
Human Activity Recognition Using Federated
Learning

Konstantin Sozinov
KTH Royal Institute of Technology

Stockholm, Sweden

sozinov@kth.se

Vladimir Vlassov
KTH Royal Institute of Technology

Stockholm, Sweden

vladv@kth.se

Sarunas Girdzijauskas
KTH Royal Institute of Technology

Stockholm, Sweden

sarunasg@kth.se

Abstract—State-of-the-art deep learning models for human
activity recognition use large amount of sensor data to achieve
high accuracy. However, training of such models in a data
center using data collected from smart devices leads to high
communication costs and possible privacy infringement. In order
to mitigate aforementioned issues, federated learning can be
employed to train a generic classifier by combining multiple local
models trained on data originating from multiple clients. In this
work we evaluate federated learning to train a human activity
recognition classifier and compare its performance to centralized
learning by building two models, namely a deep neural network
and a softmax regression trained on both synthetic and real-
world datasets. We study communication costs as well as the
influence of erroneous clients with corrupted data in federated
learning setting.

We have found that federated learning for the task of human
activity recognition is capable of producing models with slightly
worse, but acceptable, accuracy compared to centralized models.
In our experiments federated learning achieved an accuracy of
up to 89 % compared to 93 % in centralized training for the
deep neural network. The global model trained with federated
learning on skewed datasets achieves accuracy comparable to
centralized learning. Furthermore, we identified an important
issue of clients with corrupted data and proposed a federated
learning algorithm that identifies and rejects erroneous clients.
Lastly, we have identified a trade-off between communication
cost and the complexity of a model. We show that more complex
models such as deep neural network require more communication
in federated learning settings for human activity recognition
compared to less complex models, such as multinomial logistic
regression.

Index Terms—Federated Learning, Human Activity Recogni-
tion, Privacy, Distributed Machine Learning

I. INTRODUCTION

Human activity recognition (HAR) is a classification ma-

chine learning task where the goal is to learn which activity

is performed by a certain person in a given period of time.

Activities can be of different kinds, for example: sitting,

standing, walking, running, biking or driving a vehicle. A

HAR classifier can be suitable for various types of applications

ranging from healthcare and fitness applications, for example

a Fitbit [1] watch counting steps, to context aware applications

like the ”Do Not Disturb while Driving” feature on iOS version

11 [2]. To recognize activities, a machine learning model is

trained on accelerometer and gyroscope sensor data from smart

devices, smartphones or smartwatches.

A wide range of mobile applications and smart devices al-

lows to collect huge amounts of sensor data and push progress

in HAR research. Using deep learning, researchers achieve

high accuracy on HAR tasks, based on the data from smart

devices [3]–[5]. Yao et al. [3] propose a state-of-art deep model

for mobile sensing based on accelerometer and gyroscope

sensor data. The model consists of a convolutional neural

network (CNN) combined with a recurrent neural network

(RNN) and is trained on up to an order of GB of sensor data

from smart devices. Training this model on real world data

collected from smart devices leads to various implications.

Mobile clients need to send a lot of data to a centralized server

or a cluster for both training and inference. This is challenging

due to users’ billing plan, users’ privacy and labeling of sensor

data.

McMahan et al. [6] proposed to address the aforementioned

challenges by training a classifier using federated learning.

Federated learning allows to build a global model while

keeping the sensor data close to the user, ensuring that the data

for training and inference does not leave the user’s device. This

also allows preserving privacy and reducing communication

cost when training and using the model. Since a lot of

motion data for training and inference needs to be collected to

classify activities with high accuracy, as in the model built in

in [3], training the classifier using federated learning algorithm

fits the problem naturally. However, the algorithm is not so

much tested in practice, and there are open questions of the

implementation details such as what are the limits of the

algorithm and in what environments it is suited.

In this study we evaluate performance of the federated

learning and show that federated learning can be used instead

of centralized learning for training a HAR classifier. Our

baseline is a HAR classifier trained using centralized learning,

i.e., a classifier trained on sensor data collected and stored on

a central server, using Stochastic Gradient Descent (SGD).

We compare HAR classifier trained using centralized learning

with HAR classifier trained using federated learning for three

data distributions among clients: (1) unbalanced and non-

independent non-identically distributed (non-IID) data, (2)

uniformly distributed data, and (3) skewed data. In the case of

non-IID data, federated clients have at most 2 activities from

the dataset, where one of the activities has 50 % less data

points than another. In the case of uniformly distributed data,

1103

2018 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Ubiquitous Computing & Communications, Big
Data & Cloud Computing, Social Computing & Networking, Sustainable Computing & Communications

978-1-7281-1141-4/18/$31.00 ©2018 IEEE
DOI 10.1109/BDCloud.2018.00164

clients have all activities from the dataset and the activities are

uniformly distributed across the clients. In the case of skewed

data, the majority of clients have uniformly distributed data

and one client has a single data class (a client with skewed
distribution). We try to map the distributions to real world

scenarios, where clients can perform different activities, or

some clients may have an activity that is less frequent, for

example biking. For the case of skewed data, we investigate

the local test accuracy of a client with skewed distribution.

Furthermore, since in federated learning the data is distributed

among many clients, we study how erroneous clients, can af-

fect federated learning and how it can be mitigated. We define

an erroneous client as a client who produces sensor data which

is completely outside of the distribution of sensor data coming

from normal clients. Both centralized and federated methods

are evaluated using two different models: (1) a multinomial

logistic regression, often called a softmax regression, and (2)

a deep neural network (DNN).

