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Abstract—Community detection is one of the preeminent topics
in network analysis. Communities in real-world networks vary in
their characteristics, such as their internal cohesion and size. De-
spite a large variety of methods proposed to detect communities
so far, most of existing approaches fall into the category of global
approaches. Specifically, these global approaches adapt their
detection model focusing on approximating the global structure
of the whole network, instead of performing approximation at
the communities level. Global techniques tune their parameters
to “one size fits all” model, so they are quite successful with
extracting communities in homogeneous cases but suffer in
heterogeneous community size distributions.

In this paper, we present a stateful diffusion approach (Stad)
for community detection that employs diffusion. Stad boosts
diffusion with a conductance-based function that acts like a
tuning parameter to control the diffusion speed. In contrast to
existing diffusion mechanisms which operate with global and
fixed speed, Stad introduces stateful diffusion to treat every
community individually. Particularly, Stad controls the diffusion
speed at node level, such that each node determines the diffusion
speed associated with every possible community membership
independently. Thus, Stad is able to extract communities more
accurately in heterogeneous cases by dropping “one size fits all”
model. Furthermore, Stad employs a vertex-centric approach
which is fully decentralized and highly scalable, and requires
no global knowledge. So as, Stad can be successfully applied in
distributed environments, such as large-scale graph processing or
decentralized machine learning. The results with both real-world
and synthetic datasets show that Stad outperforms the state-of-
the-art techniques, not only in the community size scale issue
but also by achieving higher accuracy that is twice the accuracy
achieved by the state-of-the-art techniques.

I. INTRODUCTION

Community detection has been an important problem for

network analysis in a number of fields including physics,

computer science, social science, and biology [1], [2], [3].

In network analysis tasks, graph structure has been utilized as

a fundamental tool to represent real-world networks, such that

systems can be represented by a set of nodes (vertices) and a

set of edges that are connections between pair of nodes (neigh-

bors). Community detection is the task of grouping nodes

into clusters with better internal connectivity than external

connectivity [1], [3], [4]. However, like any clustering task that

is known to be NP-hard, it is prohibitively expensive to search

1This work has been accomplished during the PhD studies of the first
author at School of Electrical Engineering and Computer Science, KTH Royal
Institute of Technology, Stockholm, Sweden.

Fig. 1. Community size distribution of Friendster dataset. The red and
blue shaded regions highlight the accuracy limitation of existing community
detection methods with heterogeneous (skewed) community size distribution.
(a) The results obtained using Louvain method show the limitation of methods
that suffer from resolution limit by favoring large communities over small
ones. (b) The results obtained using Infomap mehthod show the limitations
of methods that suffer from field-of-view limit by favoring small communities
over large ones.

all such groups for the optimal value of internal and external

connectivity [1], [3], [4]. Accordingly, different heuristics [5],

[6] or approximation algorithms [7], [8] have been introduced

to achieve good performance in a reasonable time [4], [1], [2],

[3].

Hierarchical organization is one of the important aspects

that is related to community structure exhibited by most

networked systems in the real-world [9]. Real-world networks

are usually composed by communities which in turn have

smaller sub-communities. In social networks, for instance,

Facebook users can be grouped into hierarchical commu-

nities represented with different granularity levels of cities,

countries, or continents. Another important aspect related to

community structure is that communities may overlap by

sharing some of the vertices. For example, a person usually

has connections to multiple groups or communities, such as

family members, colleagues, friends, and co-workers. De-

tecting overlapping membership mixed with the hierarchical

structure makes community detection a particularly hard task.

Specifically, bigger overlap results in more densely connected

communities. Thus, it becomes harder to correctly identify the
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overlapping nodes as members of multiple communities and

not to identify them as a separate community nor merge the

overlapping communities into a single community.

Most of the existing community detection algorithms fall

into the category of global approaches [10]. These global

approaches adapt their detection model focusing on the global

structure of the whole network, instead of addressing the

approximation at the communities level. Particularity, exist-

ing approaches are designed to tune their model parameters

globally, thus, they either fail to detect small communities if

the parameters are tuned with respect to large communities,

or the other way around, large communities might be over-

partitioned and detected as multiple communities. Therefore,

global techniques tune their parameters to “one size fits all”

model, so they are quite successful with extracting com-

munities in homogeneous cases but suffer in heterogeneous

communities. However, existing studies show that community

size distributions in real-world networks follow power-law

distributions [1], [2]. Accordingly, applying global approaches

on such skewed cases results in low accuracy in terms of the

extracted communities.

Figure 1 shows an example of community size distribution

using a real-world dataset. As shown, community size distri-

bution is skewed and some approaches have been shown to

have a resolution limit [11], [4], such that they fail to identify

communities that are smaller than specific scale. For example,

on Friendstr dataset up to half of small communites are not

correctly extracted, and got merged with bigger communities.

On the other hand, other approaches suffer from field-of-view

limit [12], such that they fail to detect large communities,

while overestimating the number of small communities. Figure

(1) (b) shows that up to two thirds of small communities are

over-estimated among extracted communities. Therefore, there

is a need to develop community detection approaches that tar-

get optimization at community level to adapt to heterogeneous

community size distributions in order to avoid discrepancies

of existing approaches.

Moreover, the globally based detection algorithms usually

run with high computational cost. Therefore, the random walks

technique has been extensively adopted to extract disjoint

communities as one of the lowest computational overhead

approaches. In particular, random walks are used to explore

local structure around very few subset of nodes chosen as

seed set, such that those nodes are labeled using their ground-

truth community memberships [13], [14], [10]. Accordingly,

this method requires some known members as the prior for the

semi-supervised clustering to perform the probability diffusion

from them. Furthermore, diffusion is a random walk-based

mechanism that adopts the label propagation approach, which

defines rules that simulate the spread of labels of vertices in the

network. Specifically, diffusion captures how a flow starting

from a specific node spreads on a graph, such that spread of

that flow mixes fast within well connected regions, and slowly

in less connected ones. The intuition behind random walks

and diffusion is that once a random walker (or the diffusion

process) enters a region, it tends to stay there for a long time,

Fig. 2. Random Walker mixing time w.r.t. community size. As shown small
community can be covered within short time, however, longer mixing time
results in merging it with bigger communities.

and movements between regions are relatively rare via one of

the few outgoing edges. Thus, this phenomenon can be used

for community detection by capturing the boundaries of well

connected regions. Yet, mixing time of random walker needs

be controlled, as very long random walk reaches a stationary

distribution which is not expected to indicate the extraction of

well connected clusters.

