2020 IEEE International Conference on Big Data (Big Data) | 978-1-7281-6251-5/20/$31.00 ©2020 IEEE | DOI: 10.1109/BigData50022.2020.9378360

2020 IEEE International Conference on Big Data (Big Data)

Repeating Link Prediction over Dynamic Graphs

Daniele Montesi
Department of Computer Science
KTH Royal Institute of Technology

Stockholm, Sweden
montesi @kth.se

Abstract—Graphs are a vastly useful and widely used form
of modeling and representation of systems, processes, entities,
events, objects, components etc., in various domains of discourse,
that reflects relations or connections of modeled entities. Graphs
are vital to diverse data mining applications, as they capture
relationships between data items, such as dependencies or in-
teractions, and graph analysis can reveal valuable insights for
many application domains including machine learning, anomaly
detection, clustering, recommendations, social influence analysis,
bioinformatics, and others. The analysis of the evolutionary
behavior of dynamic graphs provides the means to continuously
predict the appearance, and also, the disappearance of new graph
links, i.e., to perform the Dynamic Link Prediction Task. Dynamic
Link Prediction has been explored widely in the past years;
however, the majority of these works focus on discovering new
edges (by implicitly assuming ever growing dynamic networks).
However, very few works focus on the repeating edges, i.e.,
links that continuously vanish and reappear in the dynamic
network, but which size (in terms of number of nodes and edges)
does not significantly change over long periods of time. In this
work, we first study the literature for link prediction in the
static settlement, then, we focus on dynamic link prediction,
underlining the strengths and weaknesses of every approach
studied. We discover that traditional methods do not work well
with repeating links as they are unable to encode temporal
patterns associated with the edges while also considering the
topological graph features. We propose a novel method, Temporal
Edge Embedding Neural Network (TEEN), which is based on a
deep learning architecture that jointly optimizes the prediction
of the correct edge labels as well as the proximity of two nodes’
pairs in their latent space at every time step. Our solution benefits
of node embeddings created with deep encoders from where an
edge embedding is created for every time step. Our evaluation
experiments on transactional graphs show that TEEN is able to
outperform state-of-the-art models by over 8% on AUC and over
7% on F1-Score. We show that our approach brings significant
improvements in the scenario of transactional graphs.

Index Terms—Repeating Link Prediction, Dynamic Graphs,
Graph Mining, Deep Learning

I. INTRODUCTION

The Dynamic Link Prediction task regards the prediction of
future connections that are going to be formed in the network
through the analysis of a temporally evolving network. It
has numerous real-world applications in the study of Social
Networks to recommend new friends to the users [1], [2], or
in the paper citation graph to predict next connections between
authors [3]. Dynamic Link Prediction differs from traditional
link prediction because the first uses temporal information of

978-1-7281-6251-5/20/$31.00 ©2020 IEEE 4420

Sarunas Girdzijauskas
Department of Computer Science
KTH Royal Institute of Technology

Stockholm,
sarunasg @kth.se

Vladimir Vlassov
Department of Computer Science
KTH Royal Institute of Technology

Stockholm, Sweden

vladv @kth.se

Sweden

the evolving graph to infer what link will be forming in the fu-
ture, while the latter uses the static network. Given a sequence
of time periods 1,2,...7 — 1,T, we define Dynamic Graph
an evolving network represented as a contiguous sequence of
graph snapshots G1,Ga,...,Gr_1,Gr.

Many types of sub-tasks can be distinguished when talking
about link prediction. Dynamic Link Prediction refers to the
prediction of new links forming in the network exploiting the
sequence of graph snapshots described before to predict the
new graph Gr41. Generally, a common assumption through-
out the state of the art (SOTA) methods of link prediction is
that once a link is formed, it remains in the graph also in
the subsequent snapshots. Thus, link prediction is considered
for predicting new links in growing networks only. However,
this assumption might be a limitation concerning some real-
world applications where links are not fixed once formed.
For instance, we can think about the temporal graph of the
instant message exchange between users in social networks:
representing a message as a link occurring at a specific time,
we can track the users exchanging messages during a specific
period of times (days, weeks, months) and predict whether this
connection will occur again or if it will "temporally’ vanish
in the subsequent snapshot. The same scenario is valid for the
temporal graph of emails between employees or transactions
networks: given the repetitive nature of the links in the graph
considered, these problems cannot be modeled in constantly
growing networks where links are permanently added.