The main contributions of the paper are as follows. First, we

have built two models for the task of HAR, namely, a softmax

regression and a deep neural network. Each of the models has

been trained in two ways, using federated learning as a novel

distributed machine learning approach, and using centralized

learning, on a HAR dataset with three different data distribu-

tions among clients, non-IID data, uniformly distributed data,

and skewed data. Second, we have evaluated performance and

communication cost of both HAR models, softmax regression

and DNN, trained with federated learning compared to the

models trained with the centralized learning for different

data distributions; and we have shown that federated learning

allows building models for HAR with an acceptable accuracy

comparable to the centralized learning, while preserving data

privacy and significantly reducing communication cost for

simpler models. Finally, we we have studied the effect of

corrupted data from erroneous clients on the performance of

federated learning and proposed a federated learning algorithm

with detection and rejection of erroneous clients that improves

performance of the models for human activity recognition

using federated learning.

The rest of the paper is structured as follows. Section II

describes the background. Section III introduces the models for

HAR: a softmax regression and a DNN. Section IV presents

the experimental and evaluation setup, including dataset, tools

and frameworks used in this study, the federated learning

algorithms, and evaluation metrics. Section V provides the

experimental results. Section VI discusses related work. We

conclude and highlight our future work in Section VII.

II. BACKGROUND

The classification task of a HAR classifier, C, is to predict

different human activities based on a set of body sensors, S.

Typically S consists of triaxial accelerometer and/or gyroscope

sensors, call them Ax, Ay, Az and Gx, Gy, Gz . Beyond ac-

celerometer and gyroscope magnetic field sensors can be used,

but they are less common [7]. An accelerometer is a hardware

unit that measures acceleration forces, typically in m
s2 , while

Human activity Sensor Data Windowing
Feature

Extraction /
Raw Windows

Model
Recognized

Activity

Train/Predict

Wearable
sensor

selection

Fig. 1. Overview of a HAR classifier

gyroscope measures the rotation of a given device, for example

a mobile phone, in rad
s . Almost all modern smartphones and

smartwatches have accelerometer and gyroscope built in into

them. The sensors are used for different use cases, the gyro-

scope for performing screen rotation and the accelerometer for

counting steps or augmented reality applications.

Before the emergence of deep learning as the state-of-the-art

on HAR tasks, researchers in the area of human activity recog-

nition used various types of hand-crafted features for training

a HAR classifier. The feature engineering was an important

process and depended a lot on the target classification task.

In general, most of the hand-crafted features based on sensor

data fall into three different categories: time domain features,

frequency domain features and time-frequency analysis. A

wide range of ”classical” machine learning models were used

for training a HAR classifier before the deep models came:

unsupervised methods such as k-means, probabilistic methods

as Naive Bayes, Support Vector Machines (SVM), Perceptron

and other [8].

In contrast to hand-crafted features and classical machine

learning models, deep learning exploits benefits of having huge

amount of data and deep nonlinear models. When deep models

are used, the feature extraction process can be simply omitted.

In most cases, raw windowed sensor data is fed directly to the

classifier. Long short-term memory recurrent neural networks

(LTSM RNN), CNNs or a combination of both models is a

dominant approach in HAR today [3], [9], [10].

Figure 1 summarizes training and inference of a HAR

classifier. The diagram does not cover practical aspects of

using a HAR classifier such as how the data is collected,

how the model is distributed to the end users or how the

data is labeled. First, sensor data is collected from mobile

devices with accelerometer and gyroscope, second, depending

on a model selection for C, windowed data is used for feature

extraction or fed directly to the classifier for the training.

At prediction time, data is collected using the same window

length and then, again depending on the model selected for a

HAR classifier, features are extracted or raw windowed data

is fed into C which predicts the target label, such as walking.

A. Federated Learning

In federated learning the learning task is done by a federa-

tion of participating devices, which produce the training data,

instead of centralizing all training data on a server or in a

cloud. The initial algorithm is proposed by [6] and focuses

on training using SGD and modeling using different neural

networks, in particular DNNs, CNNs or RNNs. The main

objective of the federated learning algorithm is to learn a

1104

model M by using a subset of clients u from a set of all clients

P . Each client has its own local dataset Dr
k at round r, a local

model Hr
k, and performs one or more iterations of SGD. After

several iterations of SGD are performed by a client, it sends the

next local model Hr+1
k to the server which holds the global

model. A synchronous update of the global model is used.

When all clients are done with several epochs of the SGD,

the server collects all local models and updates the global

model Mr+1. Authors evaluate the global update using two

different approaches, federated SGD, where clients update the

local model only once and federated averaging where clients

update H multiple times. Federated averaging outperformed

federated SGD with respect to number of communication

rounds needed to achieve the target accuracy and is computed

using the following equations [6]:

Hr+1
k = Hr

k − ηgr
k; Mr+1 =

∑

i∈Dk

nk

n
Hr+1

k (1)

where Hr+1
k is the local update of the local model, gk are

the gradients computed using backpropagation, Mr+1 is the

next global model, η is a learning rate, n is the sum of all

data points and nk is the number of local data points.

The federated learning algorithm has several advantages

over training a classifier using a centralized approach. One of

the biggest advantages is the fact that sensitive data produced

by a client is kept on the client’s device. This allows to train

models using sensitive client data such as URLs, password or

keyboard strokes. Moreover, it allows to reduce communica-

tion costs if data cannot be logged to a central server. Two data

distributions differentiate federated learning from centralized

or distributed optimization: non-IID and unbalanced data. The

algorithm itself tries to adapt for non-IID and unbalanced data

by weighting each local model by a number of data points the

local model was trained on, nk

n in Equation 1. Another aspect

of federated learning is the synchronous update, where clients

who are slow, not responding or offline affect the learning.

The federated learning algorithm proposed by [6] showed

that communication costs using federated averaging can be

reduced by a factor of 10-100 compared to federated SGD.