Community detection can be performed using diffusion by

representing communities with multiple flows in the network

and assigning each flow a different color representing it [15],

[16]. However, the mixing time of diffusion process depends

on the size of the community, such that larger communities

require longer mixing time. Figure 2 illustrates how the

coverage percentage (i.e., recall) of the random walks differs

with respect to the size of communities. As shown, the random

walker for large communities requires longer time in order

to achieve full coverage of community members. During this

time, random walkers of smaller communities get trapped

and lost within bigger communities, resulting in merging

smaller communities with larger ones. For example, Figure

3(b) demonstrates three successive iterations of random walk

mechanism, as shown when the walker get trapped in a region,

the set of nodes belonging to that region are grouped as

a community. However, the random walker might cause the

merging of different communities when the mixing time of the

walker increases. Figure 3(c) shows three successive iterations

with diffusion method. The histogram colors show the average

volume of colors per each community. As shown, diffusion

speed is the same for any walker and does not depend on the

specific cluster where it happens. As a result, diffusion process

treats all colors equally and mixes all the colors everywhere

in the graph, thus it decreases the chances of identifying small

communities as separate modules.

To address these limitations, in this paper we present Stad

that introduces the concept of sateful diffusion and boosts

diffusion with adaptive speed function, hence detecting het-

erogeneous size communities. Stad adaptively scales down the

speed of the diffusion process in the regions where topological

communities start to emerge. Moreover, Stad treats the random

walkers independently and controls the diffusion speed at each

node in the graph. Specifically, Stad allows each node to

create a dynamic resistance to slow down the diffusion. Thus,

Stad allows nodes to assign different levels of importance to

the flows passing them. Importance of a flow reflects how
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Fig. 3. Visulaization of different iterations in flow models. (a) The initial
graph, while some random nodes are selected as seeds and indicated using
different colors. Afterwards, illustrating three successive iterations of each
community detection method: (b) Random Walks, (c) Diffusion, and (d) Stad.
The histograms in (c) and (d) show the average volume of colors per each
community.

strongly a node is connected to the community formed by this

flow, such that, the more important the flow is, the slower

the mixing time. As shown in Figure 3(d), Stad succeeds in

maintaining the smallest community as a separate module.

Additionally, Stad follows a decentralized, iterative and node-

centric approach, such that each node executes the algorithm

in parallel. Therefore, Stad can be successfully applied in

distributed environments, such as large-scale graph processing

or decentralized machine learning. Furthermore, nodes need

only to communicate their updated memberships at the end of

each iteration with their direct neighbors. Experiments with

real-world datasets show that Stad outperforms the state-of-

the-art techniques by achieving higher accuracy that is twice

the accuracy achieved by the state-of-the-art techniques.

Summary of contributions: Stad provides a novel flow-

based community detection algorithm that is based on adaptive

optimization function that allows it to avoid community size

limitations. Furthermore, Stad employs a dynamic diffusion

model that treats different flows independently and controls the

diffusion speed of each flow separately. Stad is decentralized,

scalable and highly parallel community detection algorithm

with no global knowledge required. Results confirm Stad’s

ability to extract disjoint as well as multiple community

membership(s) with double of the accuracy achieved by the

current state-of-the-art techniques using real-world datasets.

The remaining of the paper is organized as the following.

Section II briefly describes the state-of-the-art methods for

community detection. Section III illustrates the core concepts

and definitions introduced with stateful diffusion, as well as the

implementation of Stad. Furthermore, in Section IV we discuss

the initialization phase implemented in Stad and the different

ways of selecting seeds. Then, in Section V, we discuss the

details related Stad’s performance in terms of convergence and

complexity analysis. In Section VI, we present evaluation of

Stad compared to the state-of-the-art methods. Finally, Section

VII concludes the paper.

TABLE I
COMPLEXITY AND CATEGORY OF EXISTING APPROACHES.

Algorithm Complexity Category
Louvain O(N logN) Modularity-based optimization
Infomap O(|E|) Random walk heuristics
Oslom O(N2) Statistical inference
Bigclam O(|E|) Statistical inference
Stad O(|E|) Diffusion with conductance-based

optimization

II. RELATED WORK

In this section, we summarize the state-of-the-art approaches

used to identify communities in undirected graph G = (V,E),
which is a tuple containing a set of vertices V with size N
and a set of edges E. Table I lists the optimization method as

well as the computational complexity of each of the discussed

approaches.
Louvain [17] is widely known as a very fast approach to

maximize modularity. The modularity of a graph compares

the presence of each intra-cluster edge of the graph with

the probability of that edge would exist in a random graph.

