Decentralized and Adaptive K-Means Clustering
for Non-IID Data using HyperLogLog Counters

Amira Soliman', Sarunas Girdzijauskas!, Mohamed-Rafik Bouguelia?, Sepideh
Pashami?, and Slawomir Nowaczyk>

L RISE SICS, Sweden.
{aaeh,sarunasg}@kth.se
2 Halmstad University, Sweden.
firstname.secondname@hh.se

Abstract. The data shared over the Internet tends to originate from
ubiquitous and autonomous sources such as mobile phones, fitness track-
ers, and IoT devices. Centralized and federated machine learning solu-
tions represent the predominant way of providing smart services for users.
However, moving data to central location for analysis causes not only
many privacy concerns, but also communication overhead. Therefore, in
certain situations machine learning models need to be trained in a col-
laborative and decentralized manner, similar to the way the data is origi-
nally generated without requiring any central authority for data or model
aggregation. This paper presents a decentralized and adaptive k-means
algorithm that clusters data from multiple sources organized in peer-to-
peer networks. Our algorithm allows peers to reach an approximation
of the global model without sharing any raw data. Most importantly,
we address the challenge of decentralized clustering with skewed non-
IID data and asynchronous computations by integrating HyperLogLog
counters with k-means algorithm. Furthermore, our clustering algorithm
allows nodes to individually determine the number of clusters that fits
their local data. Results using synthetic and real-world datasets show
that our algorithm outperforms state-of-the-art decentralized k-means
algorithms achieving accuracy gain that is up-to 36%.

1 Introduction

The predominant way of using machine learning (ML) involves collecting data
to a centralized repository often in communication costly and privacy-invasive
manner. Therefore, Federated Learning (FL) has been introduced as an alterna-
tive distributed and privacy-friendly approach. FL allows users to train models
locally on their devices using their sensitive data, and communicate intermediate
model updates to a central server without the need to centrally store the data
[13]. Specifically, users start by contacting the central server and downloading
the learning algorithm and a global model, that is common to all users. The
algorithm trains its model locally on each device using user private data and
computes update to the current global model. Afterwards, the new updates on
the learning parameters obtained from the algorithm on the device of each user
are sent to the central server for aggregation. The server integrates the new
learning parameters and sends the aggregated global model back to each user.
These interactions with the central server are repeated till reaching convergence.

2 Soliman et al.

This distributed approach for model computation diminishes the need for central
storage of raw data, hence, computation becomes distributed among users and
their personal data never leaves their devices.

FL can work very efficiently in many scenarios. The principal advantage of
FL is the decoupling of global model training from the need for direct access to
the raw data. However, FL has issues that can be related to system and data
challenges. Scalability of FL is a major system challenge, especially in use-cases
involving a large number of users (e.g., thousands of users) using and improving
the global model at the same point. Additionally, data skewness represents one
of the main data challenges for FL, since the data is fully distributed and is
generated according to behaviours of participating users. Generating a single
global model that accumulates all user behaviours might not produce the best
model for particular categories of the users. Specifically, global averaging model
enforces a bias towards the behavioural patterns provided by the majority of
users, while suppressing the patterns of less significant users [20, 21].

It is important for distributed ML and FL to ensure that the training data is
uniformly distributed (i.e., IID sampling that represents independent and identi-
cal random sampling) so that any resulting model represents unbiased estimate
of the expected model parameters. However, with a huge number of users partic-
ipating in the training of a FL model, there is no control over size and statistical
properties of training data used at each device. Thus, it is unrealistic to assume
that the data produced by many different users will always be IID data. Specifi-
cally, data points generated by users can be quite different as data on each node
can be driven using different phenomena. Therefore, two randomly selected users
are likely to compute very different updates. This leads to a statistical standpoint
where assumptions need to be made for non-IID data [13].

Recently, Peer-to-Peer (P2P) systems have been used as underlying commu-
nication frameworks to provide decentralized ML algorithms. The overall system
can be thought of as a connected undirected graph with n vertices each repre-
senting a node. These nodes can be allowed to communicate randomly with any
other node in the network, which shapes the underlying topology to a random
graph [5,18,22,12]. Also, the communication among nodes can be restricted to
enforce a specific underlying graph topology, for example the communication can
be only allowed for friendship ties in social networks or among geographically
co-located ToT devices [1,21, 20].