Those types of dynamic graphs can be studied in other
terms, for instance, the analysis is not focused on the number
of nodes introduced in the graphs, nor in the new link added
to the graph itself, but on the behavior that such repeating
links show in their appearance/disappearance. For the use
cases of above, a more appropriate task is Repeating Link
Prediction. Repeating Link Prediction is one of the two sub-
tasks associated to Dynamic Link Prediction: the first focuses
on predicting new links, i.e., the edges that occur in the graph
but never occurred before, the second is about the problem
of interest of this paper, the repeating links, i.e., the edges
that occurred at least once in the past and might appear in
the next graph snapshot. The former sub-task relates to the
analysis of ever-growing networks, while the latter sub-task
relates the analysis of networks under link churn (i.e., the
interruption of the relationship). The majority of the works
related to generic Link Prediction focus only on the study

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on March 31,2021 at 11:39:14 UTC from IEEE Xplore. Restrictions apply.

Fig. 1.
green). Dotted lines identify links that are vanishing

Dynamic graph with repeating links (in black), and new links (in

of new connections that will be forming between every pair
of nodes without taking into account the prediction of edges
that continuously appear and vanish at different time steps,
once they have appeared once in the past. However, this
ought to be a limitation for some networks. What it usually
happens over a large class of real-world graphs (e.g., instant
messaging networks, transaction networks, etc.) is that, as the
networks evolve, the ratio between the appearance of new
links decrease and the repeating links increase significantly, as
shown in Figure 1). In short, link prediction on repeating links
is a prediction that targets only on the connections existing
previously in the dynamic graph, while on new links we
consider all the non-existing ones.

It is clear that besides the two above-mentioned classes of
edges are linked to the same task, they require a different
methodology. One is the evaluation method: when assessing
new links, all the possible non-linked nodes must be con-
sidered as potential connections and several K most likely
neighbors are considered as future edges. This is the case of
new friends recommendation in social networks (some related
evaluation methods are explored in the paper of Yang et al [4]).
When assessing repeating links, the test set is pre-determined
and is equal to the connections present at least once in the
past graph snapshots. Let us take a transactional dataset: a
directed weighted graph containing the payments exchanged
between companies. In such scenario, the test set becomes the
union of all relationship occurring in the past between these
firms for which we would like to predict the presence (1) or
absence (0) in the next graph snapshot. Thus, the evaluation
metrics adopted are the ones of a binary classification. Another
important aspect to consider regards time series modeling:
when considering new link prediction sub-task, the algorithm
usually relies more on the overall graph behavior statically or
dynamically analyzing the graph topology evolution through
time. When considering repeating link prediction, the analysis
may benefit from a time series approach applied exclusively
on the edge occurrence at every time step. If we consider the
transactional dataset example of above keeping the focus on a
single edge over time, we can observe two temporal patterns:
the trend (e.g., several transactions increase as time passes)
and the seasonality (e.g., every year during certain months,
the transaction is present, while in certain periods it vanishes).
This could not be considered while evaluating new edges since
it lacks a history to consider for that link.

4421

While link prediction is very well studied by the literature,
as of 2020, the majority of these works focus only on new
links, i.e., on the ever-growing networks. Repeating links are
introduced for the first time in less recent papers of Tylenda
et al, in 2009, [5], also by Oyama et al [6] and Lankeshwara
[7] where it is observed that repeating links are studied poorly
in the literature. A more recent work is the one of Patel et al
[8] which considers the task of repeating links again, without
offering a specific solution for that problem. There are research
efforts on focusing on the separate tasks of dissolution graph
and formation graph prediction, which is partially related with
the problem of repeating link prediction. Hisano [9] evaluates
separately the two networks as a sequential graph transition:
one for the link formation, one for the link dissolution. Still,
this modelling has the problem to be focused on predicting all
the possible edges, including the new links, rather than on the
repeating ones. Especially in the prediction of the formation
network, this modelling has shown limitations observed by the
author of the paper itself [9].

In this paper, we target the Repeating Link Prediction
problem with the workloads coming from the use case of
bank transactions. In particular, we analyze transactions done
between corporate clients, where the nodes are single clients,
identified by their IBAN, and the edges are identified by
money transactions. The analysis of repeating edges over the
network of client transactions can play an important role in the
bank scenario. To the best of our knowledge, this work is the
first to assess the performance of a link prediction algorithm
on repeating links over evolving dynamic graphs.