Konen et al. [11] came up with several techniques for reducing

the communication costs even more. The authors propose two

types of updating local client’s model before communicating

it to a central server: structured and sketched updates. Using a

structured update the client maps the original local model Hr
k

to a lower dimensional space. Using a sketched update the

client compresses Hr
k by using, for example, a probabilistic

quantization. Using CNNs and LSTMs authors show that com-

munication costs can be reduced by two orders of magnitude

compared to the original federated learning algorithm.

III. MODELS

In this study we build two different models, a DNN and a

softmax regression model. We use a DNN model rather than

state-of-the-art models, such as CNNs or RNNs, because of

two main reasons: technical limitations of the implementation,

computational and communication costs of federated clients. A

CNN model contains more parameters compared to the DNN,

because of the convolutional kernels used in a CNN archi-

tecture before the feedforward layer, used to extract features.

A RNN model is more computationally expensive compared

to the DNN or softmax regression model, backpropagation

algorithm for computing the error trough many layers is more

computationally expensive compared to backprop in the DNN.

Three aspects were taken into account while designing the

models: (1) the number of parameters of each model has to

be small since clients are limited in terms of computational

power; (2) the number of parameters also effects the amount

of information transmitted between the server and clients in

federated learning and (3) we do not aim to achieve best

accuracy on the task of HAR, but rather aim to show that we

can achieve similar accuracy, compared to centralized models,

while data is kept on a client instead of collecting a lot of data

and training a centralized classifier. Thus, in centralized train-

ing, we perform a grid search [12] for different parameters,

where we seek for a best combination of hyperparameters,

such as architecture, learning rate and batch size. For softmax

regression we explore different number of coefficients in the

model by producing polynomial features and for DNN we

explore different number of hidden layers and neurons in each

layer. Both models are trained using minibatch SGD on the

80 % of data from smartphones from the dataset and form our

baseline: HAR models trained using a centralized approach

trained on all available data. The performance of the baseline

models is then evaluated on the 20 % test data of the dataset.

IV. EVALUATION

A. Dataset

The Heterogeneity Human Activity Recognition Dataset

produced by [13] is used in this project. In the study, au-

thors show the heterogeneity of sensor data from different

smartphones and smartwatches. The authors claim that when

a HAR classifier is deployed to multiple mobile devices,

it often performs significantly worse compared to results

reported in the research. This is due to variety of sensor

hardware, operating systems and different mobile models. The

dataset contains the following human activities: biking, sitting,

standing, walking, stair up and stair down and null. Null is

used when the activity lacks the ground truth annotation. In

our experiments sensor data without the label is deleted from

the dataset. The dataset has a uniform distribution between

different activities as well as activities performed by each user.

The data was recorded using nine data producers who carried

8 different Android smartphones and 2 Android smartwatches.

The data was gathered as fast as mobile sensors could provide

it, with sampling frequency between 50Hz and 200Hz. While

producing the sensor data, the smartphones were kept around

the waist and smartwatches were worn on each arm.

B. Data Preparation

We construct a feature dataset D from Heterogeneity Hu-

man Activity Recognition Dataset for training the softmax

1105

regression and the DNN models. In D we extract statistical

features from windowed accelerometer and gyroscope values

from each user in the dataset. We apply sliding windowing

over 3 seconds with 50 % overlap and extract mean, standard

deviation, maximum and minimum features from each win-

dow. Since the data is collected from different smartphones

with different sampling rates, it is preprocessed to a fixed

sampling rate of 65Hz on each user’s dataset. Concretely, if

one window of 3 second contains more data points than a

window sampled with 65Hz (200 measurements), we draw

points uniformly at random from the window. If the win-

dow contains less data points we use interpolation to fill

the missing values to reach 65Hz sampling frequency. We

calculate magnitude for both accelerometer and gyroscope

and extract same statistical features from it as we do from

Ax, Ay, Az, Gx, Gy, Gz . The resulting dataset for training the

models has 32 features.

We simulate clients with outlying data from D and study

how it affects federated learning. Given that D contains 9

users, we simulate up to 9 erroneous users by taking random

uniform points from each real user feature’s quantile. Two

different ranges are used from which random observations are

derived, first range is between 1 % and 5 % quantile of a

real user feature and the second is between 95 % and 99

% quantile of same feature. We perform this process for all

features for one user’s dataset and assign the same labels as

in the real user’s dataset. Thus, the resulting generated dataset

for an erroneous client contains noise as on data level, since

data is generated on tails of a real user’s dataset distribution

as well as noise on the activity (label) level, because data is

generated independently from each activity.

C. Data Partitioning and Distribution

We divide D into 80 % training data and 20 % test data

in centralized learning, and refer to each of them as global

train dataset and global test dataset. The global test data is

used both in centralized training and in federated learning,

for studying the accuracy. The global train dataset is used for

studying the convergence. For distributing D over clients in

federated learning, we use three different methods: unbalanced

and non-IID, uniformly distributed and skewed.

For simulating unbalanced and non-IID distributions over

the clients in federated learning, we group the data by each

user in the dataset and split into 3 different generated clients

in federated learning. Since each user perform 6 activities,

and activity sensor data per user is evenly distributed, we

produce pathological non-IID data for clients in federated

learning by taking 2 activities from each user and assigning

them to one client. Hence, each client in federated learning will

get 2 different activities from one user. After this we select

one activity on each client to have 50 % less data points in

order to achieve unbalanced data. In uniformly distributed data

partitioning, we simply group the data by a user and let each

client in federated learning obtain data from one user in the

dataset. For studying the local performance on clients with

skewed distributions, we partition the data uniformly from all

users in the dataset to federated clients, expect one user, on

which we take only one activity. For studying how clients with

corrupt data affect federated learning, we partition data from

real users uniformly across clients in federated learning and

then we add one erroneous client per user in each experiment

until we reach the same number of erroneous clients as real

clients. Each local dataset is divided into 90 % training data

and 10 % test data. In training data on each client, we exclude

data points which are same as in global test dataset.