In this paper, we present a P2P k-means clustering algorithm. The general
k-means algorithm takes input as an integer k£ and a set of m data points with
d dimensions in R?. The goal is to cluster these data points by finding &k cen-
ters that minimize the sum of the squared distances between each point and the
closest center to which it can be assigned to form a cluster [15, 14]. Finding an
exact solution to the k-means problem is known to be NP-hard, therefore exist-
ing algorithms adopt incremental optimization strategies [14,4]. Our proposed
algorithm extends the general k-means algorithm and allows nodes having dis-
tributed data to cooperate in P2P fashion to reach a clustering consensus using
their solitary local data and leverage models from others peers.

Decentralized Adaptive K-Means using Hyperloglog Counters 3

Our P2P k-means algorithm executes in iterations, such that in each iteration
nodes compute an approximation of the new centroids in a decentralized man-
ner by collaboratively exchanging their local estimations and applying weighted
averaging. Updating the centroids using weighted averaging function takes into
account the number of data points that a node used to calculate its centroids.
The more data points used in calculating a centroid, the higher the weight as-
sociated with this centroid while applying the averaging function. Differently
form existing FL. and general P2P k-means algorithms, our proposed algorithm
deals with skewed data distributions as well as asynchronous updates of the clus-
ter centroids. We allow nodes to have different pace in executing the exchange
iterations, such that some nodes can be more actively engaged than others.

The active nodes can make the system biased toward the properties of their
local data. Additionally, these nodes execute exchanges more often which makes
their data to be over-represented when applying the weighted averaging function
[8]. Naiive weighted averaging function fails to keep track of unique data points
represented by a centroid, consequently it keeps accumulating the number of
data points owned by active nodes each time they are engaged in an exchanging
round. Therefore, our clustering algorithm employs HyperLogLog counters to
correctly approximate the total number of data points used in calculating the
centroids [6]. HyperLogLog is a probabilistic data structure, which provides a
reasonable approximation of cardinality estimation. We integrate HyperLogLog
counters so that nodes can keep track of distinct data points used so far in
model training, hence allow our clustering algorithm to correctly approximate
the number of data points in the network. Therefore, our clustering algorithm
can operate under asynchronous computations and prevent model aggregation
from being biased towards peers interacting with high frequency.

Decentralized data generation makes imbalanced data and missing classes
imperative. The data is expected to be highly skewed due to the heterogeneous
nature of participating nodes. A lot of work has been done for solving class
imbalance and missing classes using data resampling, however most of these
methods require access to the whole data, which is not applicable in decentralized
systems [17]. To address these challenges, our clustering algorithm incorporates
two different techniques to allow nodes decide the proper number of clusters
that fit their local data. Particularly, when two nodes try to merge their local
models represented by their centroids, our merging function applies k-means on
centroids to group every pair of centroids that are close to each other. Then, our
first approach to adaptively fix the number of cluster applies Bradley, Fayyad
and Reina (BFR) algorithm to further merge the closest clusters together [19].
We provide another merging function using MinHash algorithm [3].

Our contributions can be described as follows: 1) We provide a decentralized
P2P k-means algorithm that can successfully handle skewed and mon-IID
data distribution among the participating nodes. 2) We provide a computa-
tional environment participating nodes to asynchronously compute cluster-
ing consensus in P2P networks. 3) We provide a novel adaptive k-means
clustering algorithm that allow nodes to individually determine the number of

4 Soliman et al.

clusters that fits their local data. 4) We provide experimental evaluation of the
proposed decentralized and adaptive k-means algorithm using multiple synthetic
as well as real-world dataset. The results show that our algorithm outperforms
state-of-the-art decentralized M-Means algorithms achieving accuracy gain that
is up to 36%.

The paper is organized as follows: in Section 2 and Section 3, we present an
overview of existing centralized, distributed as well as P2P k-means algorithms.
Section 4 introduces our proposed methods for P2P Adaptive k-means clus-
tering algorithm. Section 5 shows the experimental evaluation of our proposed
algorithm compared to the state-of-the-art P2P k-means algorithms. Finally,
Section 6 concludes our paper.

2 Background

Clustering is a technique that is used to partition elements in a dataset such
that similar elements are assigned to same cluster while elements with different
properties are assigned to different clusters. One of the earliest clustering tech-
niques in the literature is the k-means clustering method [15,14]. Given a set
X = {x;...z,} of m samples in R, the k-means problem is to find the minimum
variance clustering of the dataset into %k clusters with centroids C, such that the
following potential function is minimized,

1 . 2
6= 3 minfle — el 1)

zeX

Identifying these centroids implicitly defines the cluster to which each sample
is assigned. Each data point is mapped to the cluster with the nearest mean,
serving as a representation of the cluster. As defined, finding an exact solution
to the k-means problem even for k = 2 is NP-hard [4].