As baselines, we pick several important SOTA algorithms
relying on deep learning: TNodeEmbed [10], Dynamic-
Graph2Vec [11], DDNE [12], as well as static link prediction
techniques: Node2Vec [13], SDNE [14] and HOPE [15].
Additionally, we implement a simple unsupervised baseline,
Common Neighbors. As already explained, the scores will
be calculated exclusively over repeating link, hence these
methods were adapted to solve this problem.

The main contribution of this paper is the introduction of
our solution for repeating the link problem: a Deep Learning
model dealing with Link Prediction over Dynamic Networks
modelling edge embeddings at every time step. We have
shown that our solution achieves prediction scores higher on
average +8% on AUC and +7% on F1-Score if compared
to other SOTA techniques. During the model design, we
assessed different model architectures relying on the computa-
tion of edge embeddings via node embeddings subtraction and
edge values concatenation. Moreover, in this paper, we show
through experiments how the introduction of an additional
unsupervised component to the overall loss function improves
considerably the performance of the model.

The rest of the paper is structured as follows. Section II
describes the background. Section III introduces the new
model proposed, namely TEEN (Temporal Edge Embedding
Neural Network). Section IV presents the experimental and
evaluation setup, including datasets, tools and frameworks
used in this study, the splitting criteria of the data, the baselines

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on March 31,2021 at 11:39:14 UTC from IEEE Xplore. Restrictions apply.

implemented and the evaluation metrics. Section V provides
the experimental results. Section VI discusses related work.
We conclude and highlight our future work in Section VII.

II. BACKGROUND

In the background section, we define all the necessary
elements linking also some important related works. We will
refer to the term graph as a mathematical model G = (V, E)
describing the structure of the network where V is a set of
elements called nodes or vertices, E is a set of elements
named edges or links. Every graph can be represented with
an adjacency matrix A: a square matrix of order |V| whose
elements in the coordinate (i,7) indicate whether pairs of
nodes i, j, present a connection or not.

A. Static Link Prediction

In the context of dynamic link prediction, some techniques
used in the static settlement can be used on the dynamic
one. Static Graphs are network models that are evaluated
statically, i.e., considering a fixed set of vertices V and a set of
present edges E. Given a network at a time t G; = (V¢ EY),
in Static Link Prediction we want to predict the new graph
Gir1 = (VL E'Y). A simple approach for static link
prediction is computing a node proximity function. Given a
pair of vertices (4, j), the prediction for the node neighborhood
is given by the highest scored pair of vertices given the prox-
imity function f(i,7). The pairs are hence ranked following
the chosen function, and the fop-K ranked pairs are assigned
as the predicted neighborhood for the node. The strategy
above can be considered unsupervised since no training is
needed. A simple proximity score is Common Neighbors,
representing the fraction of common neighbors between 2
nodes.: FCN(q, v) = %&m. It is also possible to
combine multiple metrics in a weighted way to perform a
hybrid approach as done by Hasan et al [16]. Other approaches
are taking advantage of Machine Learning, which as stated
in surveys [16], [17], usually these techniques outperform the
unsupervised ones considerably. When using machine learning
on Link Prediction, several problems should be taken into
account. One of them is dataset imbalance. Given the high
sparsity of real-world graphs, it is likely that the positive class
would be less represented than the positive one, with the risk
that the machine learning algorithm would naturally classify
all the samples in the negative class.

B. Embeddings

In recent years there was the need to represent graphs in
a way such that it was possible to apply Machine Learning
algorithms on them. Generally, this requires transforming each
sample (a node or an edge) into a vector. Researchers focused
their study to find a way to represent the graph projecting
its nodes of a d-dimensional space R? such that for every
node v, its representation was described by a vector ¥ of
dimension d (called embedding). These techniques are known
under the name of Graph Representation Learning (GRL) and
they can ease machine learning algorithms to work with graphs

4422

serving a multitude of problems such as Clustering, Node
Classification and Link Prediction. A simple GRL technique
is Node2Vec. In its paper [13], Grover and Leskovec describe
the goal of Node2Vec as the projection of the graph in an
embedded space such that the likelihood of the adjacency set
of every node is maximized.