Louvain first assigns a different community to each node of

the network, then a node is moved to the community of one

of its neighbours with which it achieves the highest positive

contribution to modularity. The above step is repeated for all

nodes until no further improvement can be achieved. Then

each community is considered as a single node on its own

and the second step is repeated until there is only a single

node left or when the modularity can not be increased in a

single step. Yet, Louvain follows a centralized approach and

extracts only disjoint community membership.
Infomap [18] figures out communities by employing random

walks to analyze the information flow through a network. The

general idea behind the algorithm is to find a binary code

with unique short names (codewords) for each node within

a community that can be used to describe the position of a

random walker in the network. In a network with a marked

community structure, the probability of flipping membership

is small. Therefore, Infomap compresses the description by

reusing codewords within individual communities. However,

Infomap suffers from field-of-view limit and fails to detect

large communities [19].
Oslom [20] follows statistical inference approach, such that

it evaluates the statistical significance of a cluster with respect

to a random graph during community expansion. Oslom begins

with assigning nodes to random clusters, then the second phase

evaluates growing the current community structure by merging

separate modules. To grow a specific community, a cumulative

probability is calculated for each outsider node to measure

the gain of adding it to the community. If the cumulative

probability is more significant than the value computed for

this community in the random model, the node is added to

the community.
Bigclam is another approach that follows statistical in-

ference [21]. Bigclam formulates community detection as

a variant of nonnegative matrix factorization. Specifically,

Bigclam tries to optimize the likelihood of explaining the links

of the observed network. However, Bigclam as well as Oslom
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usually result in a significant number of singleton communities

as discussed in Section VI.

All methods described above fall into the category of

global approaches. Specifically, these global approaches adapt

their detection model focusing on approximating the global

structure of the whole network, instead of performing ap-

proximation at the communities level. In addition, several

of these methods usually run with high computational cost.

Differently from existing work, the primary goal of our work is

to develop a decentralized community detection approach that

is capable of tuning the community detection parameters for

each community separately. Therefore, Stad employs diffusion

as a vertex-centric approach and boosts it with a conductance-

based function. Specifically, conductance is used to evaluate

the quality of communities by measuring the fraction of inter-

cluster edges per each cluster to the intra-cluster edges [3],

[22]. Most importantly, Stad controls the diffusion speed

for each possible community membership at each node as

illustrated in the next section.

III. STAD: STATEFUL DIFFUSION

In this section we discuss Stad which extracts disjoint as

well as overlapping communities in undirected and weighted

graphs. Stad presents a self-adaptive approach that tunes the

detection parameters on community level. Stad is an iterative

algorithm that starts by diffusing different colors from some

nodes identified as seed set, such that each color represents a

separate community. Afterwards, nodes propagate these colors

following the underlying notwork for some iterations. Stad

allows nodes to decide their community memberships based on

the amount of colors they receive at each iteration. Specifically,

each node joins the community having the maximum amount

of color received by the node. Differently from existing

diffusion methods that operate with fixed diffusion speed, Stad

boosts diffusion with conductance-based function that acts like

a tuning parameter to control the diffusion speed at community

level. To illustrate this further, we start by introducing the

notations and definitions used, then we describe the proposed

algorithm.

A. Notations

We denote by V the set of nodes in a graph G. Let W be

the adjacency matrix of G, where wij denotes the weight of

an edge between nodes i and j. In unweighted graphs wij is

either 0 or 1, and in undirected graphs wij = wji. In this paper

we consider weighted and undirected graphs. A community,

also called a cluster, C ⊆ V , is a subset of nodes, and its

complement C = V \C, which contains all the nodes that are

not in C. Accordingly, we can define the strength of connec-

tion between two communities x and y by the weight of edges

connecting them, and write wxy =
∑

i∈x

∑
j∈y wij . Note that

we consider any subset of nodes to be a community, and the

goal of community detection is to find good communities.

Conductance is one of the most widely used scoring func-

tions to evaluate the goodness of extracted communities, such

that it measures how strongly a set of nodes is connected

to the rest of the graph. Conductance is a metric that takes

into consideration both external and internal connections of

a community. It is defined as the ratio of the weight of

edges on the boundary of the community over the sum of

weight of edges connecting nodes inside the community [3].

If this value is small, then it indicates a good clustering

as the extracted communities have few edges leaving them.

However, minimizing conductance might result in enlarging

C with irrelevant members just to minimize the volume of

external edges. Therefore, conductance of community C is

defined using the following formula:

φ(C) =
wCC

min(wCC , wCV )
. (1)

As shown in the above formula, the denominator is set to the

minimum value between volume of internal edges (i.e., wCC)

and volume of edges connecting nodes that are not members

of C (i.e., wCV ) [3], [22]. Thus, the conductance of G is then

given by:

φ(G) = ΣC⊂V φ(C). (2)

Finding the minimum conductance is known to be NP-

Complete [22]. Therefore, Stad employs a local heuristic for

minimizing conductance, such that each node in the graph

decides its community membership(s) by choosing community

(or multiple memberships in case of overlapping communities)

from the communities adopted by the node’s neighbors. More

formally, each node minimizes φ(C) with respect to its direct

neighbors.

B. Stateful and Dynamic Diffusion

At first, the relationship of community detection to diffusion

and random walks might seem unclear, but they are neatly

related. We desire to extract communities that are well con-

nected internally, but less connected to the rest of the graph.

Intuitively, if a diffusion process is started in one of those

communities, it is unlikely to leave that community since it

is poorly connected to the rest of the graph. Accordingly,

community detection can be performed using diffusion by

representing communities with multiple flows in the network

and identifying each flow with unique color assigned to

it. Regular diffusion spreads the flows in the graph while

considering that the amount of flow entering a node equals

the amount of flow leaving it. Specifically, each node passes

forward the received flow to its neighbors, such that each one

of them receives partial volume that is proportional to the

strength of the edge touching it. A general diffusion process

that affects node vi having set of friends vi.F can be defined

as:

Ωvi(t+ 1) = Σvj (wij × Ωvj (t)), ∀vj ∈ vi.F . (3)

As shown in Equation 3, Ωvi(t + 1) represents the amount

of flow that node vi is going to receive from its neigh-

bors at iteration t + 1. Diffusion is an iterative process, so

Ωi(t + 1) is updated according to the magnitude of the flow
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TABLE II
BASIC NODE VARIABLES AND THEIR DEFINITIONS FOR NODE vi .

