, KTH 07 November 2016

Shortly About me

•

			/	
			_	
	_	- N		
	_			
				(R)

PhD from EPFL, Switzerland 2009

- Research Intern at IBM Haifa 2008
- Post-doc at SICS 2009
- Senior researcher at SICS 2011
- Assistant Professor at LCN/EES 2012
- Associate Professor at SCS/ICT 2016

Research Topics

Networks and Graphs

 Graph algorithms for Cloud Computing, Distributed and Decentralized Systems, Social Networks, Privacy preservation.

Research Areas

- Partitioning and community detection (Fatemeh)
- Storing Social Network (linked) data in Cloud Environments (Anis)
- Streaming graph partitioning (Anis)
- Anomaly detection in Social graphs (Amira)
- Gossip learning for decentralized Online Social Networks (Amira)
- NLP using Graph Partitioning (Kambiz)
- VM consolidation in clouds using Gossip (w. University of Umeå)
- This talk: on Navigation in DOSNs
 - Decentralized Online Social Networks
 - Community Cloud

DOSNs: Motivation Slide

Why DOSNs?

- Challenging environments: Decentralized, highly heterogeneous (both resources and demand)
- Promises for: Scalability, availability, robustness, efficiency...
 - E.g,. DIASPORA, PeerSoN, Safebook, Vis-à-Vis, NetTube, DECENT, PrisM, GoDisco, SocialTube

DOSN basic services

- Data Dissemination/Search & Storage
 - More advanced services: global aggregation/learning, analytics, recommendation etc.

- How do we arrange decentralized nodes together (i.e., design the topology of such decentralized system) where the above services perform the best.
 - I.e., Minimize traffic load/relaying and latency.
 - How can decentralized search even work?
 - Milgram's Experiment

Milgram's Experiment

- Not the one on obedience and authority!
- Milgram's Experiment on the "topology of our Social Networks"
 - No Online Social Networks in 1960s
 - 296 random people in USA forwarding a letter to a "target" person in Boston.
 - Personal info on the "target" (including address and occupation)
 - Forward only to a person known by first-name basis.
 - Result?
 - 64 chains succeeded.

Avg. number of steps?

- We live in a Small-World: average length of the chains that were completed lied between 5 and 6 steps;
- Coined as "Six degrees of separation" principle.
- Similar results have been found in many other social networks

Topology of Social Graph

- How to interpret such network?
- Maybe it is a Random Graph?
 - low diameter!

Random

But very little clusteristaion i.e., very few triangles (common friendships)

Increasing randomness

High clusteristaion but large diameter!

High clusteristaion and Short diameter!

Milgram's Small-World Experiment (cont.)

- In 2011 Facebook shrunk 'Six Degrees Of Separation' to just 4.74 (721m users, 69b friendships)
 - Twitter's 5,91 of 12,8M friendships
- Does the low diameter of the SN graph answer our question?
 - Surprise is that we can find these paths in a decentralized manner, i.e., *navigate successfully* with no "map", no central authority, no "Big Brother".
- Why it Works?

So why Milgram's experiment worked?

- Social network is not a bare ٠ graph of vertices and edges
 - Nodes come with certain implicit *"labels" representing various dimensions of our life*
 - Hobbies, work, geographical distribution etc.
- There is (are multiple) ٠ "concept" space(s)
 - E.g., Geographical, Occupational, Hobby etc.
 - Each with a explicit or implicit distance metric!!!
 - We can greedily minimize the distance!!
 - **Decentralized search**: a greedy distance minimizing routing algorithm

John,

Stockholm: Neighbor; Musician; Likes photography; Etc.

Simon,

Paris; Friend: Stamp collector; Loves climbing; Etc.

Peter. Stockholm; Colleague; Computer scientist: Loves movies; Etc. 11

Strong Links

Az

Fundamental Navigability Rules

- Kleinberg's Navigable Small-World model
 - Very rough insight ("ru Weak links
 - Connect to nodes that are main of proportional to the distance from you.