C. Neural Networks in Dynamic Link Prediction

Dealing with dynamic link prediction is usually a more
complex problem where static graph techniques are not enough
to achieve good results. Even though Embeddings can be
computed for static graphs, some techniques allow computing
embeddings that take into account temporal patterns. Deep
Learning methods are used very often for tasks concerning
network analysis. Their main advantage is that the process
of feature engineering is performed automatically by feature-
extraction layers. Some architectures adopted for graph anal-
ysis to be mentioned are Autoencoders and Recurrent Neural
Networks (RNN) described as follows.

An Autoencoder is a deep neural network made of two
symmetrical components, the Encoder, and the Decoder. The
first projects the input onto a lower-dimensional latent space,
also called embedding, while the second reconstructs the input
starting from this embedding, with fully connected layers of
the same Encoder’s shape. The objective function employed by
Autoencoders is usually the Mean Squared Error (MSE). The
structure is widely used in image processing to extract features
from pictures and making the model more robust introducing
noise, but it is also used in graphs for reconstructing their
nodes’ adjacencies [11], [14], [18]. What an Autoencoder tries
to do computing an embedding is to perform dimensionality
reduction, a task well known in machine learning and it is an
unsupervised learning method.

RNNs are also widely used architectures for graph analysis
able to model temporal sequences of the size to predict
the future. The most popular typologies of RNNs are the
sequence-2-sequence when a sequence of inputs is given as
input and another sequence of values is returned as output,
sequence-to-vector, if given a sequence of inputs, only a single
value is returned. One main drawback in RNN is that for every
input considered temporally, a layer is created. This enhanced
a very well known problem in Neural Networks: vanishing
gradient, which avoids the less recent layers to be updated by
the contributions at the new ones. Several techniques can be
used to solve this issue; one of these is using Long-Short Term
Memory (LSTM) layers [19], which can discriminate between
updates to be kept and ones to be thrown away.

III. MODEL

In this study, we propose a novel model, Temporal Edge
Embedding Neural Network (TEEN), a Semi-supervised End-
2-End neural network for binary classification. It can compute
the edge latent representation at every time step considered
in the dynamic graph and to use these edge embeddings to
extract temporal patterns and to predict the presence of a
connection between two nodes in the next graph snapshot.

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on March 31,2021 at 11:39:14 UTC from IEEE Xplore. Restrictions apply.

Arll, A7 inle
Ar & 5 § $

2 Ay Gl O——C, L q

H = AzH TIT

AL[] A\ oy

& \ o g ain

Subrrac!{)/. 1(}77:’ - % L] $

Q o0 ShT

'_E:..' . ,/ - ((’\ —

an $Ess— I

A0 OO

Fig. 2. TEEN Model Architecture

Aspects were taken into account while designing the models
are as follows: (1) support of repeating links (2) objective
function focused on label prediction (3) explicit presence
of link time series captured by the model. Repeating Link
Support (1) is a problem for all methods relying on static
embeddings as they only exploit graph topological features
instead of the temporal ones. Also, (1) is not taken into
account by matrix alignment techniques [10], [17] working
only for growing graphs. Secondly, having an object function
focused on correct label prediction is something missing in
many SOTA techniques, as these optimize the reconstruction
of the complete adjacency matrix. However, this optimization
works bad for repeating links and in general, it would not work
well in some cases (e.g., graphs with large number of nodes or
with high fraction of vanishing links). Aspect (3) refers to the
need for the model of receiving an input of edge time series.
Other baselines explored in this work are never given explicit
information of how a certain link varies time by time, such
as a vector v = [e;j', €52, ... eijT !, e;57] containing the
time series of the link weight at every time step. Instead, these
baselines need to extract automatically such information and
the temporal patterns associated with it from the adjacency
matrix given. We believe that, in the case of repeating link
prediction, giving such time-series information explicitly is
very helpful and that is why we consider this aspect when
designing TEEN.