D. Federated Learning with Spark, Dataproc and TensorFlow

We built a prototype implementation of the federated learn-

ing algorithm for HAR upon the MapReduce algorithm using

Apache Spark and Dataproc. The prototype consists of one

master node and several client workers. The master node is

in charge of the whole workflow of the federated learning

algorithm and delegates training tasks to the client workers.

Each training task is a TensorFlow graph of the selected model,

the DNN or the softmax regression, and executed on each

client’s sensor local dataset. The master node assigns each

local training dataset to each client worker. Once a client

worker gets the dataset, the federated learning algorithm starts.

Each worker will train its local model for a number of epochs

on the local dataset using TensorFlow, update the local model

and send the model back to the master node. When all clients

performed e number of epochs, the master node updates the

global model and sends it again to the client workers. The

process continues in r number of communication rounds.

Algorithm 1 defines the whole implementation of the federated

learning training using Spark, Dataproc and TensorFlow. Lines

3-5 are executed on each client worker and corresponds to a

map operation in Apache Spark. The rest of the algorithm is

executed on the master node, where collect is an operation

from Spark and train is a TensorFlow training procedure.

In order to simulate mobile hardware, we choose smallest

instance available on Dataproc as workers, 1-standard-1 with

1 virtual CPU 2.0 GHz and 3.75 GB RAM. As master node

we choose 1-highmem-8 with 8 virtual CPUs 2.6 GHz and 52

GB of memory. Moreover, we limit workers memory to 1 GB

in the Spark configuration and each worker will have only one

thread per CPU. This hardware setup allows to come near what

today’s modern smartphones provide, in terms of computing

resources and memory.

E. Rejection of Erroneous Clients in Federated Learning

To address the problem of erroneous clients in the federated

learning, we propose a rejection algorithm based on the test

accuracy of the each individual client in the federated learning.

After a number of communication rounds, or so called cutoff
round, we evaluate all local models using each client’s local

dataset. Then, using the test accuracy on each of the local

test datasets and an accuracy threshold t, we reject clients

that have the test accuracy below the threshold. For selecting

t, we investigate local test accuracy on a normal client and

compare it to the local test accuracy on an erroneous client.

1106

Algorithm 1 Federated Learning Algorithm for Training a

HAR Classifier

Input: Mi global model on a given round, Hi
k - local model

on each client, n - number of sensor data observations

across all clients, nk - number of observations on each

client, L - set of local datasets for training, r - number of

rounds in the federated learning algorithm, e - number of

training epochs per one round, b - batch size of training

data, K - set of clients participating in federated learning.

1: while r �= 0 do
2: for all l ∈ L in parallel do
3: Hi

k = Mi

4: Hi+1
k = train(Hi

k, l, e, b)

5: send(Hi+1
k)

6: end for
7: collect()

8: Mi+1 =
∑

k∈K
nk

n Hi+1
k

9: end while

Algorithm 2 Federated Learning Algorithm for Training a

HAR classifier with Rejection of Erroneous Clients

Input: Same as in Algorithm 1 and cutoff round - round

when to start reject clients, t - test accuracy threshold

for rejecting a client, H - set of all local models from all

clients.

1: while r �= 0 do
2: for all l ∈ L in parallel do
3: Hi

k = Mi

4: Hi+1
k = train(Hi

k, l, e, b)

5: send(Hi+1
k)

6: end for
7: H = collect()

8: if r == cutoff round then
9: H = reject(H)

10: end if
11: Mi+1 =

∑
k∈K

nk

n Hi+1
k

12: end while
13:

14: function REJECT(H)

15: for all Hk ∈ H do
16: acck = Hk local acc

17: if acck < t then
18: H = H \Hk

19: end if
20: end for
21: return H
22: end function

Algorithm 2 describes the federated learning algorithm for

HAR accounting for erroneous clients. Function reject is

iterating on all local test accuracies received from clients and

is executed on the master node. When the cutoff round is

reached, lines 8-10 are removing clients that considered to be

erroneous from the federated averaging of all local models.

F. Evaluation Metrics

For the evaluation of the proposed method we track three

different metrics, value of the objective function of the mini-

mization, often called loss value or cost value, an accuracy on

test data and data upload in federated learning. For training

the DNN, � is the cross-entropy between the observations and

the predicted label, and for training a softmax regression � is

a logistic loss function. Accuracy metric is a fraction between

correct predictions and total number of observations.

For our baseline models we observe the mean test set

accuracy during the training. We put this in contrast with

convergence and test accuracy of the models trained with

federated learning, to get a sense whenever the target function

converges or not, and what accuracy we can achieve using

federated learning. We examine the steepness of the loss func-

tion and test accuracy on number of communication rounds in

the federated learning. We assume that one communication

round is when clients send local models to global server and

receive back the updated model. For the federated learning the

value of the loss function will be calculated on the training

data distributed across clients, using the global model after

the new global model is produced. The accuracy metric in the

federated learning will be calculated using the same approach

but on the global test dataset. We point out that we use the

same global train and test datasets in the federated learning as

we use in the training of the baseline models, but in federated

learning the global train dataset is distributed across clients.

For studying the communication efficiency of the federated

learning we track loss and test accuracy on the data upload

from each client in megabytes and compare it to the size of

each client’s local dataset. Data upload from each federated

client can be multiplied by 2, in order to get a sense of how

much data is transmitted in both uploading the local model

and downloading the new global model in one communication

round between the clients and the central server.