With O(log(N)) links we can nav gate in O(log(N)) hops

٠

•

Traditional DHTs and Kleinberg model

P2P networks, DHTs

Kleinberg's model

How do we build Structured P2P (DHT)? (recap)

- Navigable Overlay is a graph, "cleverly" embedded in the ID space, where efficient routing is possible.
- The resulting topology is a fixed degree small-world graph with high clusterization and low diameter.

ID Space

Choice of Topology for DOSNs?

Structured P2P networks (DHTs)

Event Dissemination in DOSNs

Navigable Overlays (DHTs) as the backbone for DOSNs

- Navigable (e.g., . Search in O(logN) number of hops) and has very low degree (O(logN)) graph
- Each node gets uniform random IDs (e.g., on a unit ring)
- Connect by some predefined rules
 to k other nodes based on their IDs
 - As discussed in previous slides
 - E.g, Chord, Pastry, Symphony etc.

Event Publishing on Navigable Overlays

- Building efficient data dissemination structures
 - Creating a dissemination tree with a fanout max of DHT degree O(logN), and a depth max of expected search cost O(logN)
- Scalable
- Robust
- Bounded delay
- Message overhead and relays! X
- Privacy!
- Services on top! (e.g,. Storage) X

Why is DHT so inefficient in messages and dissemination cost?

- We build a very efficient (navigable) overlay that is based ONLY on node IDs and is completely oblivious to Friend-to-Friend (F2F) network and node localities
 - Friends that are close in "social graph" are uniformly distributed in the DHT ring – scrambled forever
 - Any group communication induced by social activities on expectation will not be local and will induce O(log N) communication cost (likely non-interested relays).

In effect we end with:

- No locality,
- (almost) no direct friend-to-friend communication
- Dissemination structures (trees) that we build will have on expectation around O(logN) relay nodes for every friendship
 - i.e., **vast majority of relays** for each "newsfeed" or other action.

Choice of Topology for DOSNs?

Structured P2P networks (DHTs)

- Unstructured P2P
 - Friend-to-Friend based networks

Overlay Design for DOSNs (2nd attempt)

- Let's connect them all: DOSN overlay that mirrors "social network", i.e., build Friend-to-Friend overlay.
 - Low latency, Low communication cost
 - Still global search might be problematic...

Most of social networks have relatively high avg. degree and have power-law degree distributions.

- Issue of handling most popular nodes!
- E.g., tens of millions of links in Twitter and even 5000 friendship links in Facebook!
- E.g, no go for WebRTC

Challenge: Keep the node degree fixed!

Dilemma...

- Using only Unstructured Overlays (F2F based):
 - Too large node degrees
 - Search/routing is not effective
 - hard to build other services on top: i.e., storage, recommendation, analytics
- Using Structured Navigable overlays (DHT based):
 - locality is lost,
 - high relay traffic.
 - Is there a way out?

Locality Aware Structured P2Ps?

Naïve solutions

- Use DHT solutions that provide some "degrees of freedom" while selecting neighbors (e.g., Pastry, Symphony etc)
 - Castro et al. "Topology-aware routing in structured peer-to-peer overlay networks" 2003
 - Antaris et al. "A Socio-Aware Decentralized Topology Construction Protocol" HotWeb2015
 - Chen et al. "Design of Routing Protocols and Overlay Topologies for Topic-based Publish/Subscribe on
 Small-World Networks" Middleware 2015

F2F social graph vs. Navigable P2P Overlay

- Both networks are non-random, but "small-world" like.
 - *High* clusterisation, *low* diameter.
 - Differences:
 - F2F: power-law degree distribution
 - Navigable Overlay: fixed degree distribution

Making F2F Network Navigable

- 1) we take a subgraph of F2F with fixed degree that is topologically similar to the graph induced by the Navigable Overlay?
- 2) embed it into ID space so that the routing is efficient?
 - *i.e., "cleverly assign IDs for each node".*

How to assign IDs to F2F Network ?