A. Model Architecture

The model is shown in Figure 2 is made by 3 deep-learning
architectures: Deep Encoders, Edge Embeddings formation
and RNN Encoders, to which it follows the final label predic-
tion. Every piece of the model has its role in the architecture
that helps it to make better predictions. The two of Node
Encoders’ receives the 2 nodes’ neighborhoods (the row of
the graph adjacency matrix A') into the model at every time
step. Thus, the input of the model is of shape (B, N x 2,T),
where B is the mini-batch size, and T is the number of time
steps used to make the prediction. The 2 neighborhoods are

4423

projected onto a subspace with the use of 1" Deep Encoders
made of 3 layers each: the first of shape (B, D X 4), the
second (B, D x2), the third (B, D), where D is the embedding
dimension, and it is a hyperparameter to be tuned depending
on the data. After computing the latent representation of each
node, we get their difference and those are concatenated
together with the single embeddings and to the two edge
values: A:[i][j] for the edge i — j, A:[j][i] for the inverse
edge j — 1, both at that specific time step considered. Overall,
an edge latent space is formed of dimension D x 3 + 2. Note
that, if the graph is weighted, the edge value becomes the
weight itself. In our case, since our dataset is a weighted direct
graph of transactions, we concatenate the amount of money
exchanged between the parties properly standardized with the
following min-max standardization:

, x—min(x)

(D

The subtraction procedure has the goal of representing the
First-Order proximity between the 2 nodes representations.
The smaller the 2 embeddings difference is, the closer the
2 nodes are in the embedding space. This difference is also
minimized in the model loss function Eq. (2) described in
Section III-B. The idea is taken from Laplacian Eigenmaps
[20] and it was also employed in another Deep Learning
algorithm for link prediction [14]. To the edge embedding
concatenation, it follows the RNN Encoders for each of the
T concatenations capturing important temporal relationships
between each time-steps. The RNN Encoder is preferred to a
single RNN because it reduces further the dimension of the
inputs used by the model turning out in generalization. We
used 2 layers, each of size (B,T,D x 3+ 2) and (B,T, D)
from which is output a single latent representation of size D
of the edge at the next step 7'+ 1. Finally, the output predictor
provides for the label prediction. Being the goal of the model
to predict one label for the presence of a link in the model, the
natural choice for that model activation function was to use a
single neuron with sigmoid activation function outputting the
edge presence probability. The link presence is predicted if
this probability y;; is at least 0.5.

maz(x) — min(zx)

B. Loss Function

The loss function to be optimized is made of 2 components:
the label prediction loss L.,, computed using binary crossen-
tropy which maximizes the correct labeling, and an unsuper-
vised component L;4tens modeling the First-Order proximity
between the pair of nodes at every time step, penalizing the
big distances between their latent representation in case of a
present connection [14]. Thus, the loss to be minimized is:

Ltot - aLcr + (1 - a)Llatent (2)

With 0 < a < 1 is an hyperparameter weighting the
contribution of each component. In particular, we have:

T
1
Ligtent = E E E ef,j ’ ||th - X;H%
t=11ijeE

3)

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on March 31,2021 at 11:39:14 UTC from IEEE Xplore. Restrictions apply.

TABLE I
GRAPH DATASET INFORMATION

Dataset A Dataset B Dataset C

#Nodes ~4000 ~5000 ~1000
#Edges ~50000 ~50000 ~10000
Avg Degrees 13 12 12
Diameter 9 10 9
Clustering Coeff. 0.127 0.108 0.169
Avg Path Length 3.419 3.634 3.039
Density 0.004 0.003 0.011
Market Share Low-Mid Mid Mid-High
Pos/Neg Balance ~60% ~10% ~50%

1

Lcr = T
|E|

> wijlog(p(yis) — (1—yij)log(1—p(yi;)) (4)
i,jEE

Here E = EYUE2UE3 .- -UET j.e., the set of all existing
edges in the graph G up to time T. In Ljgtent, €} ; is the
label for the presence of an edge between nodes ¢ and j at
time ¢ and its value is 1 when the edge is present else 0, X}
and X! are the embedding vectors respectively of nodes i and
j at time ¢. In L., p(y) is the predicted probability for the
presence of the edge, y; ; is equal to einl i.e., the ground
truth label for the presence of link (i,) at future step 7"+ 1.

The model is trained using the traditional backpropagation
procedure of neural networks. Stochastic Gradient Descent
with Adam optimizer [21] is adopted. Being the model built
in an End-2-End fashion, the gradient is propagated to all the

backward layers in the network.