V. RESULTS

In this section we present the results of using federated

learning for the task of HAR. We compare centralized SGD

training on a central server where all sensor data is available

to the federated learning with three different data distributions

across clients in federated learning. We evaluate federated

learning for HAR in terms of performance for clients with

skewed distributions and erroneous clients. We also present

communication and computational costs for federated learning.

A. Centralized SGD Training

For a comparison between models trained using SGD on

all data and federated learning, we form our baseline as the

best performing centralized models. Using mean validation

accuracy, we identify the top 5 models of each type found

during grid search of different parameters. For the softmax

regression, we perform grid search through 3 parameters:

degree of polynomial features (adding more parameters to the

model by feature crossing), learning rate and minibatch size.

For the DNN, we seek through number of hidden layers in

1107

η = 0.01
b=200

η = 0.01
b=100

η = 0.01
b=50

η = 0.01
b=30

η = 0.01
b=10

l=(100,100)
η = 0.001
b=100

l=(100,50)
η = 0.01
b=200

l=(100)
η = 0.01
b=50

l=(100)
η = 0.005
b=200

l=(100)
η = 0.001
b=100

Models Parameters

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

M
ea
n
T
es
t
A
cc
u
ra
cy

Centralized SGD Test Accuracy 10 Best Models

Softmax Regression

DNN

Fig. 2. 5 best centralized models of each type found with grid search of
different parameters. Here η is the learning rate, b is minibatch size and
l is number of hidden layers in the DNN and neurons in each layer, e.g.
l = (100, 100) is a network with 2 hidden layers 100 neurons in each.

the architecture and neurons in each layer, learning rate and

minibatch size.

Figure 2 depicts test accuracy of the 5 best models of each

type found during the grid search and corresponding param-

eters. Each of the models of each type performed similarly,

without any bigger uplift in test accuracy. The best performing

DNN model consist of 2 hidden layers and 100 neurons in

each layer, with a total of 24006 parameters. For the softmax

regression model polynomial feature crossing did not add any

boost in the accuracy and made the model diverge. Thus, the

top 5 regression models are using only the original features

from the dataset and contain 198 parameters. By using early

stopping while training the two best models, best test accuracy

for the DNN was 93% and 83% for the softmax regression.

B. Federated Learning for HAR

Using uniform and non-IID data distributions we investigate

how federated learning is performing when data on a federated

client is based on the usage of a mobile device. Figure 3 shows

the convergence and the test accuracy of DNN and softmax

regression models trained for HAR classification. We observe

that federated learning can compete with models trained with

centralized learning. Federated learning can be seen as an

optimization of two different target functions, F (M) which

aims to build a global model M, by federated averaging all

local models Hk and fk(H), which aims to optimize for local

data on a given client trough SGD. As we try to optimize local

models for non-IID and unbalanced data distributions, fk(H)
is a poor approximation of F (M), since client’s data is not

representative of the whole distribution. This data distribution

can be compared to uniformly distributed data across clients

in federated learning, where optimizing fk(H) can be seen as

optimizing F (M). This can be observed on the results we get

during the study, where a more realistic scenario with non-

IID and unbalanced data distribution among clients, showed

an accuracy of 87% compared to 93% in centralized SGD

training, see Table I. On the other hand, observing the trend

line of the test accuracy for the DNN in Figure 3, we see that

0 200 400 600 800 1000
Rounds

100

101

102

L
og

T
ra
in

L
os
s

=0.001, b=100, e=1, non-IID and unbalanced

=0.001, b=50, e=5, non-IID and unbalanced

=0.001, b=35, e=10, non-IID and unbalanced

0 200 400 600 800 1000
Rounds

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

T
es
t
A
cc
u
ra
cy

=0.001, b=100, e=1, uniform

=0.001, b=50, e=5, uniform

Fig. 3. A DNN HAR classifier trained using federated learning with two
different data distributions among participating clients. The grey line indicates
best centralized accuracy achived using the DNN model.

it still has a positive trend, which hypothetically means that

if we train for more communication rounds, we improve the

accuracy of the federated learning models for both non-IID and

uniform data distributions. This implies that more data needs

to be send to a central server, as well as more computational

power is required on the mobile devices of federated learning

clients. In case of uniformly distributed data among clients, the

difference between centralized SGD and federated learning is

even less significant, however this scenario is less common in

the real world applications, since data on each federated client

might be skewed towards specific human activities.

Federated learning was proposed for problems where data

is privacy sensitive and hard to collect from numerous mobile

clients because of the communication costs. At what cost do

the benefits of the federated learning come while training a

HAR classifier? In this study, we applied feature engineering

to produce statistical features from the given dataset for HAR,

while in state-of-the-art models, such as DeepSense model,

raw sensor data, which consists of more observations, is used

directly to train a centralized classifier. In order to achieve the

best test accuracy using the DNN model in federated learning

on unbalanced and non-IID data with b = 100 and e = 1,

we need up to 1000 communication rounds, which means

1000 epochs trough local dataset on each client and model

exchanges with the global server, compared to only 7 epochs of

training in the centralized SGD model. Furthermore, observing

the results from Table I, we see that, in this specific case,

using a more complex model as DNN requires sending up to

two order of magnitude more data containing local models

(and thus incurring higher computational costs at the clients)

in order to achieve high accuracy, compared to the size of

the local dataset used to produce the local models. However,

the model weights do not directly depend on the existing raw

data, but on the complexity of the user behaviour phenomenon

that we are learning and extracting from the data. Thus, it

is expected that in case of wide range of applications, such

as image or speech recognition, the size of the local dataset

1108

would be much larger compared to datasets used in HAR. On

the other hand, as Table I shows, less complex models such as

softmax regression allows to significantly save communication

costs in federated learning. Thus, using less complex models

can be a viable solution for most of the real-world applications

since user behavior phenomenon, observed in HAR, are often

simple enough to be captured by relatively simple models.