The k-means algorithm starts by randomly choosing k points in the vector
representation space of input data, these points serve as the initial centroids of
the clusters. Afterwards, all samples are each assigned to the centroid they are
closest to. Then, for each cluster a new centroid is computed by averaging the
feature vectors of all samples that are assigned to it. The process of assigning
samples and recomputing centroids is repeated until the process converges.

3 Related Work

Several distributed k-means algorithms have been proposed to cluster datasets
that are distributed over different locations. These algorithms assume that there
is a central coordinator that communicates with all other nodes in the distributed
system. The clustering goal is to partition the distributed dataset, into k clusters
consistent with the global clustering that can be obtained using the centralized
algorithm. Some of these algorithms perform the process of computing the cen-
troids of the clusters in a distributed manner using averaging techniques. The
main idea is to generate centroids of local data at each computing node, then
transmit them to the central coordinator which computes the average [7,23].
Other algorithms generate summaries of local data at each node and send them

Decentralized Adaptive K-Means using Hyperloglog Counters 5

to the central coordinator to perform the clustering algorithm using the collected
summaries [10, 11].

Decentralized clustering on distributed data using P2P has been studied re-
cently. Some solutions introduce distributed k-means algorithms that construct
a global set of artificial points to act as a proxy for the entire dataset [1,16].
There are some solutions that consider P2P random networks and work in static
settings, however they are aimed at computing basic average of centroids. Fellus
et al. [5] propose a decentralized k-means algorithm which executes in commu-
nication rounds, and in each round nodes compute an approximation of the new
centroids in a distributed manner.

It is clear that both distributed and decentralized k-means can be efficiently
solved using collaborative averaging as well as summarizing techniques. However,
the calculation of local approximation only succeed when the data is not skewed.
As aforementioned, our main focus is to provide a decentralized P2P k-means
method to handle non-IID data as well as asynchronous computations.

4 Decentralized K-Means

In P2P k-means, we consider a set of n nodes V = {v;,1 < ¢ < n} which can
communicate randomly with each other. On each node v; there is a local set of
data points P; C R, and the global dataset is P = U7, P;. The goal is to find
a set of k centers which optimize cost function defined in (1) in a decentralized
manner while preserving theoretical guarantees for approximating clustering cost
without exchanging the local data among nodes.

4.1 General P2P K-Means Algorithms and Their Limitations

In the beginning, we want to emphasize on the limitations of general methods
in case of asynchronous scenarios with non-IID data distribution. General P2P
k-means methods apply the steps of k-means while using the local data points
available at each node after all nodes agree on the set of initial centroids. Then,
each node performs the exchange procedure by selecting a random peer form the
network to which it sends the computed centroids. We introduce two examples to
further explain the consequences of update procedure. First, we consider a P2P
network with number of nodes n=3, such that nodes ni, ny, and n3, have data
points with sizes equal to 30, 60, 90 data points, respectively. Also, we assume
that the number of clusters equals to 3.

FEzample 1. We assume that every node has data points from the three clus-
ters, where each cluster is represented by one third of the number of points at
each node (i.e. n; has 10 data points in each cluster, ny has 20, etc.). Node n; is
the only active node to perform exchange iterations. Thus, no and ng are going
to apply the update operation as described in Algorithm (1). The update func-
tion applies simple averaging and treats the centroids generated by n; equally
with the centroids of other peers, though for example n3 uses more data points
in computing its centroids. Accordingly, if the data owned by n, is not represen-
tative of the data owned by other peers, n; is causing deviation for the general
clustering model, though it owns only less than 17% of total data points in the
system.

6 Soliman et al.

Algorithm 1: Update for k-means at node n; with centroids from n;

Local centroids c,(f): cgi), cg)) ey c,(f)

Procedure Update (c,(cj))
for k< 1 to K do

1 ‘ cg) — % (cg) + c,(cj))
2 KM-Clustering|()

Before illustrating our second example, we want to briefly describe how
weighted averaging can be executed in instead of non-weighting averaging. The
centroid weight is going to be proportional to the number of data points used to
calculate it. In this case, the update function takes an extra input that tells the
number of data points belong to each cluster, i.e., nodes exchange the number of
data points used to compute each centroid. For further exchange rounds, nodes
have to update their counters to keep track of the number of data points used
so far in generating the current centroids. Thus, nodes need to continuously ac-
cumulate the number of data points used to compute the centroids after every
update operation.