IV. EVALUATION
A. Dataset

We run our experiments on three transactional datasets
provided by a European bank. The networks are divided into
graph snapshots G, each represented as a Directed Weighted
Graph G = (V, E, W), where V is the set of nodes (clients), £
is the set of edges (financial relationships) and W is the weight
(amount of money exchanged) for every occurring edge. In
particular, such weights are number w;; € R. The datasets
are belonging to corporate clients (i.e., companies) and their
commercial relationship (supplier and buyer relationships). In
the case of multiple transactions within the designed time of
split for the graph snapshots, the weight becomes the sum of
all these amounts. Each country has its stand-alone dataset.
The business logic applied to every dataset as preprocessing
is as follows. (1) all the amount of money exchanges are
converted from local country currency into EUR; (2) trans-
actions having amounts lower than 100 EUR each is filtered
out. This action is suggested is reasonable as we are dealing
with corporate transactions whose amounts are higher than
retail bank transactions); (3) edges appeared only once in 4
years time window are filtered out; (4) clients having less than
3 counterparts are filtered out.

The main statistics for every table are shown in Table I.
Because of compliance reasons, some of the numerical values
are approximative. In the upper part, there is typical graph

4424

[All Data]

)

Test labels J

Validation labels

(Training data Training labels

[Training data ‘ Training labels

time

3 months

Fig. 3. Dataset split following a time-series settlement. Training data is split
into T graph snaphots of time period 3 months each

dataset information such as #Nodes, #Edges, and the density
of the graph. The last two values are market share, which
represents the share of the bank in the country from where
the dataset is taken, and the balance of positive/negative class
samples. The market share is an indicator for the fraction
of the total edges in that country are present in our dataset,
indeed, the only relationship having at least one counterpart
as a client is registered in the databases of the bank. The total
transactions between corporates in that country are not visible
to a single bank’s dataset. The balance of positive/negative
class represents the variability of the network: the bigger is
this percentage, the more are the clients maintaining stable
relationships. In our datasets, such stability is around 50%
except for Dataset B where it is 10% and there is a data
imbalance over negative samples. This problem has been cor-
rected using Keras sample weights technique [22]. Regarding
the connectivity, the graph is weakly connected. In general,
lots of strongly connected components are present suggesting
that most of the time, the relationship is directional. For this
reason, the links that will be evaluated are directional and
the bad prediction for an inverse-direction link is regularly
penalized as a non-existing edge.

B. Data Split

The dataset is split according to a traditional time-series
problem. Firstly, the network is divided into multiple graph
snapshots, each of a period of a guarter (3 months length).
Using a quarter when analyzing bank transactions is reason-
able from business sense since taxes are generally paid every
3 months. Moreover, this was a choice also performed in other
papers related to link prediction over transactional data [23].
Then, we used T' = 8 quarters for training and the next quarter
for testing. As shown in figure 3, when fitting the algorithm an
additional snapshot is required. When evaluating the model,
a moving window approach is used such that 8 snapshots are
used as input data and the next for assessing the results of
the prediction. A clearer picture of this process is visible in
Figure 3.

C. Evaluation Metrics

Given that the focus of this paper is on repeating link
prediction task, we evaluate the model performances with
binary classification methods, as explained in Section I. The
metrics used for the evaluation are AUC and F1-Score. A

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on March 31,2021 at 11:39:14 UTC from IEEE Xplore. Restrictions apply.

difference must be noticed when comparing new and repeating
edges as targets for link prediction. When evaluating new
links, the samples to assess can be any missing link in the
previous step. Given the sparsity of the networks evaluated,
target edges to be evaluated can be up to ©(|V|?). Moreover,
of those candidate pairs of nodes, only a few percentages
would develop a connection and it enhances the well-known
imbalanced dataset problem. In this case, usually, it is selected
only a relevant subset of data such that there is a balance
between the number of positive and negative class samples
[17]. When evaluating on repeating links, the abovementioned
problem does not subsist and the target pairs to be considered
are determined to look at existing edges from time ¢t = 1 up
to timestep ¢t = T'. Moreover, the imbalanced dataset problem
becomes an issue only if the dataset is highly variable, which
is not our case except for dataset B as shown in I. For this
reason, we are also going to evaluate Prediction and Recall
for the positive class as metrics exclusively for Dataset B.

D. Hyperparameter Tuning

Hyperparameter tuning is a fundamental process to be
managed to reach good results when using Deep Learning
algorithms. Given the presence of many works related to
ours, some of which containing the same architectures, we
start following the suggestions present in the literature on
papers [12], [18]. Then, we find the best parameters using
a grid search method on the validation set. The final results
are instead related to the test scores as explained in 3. As
hyperparameters, we decided to not include the number of
neurons at each layer but fix a configuration where the number
of neurons is proportional to the dimension of the embedding
chosen (detailed in Table II).