As we compare different models used in this study, we

see a trade-off between having a less complex model, which

requires less computational resources and data upload, but

produces a global model with lower accuracy, and a more

complex model which requires much more computational

and communication resources. This trade-off indicates that

federated learning requires less communication and compute

resources when using less complex models, but at the cost of

a lower accuracy.

C. Study of Clients With Skewed Distributions

In this experiment we study how well the global model fits a

client who has data distribution skewed towards one activity.

We select one client to perform only one activity, whereas

other clients perform all activities uniformly distributed among

them. Since the dataset contains 9 clients, we select each one

of them separately to have a skewed distribution and perform

the federated training with 1 client with a skewed distribution

and 8 clients where the data is uniformly distributed.

The results presented in Table II indicate that the new

global Mr+1 is not always the best choice for clients with

a skewed distribution, but it clearly depends on the performed

activity and not on the federated learning algorithm. Each

row in the table shows one experiment, where we let one

client have only one single activity while other 8 clients

have all of the activities. Test accuracy is presented for the

label used in the experiment for both a client with skewed

distribution towards the label and all other clients, together

with the mean test accuracy across normal clients and the

client with a skewed distribution. Overall, the client with

skewed distribution achieved similar mean test accuracy to

clients with uniformly distributed data. Concretely, walk, stairs

up and stairs down activities showed the accuracy below 50%,

for some of the normal clients and the accuracy of 30% for

a client with skewed distribution towards stairs up. However,

for other activities, such as sit or stand, the mean local test

accuracy on the client with skewed distribution tend to be

higher than mean local accuracy on the uniformly distributed

clients. The table justifies that even for clients with uniform

distributions and all labels, some activities are harder to predict

than others. Activities such as walk, stairs up and stairs down

get the accuracy below 50% for at least 2 clients with uniform

distribution of labels, while activities such as sit or stand are

easier predictable and always get the accuracy above 70%. We

think that this is due to the fact that static activities such as

sit or stand are easier to predict than other activities.

The results indicate that using the new global model Mr+1

directly after receiving it from the central server gives a lower

local test accuracy, compared to using the next produced local

model after local training. That is because when a client starts

to optimize for the local data distribution, it can achieve much

higher local test accuracy. Concretely, a very high local test

accuracy, even using simple models as softmax regression, can

be observed after one epoch of learning while producing a next

local model. It indicates that federated learning can be used to

build more personal models instead of optimizing the global

model. For instance, if the newly received global model Mr+1

performs really bad in terms of local test accuracy compared

to the newly produced local model Hr+1
k after local training,

a similar rejection algorithm as Algorithm 2, can be applied

on the client side for rejecting the newly received global

model Mr+1 and optimizing only its local model instead.

This can allow to build better local models for clients with

data distributions that differ from the whole set of federated

clients, for example clients that perform an unique activity.

Practically, we can say that if the local test accuracy on a

client k using its local model Hk is much higher than the test

accuracy using Mr+1 by a given threshold t, the new global

model Mr+1 can be rejected and k can use its local data for

optimizing its local model Hk.

D. Erroneous Clients Effect on Federated learning

Since in federated learning the data is distributed across

many clients, we think that clients with outlying data is an

open issue of the algorithm. Observing the results from Table

III, we see that having a fraction of 1 of erroneous and real

clients decrease the mean test accuracy after 300 rounds of

training of the DNN model for HAR from 0.82 to 0.73. By

explicitly identify erroneous with the presented algorithm 2

for client rejection, we were able to achieve better mean test

accuracy with a fraction of 1 erroneous and real clients as

without any erroneous clients. Clearly as we use the earliest

cutoff round such as 25, we are getting better results. Rejecting

potential erroneous clients too early may lead to problems

too: the normal clients need some rounds for achieving the

accuracy above the cutoff threshold.

VI. RELATED WORK

Ramakrishnan et al. [14] propose a cloud learning for

training a HAR classifier built into a context-aware application

for people with diabetes disease. The work justifies that

key challenges of integrating a HAR classifier on a mobile

device are resources available on the device such as battery,

communication bandwidth and computational resources. The

authors use a hidden markov model to recognize human ac-

tivities on an Android application. The model is trained using

statistical features on a windowed triaxial accelerometer data

collected from mobile devices. Different sampling frequencies

are used for collecting accelerometer sensor data based on

the battery level of the device. Another feature proposed by

the authors is smart offloading of training to the cloud, based

on a Markov decision process (MDP). Taking into account

resources available (CPU, memory, storage, communication)

on a device, MDP models the best offloading policy given

these factors. When the recognition is offloaded to the cloud,

1109

TABLE I
OVERVIEW OF THE BEST PERFORMING FEDERATED AVERAGING MODELS TRAINED ON DIFFERENT DISTRIBUTIONS OF DATA AMONG CLIENTS.

Best Models Parameters Data Distribution Federated
Accuracy

Centralized
Baseline

Data Upload
per Clienta

Local
Dataset Size

DNN η = 0.001, b=100, e=1 Non-IID & Unbalanced 0.87 0.93 51.29 MB 0.25 MB
DNN η = 0.001, b=100, e=1 Uniformly Distributed 0.89 0.93 52.78 MB 1.06 MB

Softmax Regression η = 0.001, b=50, e=5 Non-IID & Unbalanced 0.78 0.83 0.3 MB 0.25 MB
Softmax Regression η = 0.001, b=50, e=5 Uniformly Distributed 0.80 0.83 0.03 MB 1.06 MB
aCommunication cost to achieve best accuracy. Can be multiplied by a factor of 2 to get total data usage on a client.