Symbol Name Definition
F Neighbors F = {vj ∈ V | wij > 0}
d Degree d =

∑
vj

wij , ∀vj ∈ F
C Neighbor colors {c1, ..., cm} collected from F
I Color intensities {i1, ..., im} collected amount of colors
dc Dominant color dc ∈ C s.t. I[dc] is maximum

Wint Internal strength Wint[c] =

∑
vj∈F wij

d
s.t. vj .dc = c, ∀c ∈ C

Wext External strength Wext[c] = 1−Wint[c]

received by neighbors of vi during the previous iteration

(i.e., (Ωvj (t), ∀vj ∈ vi.F), as well as the weight of edges

connecting them (i.e., wij , ∀vj ∈ vi.F).

As aforementioned, Stad treats the color flows indepen-

dently and controls the diffusion speed at each node in the

graph. Accordingly, we introduce the notion of node state,

such that, each node keeps portions of the flows passing it

for itself and stores these portions in its state. Our stateful

diffusion process for node vi can be defined as:

Ωvi(t+ 1) = Σvj
(wij × S × (Ωvj (t))), ∀vj ∈ vi.F , (4)

where we introduce S as the function that controls the

diffusion speed and allows nodes to keep portions of the flows

passing them into their states. The more important the flow is,

the higher the amount of color is kept inside the node state.

The intuitive idea of employing the speed function S is to

have a clear distinguish between internal and boundary nodes

of each community. Specifically, internal nodes represent the

core of the community, therefore, they need to maximize the

concentration of community color around them. On the other

hand, boundary nodes may belong to multiple communities

and their task is to allow colors to travel further and expand.

Therefore, S is computed in adaptive and flexible way by

each node according to the importance of the flows passing

it. The importance of a particular flow to specific node is

decided according to the community membership of that node

and diffusion assessment phases as described in the next

subsections. We follow that with describing the algorithmic

steps for color diffusion in Stad, as well as different stopping

criteria.

1) Membership Assessment: Stad allows each node to indi-

vidually choose its community membership(s) from the differ-

ent communities surrounding it. The membership calculations

are performed using the set of variables maintained by each

node as listed in Table II:

• Neighbors (F): the list of node’s direct neighbors.

• Degree (d): the weighted degree of a node.

• Neighbor Colors (C): the list of colors received from

node’s neighbors so far.

• Color Intensities (I): the corresponding amount of col-

ors received from the neighbors.

• Dominant Color (dc): dc identifies the community mem-

bership of a node. Specifically, dc is the mostly common

color among node’s neighbors and it is the color with

the highest intensity among the received ones. In case

of overlapping community detection, dc is considered as

the set of colors that have the highest color intensities

ordered descendingly.

• Internal Strength (Wint): Wint represents the probabil-

ity of considering a node as a member of the communities

that are adopted by the neighbors of that node. Thus,

Wint[c] for color c is calculated by summing the volume

of edges connecting a node to its neighbors adopting c
as their dc divided by the node degree.

• External Strength (Wext): Wext represents the volume

of external edges if a node decides not to be a member

of the communities adopted by its neighbors.

2) Diffusion Assessment: Our objective is to minimize

the amount of flow/color leaving a community, hence avoid

the situations where colors compete to impose authority to

dominate other regions. Accordingly, each node individually

controls the amount of flow leaving it by providing different

speed functions that either slow down for important colors or

speed up the diffusion for non-important ones at each iteration.

Furthermore, colors are treated independently from each other,

hence no congestion or conflicts can happen among colors

passing a node. Stad provides two different speed functions,

one for single community membership while the second for

multiple memberships.

The first function is an entropy-based step function that is

used for single community membership. Entropy is commonly

used in thermodynamics and is associated with the amount

of order in the system, such that the lower the entropy the

more order exhibited in the system [23]. Accordingly, Stad

calculates entropy-based resistance for each node in terms

of Wint and Wext as shown in Equation 7. The higher the

probability of a node being a member of a specific community,

the lower the entropy, hence, the lower the diffusion rate

of that color associated to that community and the higher

amount of that color the node stores in its state. In case of

single community membership, the nodes are interested only

to preserve more amount from their dc. Therefore, the whole

amount of any color is diffused as long as Wint[c] < 0.5,

such that we have used 0.5 to represent the majority of node’s

neighbors. Thus, to slow down the speed of diffusion when

the node is 50% (or higher) confident about its membership,

the speed is calculated as using the speed function S1.

eint(c) = −Wint[c]× log2Wint[c]. (5)

eext(c) = −Wext[c]× log2Wext[c]. (6)

S1(c) =

{
1 if Wint[c] < 0.5

eint(c) + eext(c) otherwise.
(7)

Furthermore, we have implemented a linear diffusion speed

function for the case of overlapping community detection.

Particularly, nodes maintain states for all colors (communities)

surrounding them. Then, the diffusion speed is going to be
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continuously scaled down for each color according to the

strength of nodes membership to that color. Hence, the linear-

based function defined as the following:

S2(c) = 1−Wint[c]. (8)

Example: Figure 4(a) shows an example of node vi having

7 edges, where the number in top of the edge represents its

weight. As shown, vi.dc is red as it has the maximum amount

of collected units. After each node decides its dominant color,

it starts to evaluate the status of its membership by computing

both internal and external strength. First table in Figure 4(b)

lists the values of internal strength associated with each color

received by vi. The external strength is the complement of

the computed value of the internal strength. Our objective

is minimize the conductance between different communities.

In our case, conductance can be computed as the fraction

of node’s neighbors that are different in terms of dc value.

S1 is the diffusion speed using the entropy-based function,

whereas S2 is the diffusion speed using linear function. As

aforementioned, when the diffusion speed is decreased for

some colors, the node keeps some amount of those colors

in its state. Specifically, the amount kept in node’s state is

equivalent to the remaining amount of color after scaling down

the diffusion speed. For example, as shown in second table in

Figure 4, vi diffuses only 3 units of red color (i.e., that equals

to quarter of the amount it has) and keeps 9 units in its state

when applying S2. For simplicity, we assume that vi’s state

was empty at the first iteration, yet the state is incrementally

updated by adding more units at the successive iterations.