FEzample 2. We assume that n3 has a missing class, so the data points belong
in two clusters not three. However, k-means algorithm splits the points into 3
clusters according to the input & = 3. Consider ng to be the active node in
the first exchange round, so it exchanges its centroids with the number of their
associated data points to n; and ny. Then, nq and ng perform weighted averaging
and update their centroids and increase their counters with data points from
ns3. In the second exchange round, n; and ny are engaged together in exchange
iteration. Now, when n, updates its centroids again using centroids of ny, number
of data points used in weighted averaging is going to reflect what ng owns twice,
as centroids of no and n; both count data points of n3. Accordingly, data points
owned by ng are going to be overrepresented, adding to this the fact that its
centroids are not correct in representing the three clusters expected in the global
model.

4.2 P2P K-Means with HyperLogLog Counters

HyperLogLog (HLL) counters are extremely useful for big data as they dramat-
ically decrease the amount of memory needed to approximate the exact cardi-
nality estimation compared to other data structures [6]. HLL counters hash the
input data into a bit sequence, while making sure that the hashing function
distributes bits as evenly and uniformly as possible in the hashing space. Then,
HLL counters encodes the generated hash representation of the input in their bit
sequence. Regardless of how many times a particular value appears in the input,
it is going to be hashed to the same value, hence encoded only once in the HLL
bit sequence. The cardinality is estimated by calculating the maximum number
of leading zeros in the binary representation of the generated bit sequence. If the
maximum number of leading zeros observed is n, an estimate for the number of
distinct elements in the input set is expected to be 2™.

Decentralized Adaptive K-Means using Hyperloglog Counters 7

Algorithm 2: Generate HyperLogLog function for k-means at node n;

Procedure GenerateHLL ((hll)g))
foreach z € X; do
¢ < clusterID (x)
hS .append ()
for k <+ 1 to K do
‘ if k # ¢ then hll](:).remove (x)

B W N =

Interestingly, HLL counters have the property that they can be merged by
combining their bit sequences [9], such that generated representation contains
the elements encoded in the two HLL counters. In our clustering algorithms
we integrate HLL counters to address the limitations of general P2P k-means
methods as described in the previous two examples. We start by executing a
regular k-means at each node to generate the centroids using the local data.
Afterwards, we create a HLL counter per cluster at each node as described in
Algorithm (2). The bit sequence of each HLL encodes the hash representation
of the data points belonging to that cluster.

Algorithm 3: HyperLogLog update for k-means at node n;

Procedure Update(cgf), (hll)g))

centroids + ¢\ U el 5 hllay + (hi1){ U (b))

cent_merge < K Means (centroids, k) // identify centroid pairs
1< 0;a+0;b«0

for m € cent_merge do

/* m is a pair indicating centroids to be merged */
cardy < cardinality (hllqu[m0]]); cardy, < cardinality (hlla[m[1]])
hllun < merge (hllau[m[0]], hllau[m[1]]); cardun < cardinality (hlluy)
if cardun < (card, + card,) then

. cardy
if card, > card, then a + card =
cardy

else b+ ——% ;a+1-0
carayn

cardy . cardy
cardqyn cardyn

9)« a x centroidsm|0] + b x centroids[m|[1]]
10 ALY < hllun ;i< i+ 1
11 KM-Clustering()

W N =

o N o w»

b+ 1—a

else a +

When nodes get engaged in an exchange round, they communicate their
computed centroids as well as HLL counters representing data seen so for in
computing the centroids. We use HLL counters to estimate the number of unique
data points for each centroid. The update function executes first a regular k-
means to find out the centroids to be merged, as shown in Algorithm (3), lines 1:2.
We consider applying k-means instead of directly performing weighted averaging
procedure as a first step to handle data skewness, such that two local centroids
might be closer to each other and better being merged than combing them
with worse options computed by other peers. We perform weighted averaging
procedure using the estimated cardinalities as shown in lines 5:9. Lastly, nodes

8 Soliman et al.

update their previous HLL counters by merging them with the received HLL
counters, as described in line 10.
4.3 Adaptive Number of Clusters at Each Node