- Option 1:
 - Start with random ID assignment
 - Expected poor initial routing performance
 - Keep on exchanging IDs between pairs of nodes to "improve" the routing.
- Option 2:
 - Try to "infer" what are the topological "clusters" in the graph and allocate similar IDs for the nodes in those clusters.

Option 1: random ID assignment

- Let's start "easier":
 - Take existing Navigable Overlay
 - "forget" ID space (remove IDs)
 - Try to reassign IDs just by looking into the topology of the graph.
- NP-hard problem at least as hard as community detection,

Proposed Solutions

Sandberg et al. "Distributed Routing in Small-World Networks" ALENEX2006

- Each peer gets a random IDs
- Each peer periodically exchanges info of their IDs with a random peer and decides whether to swap the IDs.
- Better than random, but largely fails to "discover" right ID allocation.
- For larger graphs (100k nodes) up to 50% of queries failed to reach the destination
- Reason: All links are of the same "importance"
 - Too many "degrees of freedom", too many dependencies: position improvements in one pair "damages" many other positions.
- Our Solution:
- The links are not the same (remember strong and weak links)?! Treat each link differently!

Weak and Strong Ties

- Each node orders all the neighbors by the "strength of their ties"
 - Weak vs. Strong links
 - E.g., counting friendship triangles, gossip to detect local communities etc.
- Graph pruning:
 - Consider only top k strongest links (representing communities), ignore weakest links.

- A graph with large diameter emerges,
 - i.e, less "degrees of freedom" -> easier to converge to local optima

Socially-Aware Distributed Hash Tables (Nasir et al, P2P2015)

- Each peer gets a random IDs
- Each peer periodically exchanges info of their IDs with a random peer and decides whether to swap the IDs.
 - Decision: based on a cost function that (locally) improves the positions of the two nodes as compared to their neighbors
 - Cost function: biases the preference towards the strong neighbors (prefer to have strong links with IDs that are as close as possible in the ID space, while disregarding the weak links)
 - Gossip based, Integrated with Symphony Overlay.
 - Reduces lookup latency by ~30%
- Can we do even better?
 - Antaris et al. "SELECT: A Distributed Publish/Subscribe Notification System for Online Social Networks" (collaboration with University of Cyprus)

Option 2: ID assignment on the fly

- F2F graph: nodes arrive with associated edges.
 - Bootstrapping: Only first nodes get random IDs.
- Subsequent arriving nodes identify the "strongest" existing friendship communities and "join" them by selecting ID centered in these communities.
 - Arriving node assumes ID as a centroid between k strongest links (e.g., nodes that share most of the friends)
 - ID ranges identify communities
- We have to cap the degree (take a subgraph)
 - Following Kleinbergian rule: identify most dissimilar communities/regions to point to
 - +Bias toward more reliable nodes
 - +Bias toward particular workloads in F2F graph.

Few extra links: to maintain the ring, and fill up the finger table for nodes with low social degree (people with few friends)

Option 2: ID assignment on the fly (cont.)

- Which community should the newcomer join?
 - Which ID should it take?
- Join between "strongest" existing friendships in a particular community
 - e.g., id a centroid of kstrongest links (nodes that shares most of the friends)
 - Communities and Strength discovered by gossiping

Community 2

Capping the degree

- Usually a node has way more social friends than "connection quota".
 - E.g., max 20 out of 500 friends.
- Which ones to keep?
 - Only the closest friends?
 - We lose long range links
 - Random friends?
 - Similar to Watts&Strogats model:

Small-World but not navigable...