Furthermore, Figure 5 shows the difference between Stad

and regular diffusion during the successive iterations of color

spread. The plot is generated using a synthetic graph with four

ground truth communities. The diffusion process is initialized

with four seeds, each seed is selected to represent a community

and is assigned a different color. As shown, in each iteration

we report the percentage of nodes that correctly determine

their community membership based on amount of colors they

received. However, diffusion creates a competition among dif-

ferent colors throughout the first four iterations. For example,

starting from the 3rd iteration, Diff C4 dominates and takes

control of Diff C1 and Diff C3. At the 6th iteration, the regular

diffusion method stabilizes with two balanced partitions that

are far from describing the ground-truth communities. On the

contrary, Stad diffuses colors at different speed and succeeds

in extracting communities that are similar to the ground-truth

communities, as shown in Figure 5 (c) and (d).

3) Stad Algorithm: Stad follows a decentralized, iterative

and node-centric approach, such that each node executes the

algorithm in parallel. Nodes need only to communicate their

updated memberships and the amount of colors they send, at

the end of each iteration with their direct neighbors. Algorithm

1 shows the execution steps performed by each node. As

described in procedure diffuse, each node calculates diffusion

speed associated with each color received from its neighbors

in the previous iteration. Then, each node computes unitc of

Fig. 4. Example of the sateful diffusion at node vi. (a) The received colors
at node vi at time t = 2. (b) First table lists the internal strength calculated
for each color, whereas second table shows amount of colors kept in vi’s state
using different speed functions.

(a) Diffusion
(b) Found communities

(c) Stad
(d) Found communities

Fig. 5. Example of the extracted communities by Stad and Diffusion
mechanisms using a synthetic dataset generated with 4 communities. (a) The
percentage of ground truth nodes discovered inside each community during
the execution of Diffusion. (c) The ground truth percentage achieved by Stad.
Visualization of extracted communities by Diffusion and Stad is shown in (b)
and (d), respectively.

color c by dividing the collected intensity associated with c by

its degree. Consequently, the amount of color to be diffused to

a particular neighbor, amountc, equals to the multiplication

of unitc with the S’s value and the weight of the edge

connecting that neighbor. After the colors are diffused to the

neighbors, in the successive iterations nodes can calculate their

community membership (i.e. dominant color: dc) by summing

up received amounts per each color and selecting the one that

has the maximum intensity. In case of overlapping community

detection, each node maintains a list of surrounding colors

ordered by the volume of colors from the highest to lowest.

Algorithm 1: Stad Diffusion at node vi

Procedure diffuse()
forall the c ∈ vi.C do

S[c] ← calcSpeed(c)
unitc ← vi.I[c]/vi.d
forall the vj ∈ vi.F do

amountc ← unitc × wij × S[c]
send(vj , amountc)

end
end
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Then, node decides its membership to a color c, if Wint[c] is

greater than some threshold. In Section VI-B2, we show the

performance evaluation with different threshold values.

4) Stopping Criteria: The more natural and simple way

to check for convergence is to deactivate the nodes that are

not interested anymore in changing their community mem-

bership(s). Thus, if the number of those nodes, compared

to the total number of nodes in the graph, is higher than

specific threshold, then the algorithm stops. Furthermore, we

can focus on the community level rather than the node level

and keep track of the communities detected in each iteration.

If the number of nodes per detected communities remains

the same for particular number of iterations, then the speed

function succeeds in preventing dominant colors to travel

further-away from their original communities, hence random

walks reach the stable state and stay inside their communities.

Lastly, we can specify the number of iteration needed as a

parameter to the algorithm, and relate it to the properties

of the underlying graph, i.e., how good/bad expander the

graph is. As aforementioned, Stad follows a decentralized

approach, however, checking for convergence requires having

orchestrators among participating nodes. Thus, some nodes are

chosen to audit changes occur in communities memberships

and notify remaining nodes when the convergence criterion is

achieved.

IV. CHOOSING INITIALIZATION SEEDS

Flow based models are very sensitive to the initial seeds

of diffusion from which the process starts (e.g., set of nodes

from which random walks start). In such models, a seed set

is selecting by choosing some nodes and assign each node a

different color. Thus, identifying the set of the most central

nodes is important to help disseminating information in the

network faster and more efficient. There are various centrality

measure, such as degree, closeness, and eigenvector centrality

that can be used to choose those central nodes . In the

following subsections we discuss the different initialization

methods used in Stad and their relations to different node

centrality measures. First, we use degree centrality as a global

centrality measure. Then, we introduce two different local

approximations for closeness centrality.

A. Degree Centrality

Degree is the simplest node centrality measure, such that

it is calculated using only the local structure around nodes.

The more edges nodes have, the faster the dissemination of

colors is, if those nodes are selected as seeds. Accordingly,

we randomly choose seeds from the set of high degree nodes.

We define the high degree nodes as the nodes ranked in the

top one third among the degree of all nodes in the network.

B. Closeness Centrality

This calculates scores for each node based on its closeness

to all other nodes within the network. Closeness is defined as

the sum of distances to all other nodes. The intent behind using

this measure is to identify the nodes which could reach others

quickly. Specifically, this centrality measure calculates the

paths between all nodes, then assigns each node a score based

on its sum of paths crossing it. However, calculating all the

paths between all nodes is very costly especially with the large

networks we have nowadays. Therefore, we used clustering

coefficient (CC) as a local approximation to closeness. CC

of a node is the ratio between the number of existing links

among its direct neighbors and the number of links that could

possibly exist among them. The more connected neighborhood

surrounding a node, the higher the probability to have more

paths crossing that node. Stad operates as a node-centric ap-

proach, so we assume that every node calculates its CC locally

by keeping track of two-hop neighbors (i.e., neighbors of the

neighbors). We calculate CC using the following formula:

CCvi =
|ejk : j, k ∈ vi.F , ejk ∈ E|
2× |vi.F| × (|vi.F| − 1)

(9)

However, iterating over 2-hop neighbors to calculate nodes

CC still can be costly in large networks. Thus, we use

random walk (RW) as another approximation for closeness

centrality. The random walk starts at some vertex u ∈ V . Then,

the process moves forward from u to one of its neighbors

chosen uniformly at random. We add node u to the set of

initialization seeds, if RW visits it again after specific number

of intermediate steps. Specifically, when a node releases a

short random walker (i.e. with a walk of length 3 to 6 steps

away) and the random walk visits it back, this indicates that

this node has well connected neighborhood.