In our algorithm we provide two functions to adaptively detect the number of
clusters at each node. Our first approach applies merging function using MinHash
algorithm [3]. MinHash is widely used to estimate how similar two sets of points
are. In our clustering algorithm, we create bit sequences similar to ones of HLL
counters that encode data points using the MinHash algorithm. Having such
bit sequences per cluster, nodes can evaluate how their data points are similar
to data points used in other peers to calculate the centroids before performing
the merge function. If there is an overlap in the MinHash bit sequences, then
the centroids can be merged, otherwise no overlap indicates the clusters are not
similar. Interestingly, this indicates that one of the nodes might not have the
correct clustering results due to missing classes, and by adopting the centroids
from the other node without changing them it can fix the cluster memberships
of its local data.

Our second approach is implemeted using BFR algorithm [19] to further
merge the closest clusters together. We use BFR algorithm to computes the sum
and sum of squares of each cluster in order to compute the standard deviation
of points belonging to this cluster. The criterion for further merges can be deter-
mined by the gain in terms of cluster variance (i.e. lower value) after combining
the data points in one cluster. The variance of merging the two clusters can still
be computed using the sum and sum of squares of individual clusters.

5 Evaluation

We proceed with evaluating the performance of proposed clustering algorithm by
comparing it with the state-of-the-art P2P k-means algorithms. We have imple-
mented the competitor algorithms according to implementation provided by the
original authors using C++. For each method we have used their default settings
for the parameters as introduced by each algorithm. To evaluate the clustering
accuracy, we have used the F1 score measure that is computed as harmonic mean
of precision and recall. Precision reflects mixing of different ground-truth clus-
ters into the extracted ones. Moreover, recall reflects the goodness of grouping
nodes that belong to the same ground-truth cluster.

5.1 K-Means Clustering Algorithms

We use the name DKM as an identifier of our P2P k-means clustering algorithm.
The first method we use for comparison is cent that represents a centralized
version of k-means algorithm. Then, we have fedps that is implemeted as a
distributed version of k-means using FL paradigm, such that there is a dedicated
centralized node responsible for model aggregation for other nodes in the system.
The third method is agml, a dicentralized version of P2P k-means that allows
nodes to exchage summaries representing their local data, then apply clustering
using generated summaries [5]. Also, we implemented gdc as a P2P k-means
algothim that that allows nodes to generate and exchange a global set of artificial
points to act as a proxy for the entire dataset [16]. Finally, we use golf that is
a P2P k-means implemented using gossip protocol [2].

Decentralized Adaptive K-Means using Hyperloglog Counters 9

5.2 Datasets

We have performed the comparison using some real-world as well as synthetic
benchmark datasets available from UCI Machine Learning® and Fundamental
clustering problem suite?.

Real-world datasets: we use Daily and Sports Activities as well as PAMAP2
datasets. These two datasets comprise motion sensor data of some daily and
sports activities each performed by different persons in their own style. Our
objective is to cluster these activities into 3 categories: 1) low intense activities
such as sitting and standing, 2) moderate activities such as walking or running
on a treadmill, and 3) intense activities such as rowing and cycling. The first
dataset contains 9,120 data points, while the second one contains 27,582 data
points. We used 2D representation of the data.

Synthetic datasets: we use FEnergy Time and S1 datasets that are generating
as Gaussian clusters. The first dataset contains 4,096 data points into 2 Gaussian
clusters. The second dataset has 5,000 data points clustered into 15 Gaussian
clusters.

~cent +fedps +agml ~gdc ~golf +DKM ~cent +fedps +agml| =~gdc ~golf =DKM

ACCURACY
ACCURACY

9 10 1 12 13 11 6 7 8 9 101
ROUNDS ROUNDS

(a) Sync/IID (b) Sync/non-1ID
~cent =fedps +agml ~gdc ~golf ~DKM ~cent =fedps +agml ~gdc ~golf =DKM

ACCURACY
ACCURACY

ROUNDS ROUNDS

(c¢) Async/IID (d) Async/non-IID

Fig. 1: Evaluation using Daily and Sports Activities dataset.