- Ideas from Kleinberg?
 - Can not apply directly since we do not want to create new links and ID space is not uniform!
 - Serch performance should be biased toward Friends nodes
 - Detect k friends, representing k-most dissimilar regions (Kleinbergian partitions, e.g., using gossiping or LSH technique) and establish connections to them
- Few extra links if necessary

SELECT: A Distributed Publish/Subscribe Notification System for Online Social Networks

• Some Results:

Take Aways

- The World is not only Small (6-degrees of separation), but also navigable in a completely decentralized fashion.
- Community aware assignment of IDs and selection of links enables efficient navigation in F2F networks
 - in turn improving privacy/security, getting rid of majority of relay traffic and allowing locality aware services

Bibliography

References

Overlay navigation, dissemination and pub/sub

- 1. Muhammad Anis Uddin Nasir, Nicolas Kourtellis, Sarunas Girdzijauskas: <u>Highly</u> <u>Scalable, Heterogeneous and Reliable Overlays for Decentralized Online Social</u> <u>Networks</u>. P2P 2015
- 2. Mansour Khelghatdoust, Sarunas Girdzijauskas<u>: Short: Gossip-Based Sampling in</u> Social Overlays. NETYS 2014: 335-340
- Fatemeh Rahimian, Thinh Le Nguyen Huu, Sarunas Girdzijauskas: Locality-<u>Awareness in a Peer-to-Peer Publish/Subscribe Network</u>. IFIP International Conference on Distributed Applications and Interoperable Systems, DAIS 2012: 45-58
- 4. Fatemeh Rahimian, Sarunas Girdzijauskas, Amir H. Payberah, Seif Haridi: <u>Vitis: A</u> <u>Gossip-based Hybrid Overlay for Internet-scale Publish/Subscribe Enabling</u> <u>Rendezvous Routing in Unstructured Overlay Networks</u>. IPDPS 2011: 746-757
- 5. Fatemeh Rahimian, Sarunas Girdzijauskas, Amir H. Payberah, Seif Haridi: <u>Subscription Awareness Meets Rendezvous Routing</u>, The Fourth International Conference on Advances in P2P Systems, AP2PS 2012.
- Sarunas Girdzijauskas, Gregory Chockler, Ymir Vigfusson, Yoav Tock, Roie Melamed: Magnet: practical subscription clustering for Internet-scale publish/subscribe. DEBS 2010: 172-183
- Sarunas Girdzijauskas, Gregory Chockler, Roie Melamed, Yoav Tock: <u>Gravity: An</u> <u>Interest-Aware Publish/Subscribe System Based on Structured Overlays</u>, [fast abstract] DEBS 2008.
- 8. Fabius Klemm, Sarunas Girdzijauskas, Jean-Yves Le Boudec, Karl Aberer: On Routing in Distributed Hash Tables. Peer-to-Peer Computing 2007: 113-122
- Anwitaman Datta, Sarunas Girdzijauskas, Karl Aberer: On de Bruijn Routing in Distributed Hash Tables: There and Back Again. Peer-to-Peer Computing 2004: 159-166
- Sarunas Girdzijauskas, Wojciech Galuba, Vasilios Darlagiannis, Anwitaman Datta, Karl Aberer: Fuzzynet: <u>Ringless routing in a ring-like structured overlay</u>. Peer-to-Peer Networking and Applications 4(3): 259-273 (2011)

References

Overlay Construction

- Sarunas Girdzijauskas, Anwitaman Datta, Karl Aberer: Oscar: A Data-Oriented Overlay For Heterogeneous Environments. ICDE 2007: 1365-1367
- 2. Sarunas Girdzijauskas, Anwitaman Datta, Karl Aberer: Oscar: Small-World Overlay for Realistic Key Distributions. DBISP2P 2006: 247-258
- Sarunas Girdzijauskas, Anwitaman Datta, Karl Aberer: On Small World Graphs in Non-uniformly Distributed Key Spaces. ICDE Workshops 2005: 1187
- 4. Karl Aberer, Luc Onana Alima, Ali Ghodsi, Sarunas Girdzijauskas, Seif Haridi, Manfred Hauswirth: <u>The Essence of P2P: A Reference Architecture for</u> <u>Overlay Networks</u>. Peer-to-Peer Computing 2005: 11-20
- 5. Sarunas Girdzijauskas, Anwitaman Datta, Karl Aberer<u>: Structured overlay for</u> heterogeneous environments: Design and evaluation of oscar. TAAS 5(1) (2010)

Thank you!

ŠARŪNAS GIRDZIJAUSKAS - 2016 NOV 07, KTH