V. CONVERGENCE AND COMPLEXITY ANALYSIS

In the following subsections we discuss the details related

Stad’s performance in terms of convergence and complexity

analysis.

A. Convergence Analysis

Convergence analysis of Stad is twofold: reaching con-

vergence and extracting communities while minimizing the

conductance. The starting point for analyzing diffusion (i.e., a

random walk) on a graph is a simple Markov process on that

graph. Specifically, at each time step t, the random walker has

a state x(t) ∈ V , indicating which node the random walker is

on at time t. If x(t) = i, at the next time step t+1, the random

walker moves to one of the i’s neighbors chosen at random.

It has been shown that as long as the graph is undirected,

connected, and not bipartite, the random walker from any

starting point will converge to the stationary distribution [24].

Furthermore, properties of the convergence of a random walk

(i.e., bounds on mixing rate and convergence) are determined

by the spectrum of the graph [25], [26].

However, reaching stationary distribution is not expected to

indicate the extraction of well connected clusters. Hence, the

mixing time of random walker needs to be controlled in a

way not to produce communities that are too small or too big.

Thus, we have used conductance to take the size of resulting

communities into consideration. There are many theoretical
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studies that use Cheeger ratio [24] of a graph, that is computed

the same way as local conductance of extracted communities.

Lovász and Simonovits [27] show a theoretical proof that

finding a cluster containing a vertex can be accomplished by

simulating a random walk starting from that vertex. Authors

[28], [29] extend that to prove the following two properties:

(i) large random walk can find a cluster C with conductance,

defined in terms of Cheeger ratio, that is lower than a given

target Cheeger ratio. Particularly, this given target Cheeger

ratio can be initialized with the number of edges found in

the graph divided by 2 (i.e. |E|/2). Furthermore, (ii) having

C with lower Cheeger ratio minimizes the probability that any

random walk that started at node v ∈ C leaves C.

Having these two properties proved, it is easy to show

that Stad satisfies both of them. First of all, Stad decides

community memberships of all nodes in the graph based on

the diffusion processes passing them. Instead of having only a

single starting vertex as in previous work, Stad processes all

nodes in the graph and finds clusters for those nodes. Secondly,

Stad follows iterative approach, such that in each iteration

nodes try to minimize conductance. Thus, Stad extracts com-

munities having lower Cheeger ratio. More interestingly, the

speed functions introduced in Stad that control the diffusion

speed at each node allow Stad to stabilize faster, while

satisfying the second property.

B. Complexity Analysis

Stad’s complexity cost is expected to be low given that

nodes perform their local computations independently and

in parallel. We discuss the complexity of Stad in terms of

communication traffic among all of the nodes in the graph.

Particularly, every node exchanges set of colors with its

direct neighbors for specific number of iterations till reaching

convergence. Accordingly, in each iteration all of the edges

of the graph will be touched, such that source and destination

nodes exchange some information with each other. So as, the

algorithm complexity is O(|E|∗R), where E is the edge set in

the network, and R is the total number of iterations needed for

the algorithm to converge. The number of iterations required

for convergence is proportional to the time required for the

existing colors in the graph to spread out to all the reachable

regions. However, for all practical reasons R << |E|, thus,

Stad’s complexity is linear in terms of the number of edges.

VI. EVALUATION

We proceed by evaluating the performance of Stad and

comparing it with the state-of-the-art community detection

methods described in Section II, we have used the implemen-

tation available by the original authors for each method and

we used their default settings for the parameters introduced

by each algorithm. Furthermore, we have performed the com-

parison on a range of networks, some of them are real-world

networks with their ground-truth communities available from

Snap1. Additionally, we have used some synthetic weighted

1https://snap.stanford.edu/data/

and undirected networks generated using LFR benchmark [30].

LFR benchmark generates graphs with a built-in community

structure, and simulates properties of real networks accounting

for heterogeneity of node degree and community size distribu-

tions. For each of the following experiments, we have executed

Stad for three times and reported the average performance of

the three runs.

A. Evaluation Metrics

Given a network G(V,E), we consider a set of ground-

truth communities Cgt and a set of extracted communities

Cex where each ground-truth community Ci ∈ Cgt and each

extracted community Cj ∈ Cex is defined by the set of nodes

belonging to it. In order to quantify the level of correspondence

of Cex to Cgt we consider:

1) Average F1-Scores. F-Score measures the clustering ac-

curacy in terms of precision and recall. Precision reflects

mixing of different ground-truth communities into the

extracted ones. Thus, the higher the precision, the less

mixing of ground-truth communities. Furthermore, recall

reflects the goodness of grouping nodes that belong to

the same ground-truth communities. There are different

versions of F-Score according to the weighted average

of the precision and recall. We consider F1 that is

computed using the following formula:

F1 = 2.
precision.recall

precision+ recall
(10)

2) Average B3 Scores. B3 is commonly used in infor-

mation theory to evaluate the coreference resolution for

entity disambiguation problems [16]. B3 evaluates a

gold-standard clustering of entities (which are nodes

in our case) against a system-produced clustering of

entities at entity level, such that, B3 quantifies for each

entity how well it is clustered with similar ones. The B3

precision and recall are usually defined as:

B3Precision =
1

|V |
∑
i∈V

|Cgt
i ∩ Cex

i |
|Cex

i |
(11)

B3Recall =
1

|V |
∑
i∈V

|Cgt
i ∩ Cex

i |
|Cgt

i |
(12)

Having the values of B3-based precision and recall com-

puted, we calculate B3-based F1 measure as described

in the previous evaluation metric.