5.3 Skewed Data and Asynchronous Computations

For the following experiments, we create a P2P network with 100 nodes. Each
node has its own local data repository and can communicate with any random
subset of peers in the network. For IID test cases, we evenly distribute the
training sets among the peers. Also, we distribute the data in non-IID manner,

3 https://archive.ics.uci.edu/ml/datasets.php?format=&task=clu
* https://www.uni-marburg.de/fb12/arbeitsgruppen/datenbionik /data

10 Soliman et al.

=cent =fedps +agml =gdc =golf --DKM +cent -=fedps «+agml| =gdc «golf +-DKM
s
08
T o o]
< <
3 =
> =1
I}]
s} s}
< <
04
Y
02
1203 45 67 8 910112131815 6 2 1203 4 5 5 7 B 9 1011121314 15 16 17 18 19 20 21 2
ROUNDS ROUNDS
(a) PAMAP2 (Async/IID) (b) PAMAP2 (Async/non-1ID)
~cent =fedps «agml| =gdc =golf +-DKM ~cent -=fedps «agml| =gdc «golf -=-DKM

/.

ACCURACY
ACCURACY

1203 4 5 6

101112 13 14 15 16 6 7 8 9 1011 121
ROUNDS ROUNDS

(c) EnergyTime (Async/IID) (d) EnergyTime (Async/non-IID)
~cent fedps agml ~gdc —golf +DKM ~cent -+fedps «agm| ~gdc —golf ~DKM

ACCURACY
.AV
ACCURACY

2 13 14 15 16 o 12 13
ROUNDS ROUNDS

(e) S1 (Async/IID) (f) S1 (Async/non-IID)

Fig. 2: Evaluation using PAMAP2, EnergyTime, and S1 datasets in the cases of
asynchronous computations.

such that allow one third of the nodes to obtain 50% of the data points per each
cluster, whereas the remaining data points are distributed randomly among the
remaining nodes.

We also create some highly unbalanced distribution, in which one third of
the nodes in the network have missing classes among their allocated data points.
Additionally, we create asynchronous computation scenario by assign nodes dif-
ferent speed to perform the exchange rounds. We split the network randomly
in three parts, the first part remains idle, the second part performs only one
exchange per computation round, while the last set are actively participating by
performing up to three exchanges in one round.

Figure 1 shows the evaluation of different P2P methods using the first dataset.
As show, we report the accuracy in different use-cases: first (a) when we have 11D
data distribution and synchronous computation when all nodes have the same
exchange pace. Then (b) when data becomes non-IID distributed. In (c¢) and

Decentralized Adaptive K-Means using Hyperloglog Counters 11

(d) cases, we report the accuracy in case of asynchronous computations when
data is distributed in IID and non-IID manner. The results confirm that general
P2P methods work when data is uniformly distributed and nodes update their
centroids with the same frequencies.

Figure 2 reports the results of the remaining datasets in asynchronous com-
putation scenarios. Results using PAMAP2, EnergyTime, and S1 confirm that
our algorithm (DKM) is the only method capable of achieving accuracy com-
parable to the centralized version when we explore the expected real-world case
scenarios of having non-IID data and asynchronous computations, while other
methods fail to achieve acceptable accuracy.

6 Conclusion

This paper presents a novel decentralized as well as adaptive k-means clustering
algorithm that is highly beneficial for dynamic and fully distributed environ-
ments. Our main contribution is to provide a decentralized k-means method
for skewed data distribution and asynchronous computations in P2P networks.
We integrate HyperLoglLog counters with our k-means algorithm to efficiently
handle data skewness in such dynamic execution environment. Furthermore, our
clustering algorithm allows nodes to individually determine the number of clus-
ters that fits their local data. Our experimental evaluation confirms the ability
of our algorithm to adapt to difficult scenarios in which existing P2P k-means
methods fail to generate acceptable results.

Acknowledgements

This research has been conducted within the “BIDAF: A Big Data Analytics
Framework for a Smart Society”® project funded by the Swedish Knowledge
Foundation.

References

1. Maria-Florina F Balcan, Steven Ehrlich, and Yingyu Liang. Distributed k-means
and k-median clustering on general topologies. In Advances in Neural Information
Processing Systems, pages 1995-2003, 2013.

2. Arpsad Berta, Istvén Hegediis, and Rébert Orméndi. Lightning fast asynchronous
distributed k-means clustering. 2014.

3. Andrei Z Broder. On the resemblance and containment of documents. In Proceed-
ings. Compression and Complezity of SEQUENCES 1997 (Cat. No. 97TB100171),
pages 21-29. IEEE, 1997.