TABLE II
STUDY OF LOCAL TEST ACCURACY FOR EACH OF THE LABELS FOR NORMAL CLIENTS DURING FEDERATED LEARNING, WITH CLIENTS THAT HAVE

SKEWED DISTRIBUTIONS TOWARDS ONE SINGLE ACTIVITY USING THE DNN MODEL.

Experiment Test Accuracy on Normal Clients for the Label Skewed Test Accuracy
a b c d f g h i μ

Sit 0.92 0.87 0.74 0.93 0.99 0.98 0.99 0.99 0.92 0.99
Stairs down 0.62 0.70 0.58 0.96 0.64 0.86 0.18 0.92 0.68 0.72

Stairs up 0.93 0.91 0.57 0.25 0.72 0.96 0.76 0.11 0.65 0.30
Walk 0.26 0.20 0.96 0.84 0.95 0.53 0.91 0.88 0.69 0.98
Bike 0.87 0.81 0.92 0.91 0.72 0.97 0.98 0.94 0.89 0.88
Stand 0.90 0.83 0.91 0.99 0.98 0.99 0.98 0.83 0.92 0.98

μ 0.75 0.72 0.78 0.81 0.83 0.88 0.80 0.77 0.79 0.80

TABLE III
EFFECT OF HAVING ERRONEOUS CLIENTS AND REJECTION ALGORITM 2.

Model μacc

Without Outliers
μacc

With Outliers
μacc Using

Rejection Algorithm

DNN 0.82 0.73
0.77 - cutoff 25
0.76 - cutoff 50
0.74 - cutoff 100

Softmax Reg. 0.75 0.67
0.74 - cutoff 25
0.73 - cutoff 50
0.71 - cutoff 100

the device sends the sensor data to a cloud environment using

Wi-Fi, whenever possible. When an activity is recognized on

a cluster it is fed into an insulin dosage recommender engine.

The authors’ goal of the whole system is to achieve 90%

classification accuracy on HAR task with battery budget of

15% over 24 hours and 5% of its communication bandwidth.

Due to a bug on Android 2 the authors could not justify if the

goal was achieved. The paper is the closest we found compared

to the goal of our work. Still one difference is remarkable,

since the paper does not mention the fact that accelerometer

data is sensitive data and should be treated accordingly.

Smith et al. [15] build on the original federated learning

algorithm proposed by [6]. The work shows how several

statistical and systems design challenges in federated learning,

such as non-IID data or stragglers, can be solved using

federated multi-task learning. The core idea of multi-task

federated learning is to fit separate models (one per task)

based on a local dataset on each device, while still preserving

structure between all local models, a global model. The authors

prove that this approach is well-suited to handle the statistical

challenges of the federated setting. Beyond this, the algorithm

takes into account system challenges in synchronous federated

learning. The solution allows to partially solve a local task,

i.e. interrupt an iteration of training the local model, if a

node is considered as a straggler. The algorithm is evaluated

on different datasets, among others UCI Human Activity

Recognition dataset [16]. Each producer of the sensor data in

the dataset is modeled as a separate task in multi-task learning.

The data is partitioned randomly into 75 % training and 25

% test set and three (multi-task local/global and centralized)

SVM classifiers are then compared. On the task of HAR a

multi-task global model significantly outperforms both global

and local federated learning approaches.
Shokri and Shmatikov [17] propose an approach to dis-

tributed collaborative deep learning where a set of selected

parameters and gradients are sent to a central server when

training a classifier using SGD. This approach works for any

type of neural network and preserves privacy of participant

training data without sacrificing the accuracy of the resulting

models. Using this approach, the authors propose a distributed

collaborative training algorithm where each learner trains a

model locally on its data and then exchange a subset of

parameters and gradients with a central server asynchronously.

In contrast to [17], the federated learning method proposed in

[6] uses all parameters and synchronous updates.

VII. CONCLUSION AND FUTURE WORK

We thoroughly investigated the applicability of federated

learning to the task of human activity recognition. Federated

learning enables training without sending privacy sensitive raw

data to a central server. We showed that federated learning

for HAR is sufficiently robust under variety of workloads

and produces models with acceptable accuracy comparable

to centralized learning. In our experiments on synthetic and

1110

real world datasets, federated learning achieves accuracy of

up to 89% compared to up to 93% in centralized learning at

the price of higher communication cost for complex models

with a high number of parameters, such as DNNs. Less

complex models for HAR, such as softmax regression, allow

reducing communication costs of federated learning, while

still achieving an accuracy up to 80% compared to 83% in

centralized learning. Thus, lower complexity models should

be used for communication sensitive applications, while higher

complexity models should be used for application that require

higher accuracy. Communication cost of federated learning can

be further reduced by applying compression algorithms, as

proposed in [11]. We identified an important issue of clients

with corrupted data and propose a federated learning algorithm

that identifies and rejects erroneous clients while achieving an

accuracy close to federated learning without erroneous clients.

A. Future Work

Although the relatively small scale experiments conducted

in this work show promising results in applicability of feder-

ated learning for the task of HAR, our future work includes

running experiments on much larger scale using real-world

workloads that, we expect, will further confirm the viability

of federated learning for HAR. For example, the next step in

this study is to implement the federated learning algorithm

for HAR in a mobile application with many mobile users, for

instance a fitness application that can predict a current activity

of a user. By training and integrating a federated model on the

application, a broader number of metrics can be tracked for

evaluating the federated learning as a method of training. The

application would allow to benchmark metrics such as battery

usage on the device for training, measure performance of the

classifier using user interaction, an effect of communication

problems and stragglers, and other metrics that we considered

in this study such as convergence, data upload and accuracy

on local test data. The federated learning algorithm can be

studied in more depth. The algorithm was proposed for training

neural networks trough backpropagation and SGD, followed

by federated averaging for combining the local models. It

would be an interesting study to compare different gradient

descent optimization algorithms such as Adagrad, Adadelta,

Adam, Momentum, RMSProp or use plain SGD with a simple

learning rate annealing schedule [18]. Optimizers such as

Adam or Adadelta provide adaptive learning rate for each of

the parameters of the learning objective (in our case neural

network weights matrices) and can potentially speed up the

convergence of the local training on each client, and decrease

costs of the federated learning such as communication and

computational rounds. However, adaptive learning rate opti-

mizers store different parameters about the computed gradients

using backprop and use the information to produce the new

update rule in each update step. This might conflict with the

federated averaging, because the parameters will be calculated

many times on each local client’s training, compared to the

centralized training where the parameters will be updated

consequently during the training.