V. RESULTS

In this section, we report the results obtained on the
evaluation of the repeating link prediction task over the three
datasets discussed in Section IV. We compare the performance
of our solution model TEEN with 5 SOTA models, 3 Static
LP techniques and a simple unsupervised baseline. The section
also shows results in terms of the number of parameters used
by the models and training and prediction time.

A. Experimental Results

The empirical results on Table II show that TEEN can
outperform all the other models by a significant margin on
the three datasets of study both on AUC and on FI-Score
(indicated as F1 in the table). In this section, we focus more
deeply on TEEN and we analyze its training process for
every dataset of study in terms of hyperparameter choice and
on metrics. We will complement the analysis showing some
figures to understand the evolution of the metrics during the
validation phase.

We plot the performance obtained over 16 epochs for the
validation set in terms of AUC in figure 4. The highest AUC
is obtained by dataset B with a score of 0.9252, it follows
dataset A obtains an AUC of 0.8865 and dataset C with AUC

4425

TABLE 11
RESULTS OVER OUR THREE TRANSACTIONAL DATASETS

Dataset A Dataset B Dataset C
Approach AUC F1 AUC F1 AUC F1
Common Neighbors 0.521 0.523 0.513 0.518 0.543 0.544
Node2Vec 0.579 0.539 0.679 0.520 0.593 0.521
HOPE 0.626 0.561 0.615 0.502 0.621 0.555
SDNE 0.546 0.528 0.607 0.512 0.560 0.520
TNodeEmbed 0.632 0.572 0.812 0.522 0.641 0.564
DynAE 0.732 0.681 0.799 0.701. 0.716 0.678
DynRNN 0.739 0.685 0.798 0.690 0.725 0.679
DynAERNN 0.793 0.705 0912 0.727 0.803 0.701
DDNE 0.752 0.718 0.841 0.789 0.745 0.726
TEEN 0.874 0.795 0963 0.855 0.859 0.786

Hom B B ou B

Eoocns Eochs

Fig. 4. AUC (on the left) F1-Score macro avg (on the right) for all datasets

of 0.8633. Regarding the F1-Score, we present the results in
figure 4. Here we obtain the same score for datasets A and B
(0.8058) and a slightly lower score for dataset C (0.7819).
Overall, we find out that good results are reached almost
immediately after a few epochs. Since we give the model
the explicit time series of link occurrence at every time step,
it quickly learns the easy patterns depending on that, for
instance, links always present are likely to remain during the
next step also. In the epochs later, the features provided by
the embeddings come into play helping the model improving
its performance further. We notice that AUC is constantly
growing, instead, F1-Score is likely to fluctuate more. As
mentioned before, this is because of the hard scores used to
calculated this metric, which is very sensitive to small changes
of direction of model output probabilities.

The fluctuation observed in the plots is motivated by the
fact that the architecture struggles more in searching for
equilibrium to minimize the total loss function.

As mentioned earlier in Section IV, we study precision and
recall for the positive class samples on dataset B and plot their
values on the first 16 epochs in figure 5. Using class_weights

Fig. 5. Precision, Recall and F1-Score for Dataset B using class_weight (on
the right) and without (on the left)

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on March 31,2021 at 11:39:14 UTC from IEEE Xplore. Restrictions apply.

0891 _m Loss alpha = 0.75

—=— Loss alpha = 0.9
—e— Loss alpha = 0.95
Loss alpha = 0.98

Loss alpha = 0.99
—»— lossalpha=1

0.87

086

Valid AUC

085

034

Epochs

Fig. 6. AUC score at different ojg¢ene values (Dataset A)

parameter shows good results allowing us to obtain a balanced
score for Precision, Recall, and F1-Score on the positive class
samples.

B. Effect of Latent Loss on Model Performance

In this section, we investigate how the contribution of the
latent loss on the total objective function impacts the results.
In figure 6 we compare the AUC scores obtained on dataset
A on different o values. We remind that « is the parameter
controlling the balancing the contribution of the binary cross-
entropy and the latent losses on the total objective function,
as described in Section III-B. From the plotted graph, it is
possible to notice the regularizing effect of the latent losses:
the higher is the alpha, the smaller is the regularizing effect
and the algorithm reaches a non-optimal peak quicker. Instead,
if alpha decreases, the algorithm can reach better results
with more epochs. In other words, the value 1 — « is the
regularization term. In the extreme cases of « 1 and
o = 0.75 we notice that the latter configuration provides an
increment of 3% on both macro F1-Score and AUC. The score
is calculated concerning the respective peak scores.