4. Petros Drineas, Alan Frieze, Ravi Kannan, Santosh Vempala, and V Vinay. Clus-
tering large graphs via the singular value decomposition. Machine learning, 56(1-
3):9-33, 2004.

5. Jerome Fellus, David Picard, and Philippe-Henri Gosselin. Decentralized k-means
using randomized gossip protocols for clustering large datasets. In 20138 IEEE 13th
International Conference on Data Mining Workshops, pages 599-606. IEEE, 2013.

6. Philippe Flajolet, Eric Fusy, Olivier Gandouet, and Frédéric Meunier. Hyperloglog:
the analysis of a near-optimal cardinality estimation algorithm. In Discrete Math-
ematics and Theoretical Computer Science, pages 137-156. Discrete Mathematics
and Theoretical Computer Science, 2007.

% http://bidaf.sics.se/

12

7.

8

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Soliman et al.

George Forman and Bin Zhang. Distributed data clustering can be efficient and
exact. SIGKDD explorations, 2(2):34-38, 2000.

Lodovico Giaretta and Sarunas Girdzijauskas. Gossip learning: Off the beaten
path. In 2019 IEEFE International Conference on Big Data (IEEE Big Data 2019),
December 9-12, 2019, Los Angeles, CA, USA, 2019.

Stefan Heule, Marc Nunkesser, and Alexander Hall. Hyperloglog in practice: al-
gorithmic engineering of a state of the art cardinality estimation algorithm. In
Proceedings of the 16th International Conference on Extending Database Technol-
ogy, pages 683-692. ACM, 2013.

Eshref Januzaj, Hans-Peter Kriegel, and Martin Pfeifle. Towards effective and
efficient distributed clustering. In Workshop on Clustering Large Data Sets
(ICDM2008), 2003.

Hillol Kargupta, Weiyun Huang, Krishnamoorthy Sivakumar, and Erik Johnson.
Distributed clustering using collective principal component analysis. Knowledge
and Information Systems, 3(4):422-448, 2001.

Mansour Khelghatdoust and Sarunas Girdzijauskas. Short: Gossip-based sampling
in social overlays. In International Conference on Networked Systems, pages 335—
340. Springer, 2014.

Jakub Koneény, H Brendan McMahan, Daniel Ramage, and Peter Richtérik. Fed-
erated optimization: Distributed machine learning for on-device intelligence. arXiv
preprint arXiw:1610.02527, 2016.

Stuart Lloyd. Least squares quantization in pcm. IEEFE transactions on informa-
tion theory, 28(2):129-137, 1982.

James MacQueen et al. Some methods for classification and analysis of multivari-
ate observations. In Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability, volume 1, pages 281-297. Oakland, CA, USA, 1967.
Hoda Mashayekhi, Jafar Habibi, Tania Khalafbeigi, Spyros Voulgaris, and Maarten
Van Steen. Gdcluster: a general decentralized clustering algorithm. IEEFE trans-
actions on knowledge and data engineering, 27(7):1892-1905, 2015.

Giang Hoang Nguyen, Abdesselam Bouzerdoum, and Son Lam Phung. Learning
pattern classification tasks with imbalanced data sets. In Pattern recognition.
IntechOpen, 2009.

Rébert Ormandi, Istvan Hegediis, and Mérk Jelasity. Gossip learning with linear
models on fully distributed data. Concurrency and Computation: Practice and
Ezperience, 25(4):556-571, 2013.

Anand Rajaraman and Jeffrey David Ullman. Mining of massive datasets. Cam-
bridge University Press, 2011.

Amira Soliman, Leila Bahri, Barbara Carminati, Elena Ferrari, and Sarunas Girdz-
ijauskas. Diva: Decentralized identity validation for social networks. In Proceedings
of the 2015 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining 2015, pages 383-391. ACM, 2015.

Amira Soliman, Leila Bahri, Sarunas Girdzijauskas, Barbara Carminati, and Elena
Ferrari. Cadiva: cooperative and adaptive decentralized identity validation model
for social networks. Social Network Analysis and Mining, 6(1):36, Jun 2016.
Amira Soliman and Sarunas Girdzijauskas. Dlsas: Distributed large-scale anti-spam
framework for decentralized online social networks. In 2016 IEEE 2nd International
Conference on Collaboration and Internet Computing (CIC), pages 363-372. IEEE,
2016.

Dimitris K Tasoulis and Michael N Vrahatis. Unsupervised distributed clustering.
In Parallel and distributed computing and networks, pages 347-351, 2004.