REFERENCES

[1] “Fitbit Official Site for Activity Trackers and More.” [Online].
Available: https://www.fitbit.com/se/home

[2] “How to use the Do Not Disturb while driving feature.” [Online].
Available: https://support.apple.com/en-gb/HT208090

[3] S. Yao, S. Hu, Y. Zhao, A. Zhang, and T. F. Abdelzaher, “Deepsense:
A unified deep learning framework for time-series mobile sensing data
processing,” CoRR, vol. abs/1611.01942, 2016. [Online]. Available:
http://arxiv.org/abs/1611.01942

[4] F. J. Ordez and D. Roggen, “Deep Convolutional and LSTM Recurrent
Neural Networks for Multimodal Wearable Activity Recognition,”
Sensors, vol. 16, no. 1, p. 115, Jan. 2016. [Online]. Available:
http://www.mdpi.com/1424-8220/16/1/115

[5] N. Y. Hammerla, S. Halloran, and T. Ploetz, “Deep, convolutional,
and recurrent models for human activity recognition using wearables,”
CoRR, vol. abs/1604.08880, 2016. [Online]. Available: http://arxiv.org/
abs/1604.08880

[6] H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas, “Fed-
erated learning of deep networks using model averaging,” CoRR, vol.
abs/1602.05629, 2016.

[7] A. Bulling, U. Blanke, and B. Schiele, “A tutorial on human activity
recognition using body-worn inertial sensors,” ACM Comput. Surv.,
vol. 46, no. 3, pp. 33:1–33:33, Jan. 2014. [Online]. Available:
http://doi.acm.org.focus.lib.kth.se/10.1145/2499621

[8] A. Mannini and A. M. Sabatini, “Machine learning methods for
classifying human physical activity from on-body accelerometers,”
Sensors, vol. 10, no. 2, pp. 1154–1175, 2010. [Online]. Available:
http://www.mdpi.com/1424-8220/10/2/1154

[9] Y. Chen and Y. Xue, “A Deep Learning Approach to Human Activity
Recognition Based on Single Accelerometer,” in 2015 IEEE Interna-
tional Conference on Systems, Man, and Cybernetics, Oct. 2015, pp.
1488–1492.

[10] Y. Zhao, R. Yang, G. Chevalier, and M. Gong, “Deep residual bidir-lstm
for human activity recognition using wearable sensors,” CoRR, vol.
abs/1708.08989, 2017. [Online]. Available: http://arxiv.org/abs/1708.
08989

[11] J. Konecný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T.
Suresh, and D. Bacon, “Federated learning: Strategies for improving
communication efficiency,” CoRR, vol. abs/1610.05492, 2016. [Online].
Available: http://arxiv.org/abs/1610.05492

[12] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for
hyper-parameter optimization,” in Proceedings of the 24th International
Conference on Neural Information Processing Systems, ser. NIPS’11.
USA: Curran Associates Inc., 2011, pp. 2546–2554. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2986459.2986743

[13] A. Stisen, H. Blunck, S. Bhattacharya, T. S. Prentow, M. B.
Kjrgaard, A. Dey, T. Sonne, and M. M. Jensen, “Smart Devices Are
Different: Assessing and MitigatingMobile Sensing Heterogeneities for
Activity Recognition,” in Proceedings of the 13th ACM Conference
on Embedded Networked Sensor Systems, ser. SenSys ’15. New
York, NY, USA: ACM, 2015, pp. 127–140. [Online]. Available:
http://doi.acm.org/10.1145/2809695.2809718

[14] A. K. Ramakrishnan, N. Z. Naqvi, D. Preuveneers, and Y. Berbers,
“Federated Mobile Activity Recognition Using a Smart Service
Adapter for Cloud Offloading,” in Human Centric Technology and
Service in Smart Space, ser. Lecture Notes in Electrical Engineering.
Springer, Dordrecht, 2012, pp. 173–180, dOI: 10.1007/978-94-007-
5086-9 23. [Online]. Available: https://link.springer.com/chapter/10.
1007/978-94-007-5086-9 23

[15] V. Smith, C.-K. Chiang, M. Sanjabi, and A. Talwalkar, “Federated
Multi-Task Learning,” arXiv:1705.10467 [cs, stat], May 2017, arXiv:
1705.10467. [Online]. Available: http://arxiv.org/abs/1705.10467

[16] A. Davide, G. Alessandro, O. Luca, P. Xavier, and R.-O. Jorge L,
“A Public Domain Dataset for Human Activity Recognition Using
Smartphones,” 2013. [Online]. Available: https://archive.ics.uci.edu/ml/
datasets/human+activity+recognition+using+smartphones

[17] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in
2015 53rd Annual Allerton Conference on Communication, Control, and
Computing (Allerton), Sep. 2015, pp. 909–910.

[18] S. Ruder, “An overview of gradient descent optimization algorithms,”
CoRR, vol. abs/1609.04747, 2016. [Online]. Available: http://arxiv.org/
abs/1609.04747

1111