3) Normalized Mutual Information (NMI). NMI is

adopted as well from the information theory domain and

it is used to measure the similarity between two clusters

(i.e., the ground-truth and system generated one). Refer

to [31] for more details.

4) Average Internal Density. Internal density of a cluster

computes the fraction of intra-cluster edges to the possi-

ble number of edges that can be created among the nodes

in that cluster. We compute the average internal density
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TABLE III
CHARACTERISTICS OF THE REAL-WORLD DATASETS. AVG-CC REPRESENTS THE AVERAGE CLUSTERING COEFFICIENT, AVG-CONDUCTANCE LISTS THE

AVERAGE CONDUCTANCE FOR THE GROUND-TRUTH COMMUNITIES, OVERLAP LISTS THE TOTAL PERCENTAGE OF OVERLAP ACROSS ALL COMMUNITIES,
(2)-OVERLAP SHOWS THE PERCENTAGE OF NODES THAT HAVE TWO COMMUNITY MEMBERSHIPS, FINALLY, (3+)-OVERLAP LISTS THE PERCENTAGE OF

NODES THAT ARE MEMBERS IN THREE OR MORE COMMUNITIES.

Vertices Edges Avg-CC Communities Avg-Conductance Overlap % 2 Overlap % 3+ Overlap %
Amazon 334,863 925,872 0.09 75,149 0.55 96 3.6 92.4
Dblp 317,080 1,049,866 0.03 13,477 0.68 42.5 16.6l 25.9
Youtube 1,134,890 2,987,624 0.67 8,385 0.9 37.6 16.1 21.5
Livejournal 3,997,962 34,681,189 0.15 287,512 0.94 64.2 17.2 47
Friendster 65,608,366 1,806,067,135 0.06 957,154 0.4 54.5 20.8 33.7

Fig. 6. Evaluating the performance of the different initialization methods
w.r.t. percentage of covered ground-truth communities.

for all extracted clusters as the following formula:

AvgDensity =
1

|Cex|
∑

i∈Cex

2.
|Exy : x, y ∈ Cex

i |
|Cex

i |.(|Cex
i | − 1)

(13)

5) Conductance. We follow the same definition introduced

in Equation 1.

B. Real-world Graphs

Table III summarized the characteristics of the used

real-world networks. As shown, there is high overlapping

percentage across all the datasets.

1) Selecting Seeds:
As aforementioned, the number of communities is not known

beforehand, so the diffusion process needs to be initialized

with number of seeds higher than the number of expected

communities. In Section IV, we briefly discussed different

approaches to select the seed set for initialization. In the

following experiments we evaluate the different seeding meth-

ods and investigate how the size of the seed set affects the

performance of our algorithm. Our objective is to maximize

the coverage of the selected seed set, such that the best case

scenario is to select at least one node from each ground-truth

as a seed.

Figure 6 depicts the performance of each initialization

method in terms of the percentage of covered ground-truth

communities, such that at least one of their members has

been chosen as a seed. We compare random walks (RW),

clustering coefficient (CC) and high degree nodes (HDN)

seeding methods. For RW, we used two different random

walk lengths, namely RW 3 and RW 5 with 3 and 5 steps,

respectively. For CC, we tried two different settings, CC 3 and

Fig. 7. Evaluating the performance of the best coverage initialization methods
w.r.t. F1 score.

CC 5. CC 3 represents selecting at random 30% of nodes

having CC > 0.5 (i.e., majority of node’s neighbors are

mutually connected). CC 5 is the same as CC 3, except for

we select 50% of the nodes. For HDN 3 and HDN 5, we

randomly select 30% and 50% of the high degree nodes,

respectively. Lastly, SPC represents selecting one seed per

community.

If the coverage percentage of a seeding methods is less

than 100%, then the number of selected seeds is less than the

number of ground truth communities, which leads to extracting

less communities than the ground-truth. On the other hand,

when the coverage is 250%, then the number of colors is

up to 2.5x the number of ground-truth communities. Yet,

initialization with too many colors is considered as overhead

during the community detection process, as nodes have to

keep track of many colors, while some of those colors are

going to be redundant. As shown, CC 5 and HDN 5 achieve

the highest coverage performance across all the datasets. It

is interesting to notice that CC 5 achieves the best coverage

for Youtube dataset, as Youtube contains a high percentage

of isolated and small communities. Thus, members of those

communities have low degree compared to other nodes in the

network, so none of them were selected as seeds using HDN 3

and HDN 5 methods. However, HDN is preferable than CC

as a seeding method, as it is computationally less expensive to

compute, though we need to compute CC for each node only

once.

Figure 7 shows the performance comparison of the seeding

methods with best coverage in terms of detection accuracy.

It is interesting to note that the HDN seeding methods

consistently achieve the highest F1 score in all of datasets

except for Youtube. Particularity, HDN 3 represents the best

coverage initialization method with the lowest overhead.
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Fig. 8. Selecting threshold value for overlapping membership assessment.

Therefore, in the following experiments, we have used

HDN 3 as our initialization method. Yet, for Youtube dataset,

we have used CC 5.

2) Membership Assessment:

As aforementioned, in case of overlapping community

detection, each node maintains a list of surrounding

communities ordered by the volume of colors from the

highest to the lowest. Then, nodes assess their membership

according to the strength of Wint associated with each color.

In particular, a node is a member to the community of color

c if Wint > α. The higher the value of α is going to be

used, the less the number of communities that are chosen by

nodes during the membership assessment. Figure 8 shows

the detection accuracy with different values of α. As shown,

accuracy decreases when α is greater than 0.2, and this is

due to the high overlapping percentage exist in the datasets

as shown in Table III. The highest F1 score is achieved when

α = 0.15. Thus, in the following experiments, we set α’s

value to 0.15.

3) Stad vs. State-of-the-art approaches:

Figure 9 displays the composite performance of the meth-

ods. We use only the first letter of each method in the x-axis

(i.e., S: Stad, I: Infomap, O:Oslom, L: Louvain, B: Bigclam,

and D as regular Diffusion). We implement regular diffusion

following the same decentralized vertex-centric approach used

in Stad, yet with a fixed diffusion speed that equals to 1.

Accordingly, nodes diffuse all the amount of colors they

receive. Additionally, for regular diffusion, we use the same

seeding and membership assessment methods implemented in

Stad.

As shown, for each community detection method and each

dataset we measure the average value of F1, B3, NMI ,

and Conducance evaluation metrics. Each evaluation metric

has a score of 1, thus, the composite performance scale is

up to 4 and the higher the better. The column of Infomap

is missing for Friendstr dataset, as the algorithm did not

converge for three weeks. Also, we find that Oslom and

Bigclam result in high percentage of singleton communities.

After convergence, around 25% and 40% of nodes in each

dataset were left without decided memberships in Oslom and

Fig. 9. Composite performance metric for different community detection
algorithms.

Fig. 10. Performance of different algorithms in terms of average internal
density of extracted communities.

Bigclam, respectively.

From the results, we observe that F1, B3, and NMI
metrics are correlated, though some small deviations exist

among them. For AvgConductance, Stad achieves the value

that is closest to the average conductance of the ground-

truth communities. Other approaches have lower conductance

values, which means that some of the ground-truth com-

munities are merged into one single extracted community.

Furthermore, Figure 9 depicts the average internal density

of all methods. As shown, Stad achieves the highest values

across all the datasets. In conclusion, Stad obtains the best

detection accuracy, followed by Oslom and Bigclam. Broadly

speaking, Stad achieves double the detection accuracy in terms

of average F1 score.

C. Synthetic Datasets

Table IV summarizes the parameter settings we used for

generating the synthetic datasets using LFR benchmark [30].

LFR benchmark is designed to reproduce certain topological

properties observed in real-world networks: the size of the

communities is power-law distributed, and so is the node

degree. The mixing coefficient parameter μ allows controlling

the average proportion of neighbors a node has in other

communities. Therefore, μ has a big impact on the network

topology, such that it controls percentage of inter-community

edges. μ is usually set to be 0.1 or 0.3 and the detection

accuracy usually decays for a larger μ. s is the range for

community sizes, small size community =1,500 nodes and
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TABLE IV
PARAMETERS FOR THE LFR BENCHMARK.

Parameter Description
n = 50k number of nodes in the graph
μ = [0.1, 0.6] mixing parameter
d = 500 the average degree of the nodes
dmax = 1500 the maximum degree of the nodes
s = [1500, 10000] range of the community size for graphs
τ1 = 2 node degree distribution exponent
τ2 = 1 community size distribution exponent
om = {5, 10} overlapping membership
on = [10, 50] percentage of overlapping nodes

μ

(a) Syn sm

μ

(b) Syn om 5

μ

(c) Syn om 10

Fig. 11. Performance of different algorithms using synthetic graphs in terms
of NMI with different μ values.

large size community=10,000 nodes. Each node belongs to

either one community or om overlapping communities, and the

percentage of nodes in overlapping communities is specified

by on. A larger om or on indicates more overlaps that

are harder for the community detection tasks. Applying the

described parameters, we get the following three network

settings: 1) Syn sm: for networks with disjoint community

membership, 2) Syn om 5: for overlapping membership net-

works with om = 5, and 3) Syn om 10: the same as previous

setting except for om = 10.

As number of overlapping membership is known, we order

communities according to their Wint and choose the top ones

for each graph with a number equals to om. For each of the

above network settings, we generate different graphs with the

different μ values that range between 0.1 and 0.6. Furthermore,

for each μ value we generate three different graphs and we

report the average performance as detailed in the following

experiments.

Figure 11 and Figure 12 illustrate the results of the analysis

performed with synthetic graphs. As aforementioned, F1,

B3, and NMI metrics are correlated, as well as due space

limitation and visualization simplicity we report the results

of NMI . In the first experiment, we fix on percentage to

20% and vary the value of μ. In the second experiment, μ
is fixed to 0.3 and we vary the percentage of overlapping

nodes in communities. As shown in Figure 11, the trend is

generally the same: for small values of μ and on, such that

(a) Syn om 5 (b) Syn om 10

Fig. 12. Performance of different algorithms using synthetic graphs in terms
of NMI with different on percentages.

communities are well separated and most algorithms do a

good job, so NMI is 1 or close to 1. When μ increases,

as well as on, communities are more mixed and harder to

detect, so NMI is quite different from 1, indicating that the

communities extracted by the algorithms are sensibly different

from the ones identified by the benchmark. From the results,

we conclude that Stad achieves better performance followed

by Infomap and Louvain.

VII. CONCLUSION

In this paper we presented Stad that provides a novel flow-

based community detection algorithm. Stad employs adaptive

optimization function that allows it to detect communities

more accurately in heterogeneous community size distribu-

tions. Specifically, Stad proposes a dynamic diffusion model

that treats different flows independently and controls the

diffusion speed of each flow separately. Furthermore, Stad

is decentralized, scalable and highly parallel community de-

tection algorithm with no global knowledge required. So as,

Stad can be successfully applied in distributed environments,

such as large-scale graph processing or decentralized machine

learning. Results confirm Stad’s ability to extract disjoint as

well as multiple community membership(s) with double of the

accuracy achieved by current state-of-the-art techniques using

real-world datasets. As a natural extension of this work, we

want to investigate applying Stad in weighted and directed

networks, which in turn requires solving the challenges of the

associated effect of edge directionality and dead-ends on the

diffusion mechanism.
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