It is also interesting to assess the evolution of the latent
losses on our algorithm. As described in Section III-B, we
employ a latent loss for every time step evaluating the distance
between the node pair for T times (or lookback). In our dataset,
we consider the lookback of 8-time steps. In Figure 7 we plot
the validation L;4tcn: Value for every time step, ordered from
the oldest (latent_loss_I) to the most recent (latent_loss_8)
and we see how they evolve over 16 epochs of training. It
is possible to notice that the newer are the components, the
smaller is their value, suggesting a bigger correlation between
the connections present at recent timesteps with the one to
be predicted. Interestingly, we see that this rule is not valid
for latent_loss_1 and latent loss_5, which are closer. This is
reasonable as, in our dataset, we consider units of three months
each, hence, latent_loss_I and latent_loss_5 corresponds to
the same quarter of the one to be evaluated and the algorithm
understands such correlation.

4426

—#— latent Loss t=1
Latent Loss t=2

@~ Latent Loss t=3
Latent Loss t=4

=+ Latent Loss t=5
=%¥- Latent Loss t=6
—#— Latent Loss t=7
—&— Llatent Loss t=8

Epochs

Fig. 7. Latent loss for every timestep (Dataset A)

TABLE III
HYPERPARAMETERS CHOICE IN THE FINAL MODEL CONFIGURATION

Dataset A Dataset B Dataset C

Learning rate le-4 8e-5 6e-4
Embedding Dimension 128 200 50
Alphajgtent 0.75 0.95 0.85
Alphagru 1.0 1.0 1.0
Lookback 8 8 8
Batch size 100 100 100
Optimizer Adam Adam Adam

C. Effect of Embedding Dimension on Model Performance

The embedding dimension is an important hyperparameter
that affects consistently the performance of the algorithm. To
decide for its best value, we have to take into account at
the same time the dimension of the input (which depends on
the number of nodes in the graph considered), the number
of parameters introduced in the model, and the generalization
properties we want the architecture to preserve. In general, the
bigger is the number of embedding neurons, the easier it is
to reconstruct the node neighborhood given as input from the
latent space. At the same time, the bigger is the embedding,
the more are the number of parameters and the worse is the
generalization of newly seen inputs. We validate the dimension
of the embedding chosen using grid search; finally, we arrive
at the values listed in III. Overall, we notice that when
embedding dimensions are increased too much, the algorithm
has difficulty to reach high performances showing instability
and overfitting. Instead, when it is too low, it overgeneralizes
reaching the peak and dropping quickly. In figure 8 we plot
the AUC score obtained on dataset A at different embedding
values. The best configuration is between 80 and 100, in the
middle, such that the extracted embeddings can capture the
role of the nodes in the graph.

D. Other results

In Table IV we present the number of embedding dimen-
sions, parameters, and hyperparameters adopted for the Deep
Learning-based models adopted in the evaluation. Overall,
we notice that TEEN presents a high number of parameters,

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on March 31,2021 at 11:39:14 UTC from IEEE Xplore. Restrictions apply.

087

086

Valid AUC
o
&

084

—# Dim Embeddings = 60
== Dim Embeddings = 80
=&= Dim Embeddings = 100
Dim Embeddings = 150
—+ Dim Embeddings = 200

o 1 2 3 4 5 & 7 & 9 1 U1 1 13 1 5
Epochs

Fig. 8. AUC score for different Embedding Dimensions (Dataset A)

TABLE IV
COMPASION OF THE MODEL ON ADDITIONAL METRICS (DATASET B)

Dim. Emb. # Train Params. # Hyperparams
TNodeEmbed 150 225,901 6
DynAE 256 4,899,896 10
DynRNN 256 96,807,440 10
DynAERNN 256 24,324,056 10
DDNE 150 36,428,301 9
TEEN 150 44,201,147 8

mainly due to the pair of nodes encoder structure. The most
expensive model in terms of trainable parameters is DynRNN;
as also stated in its paper [18], the algorithm suffers from the
high number of parameters as received in input the adjacency
vector of the node directly. Moreover, we observe that our
model, similarly to TNodeEmbed and DDNE, uses a smaller
embedding dimension as they do not need to perform the
final adjacency reconstruction as the other methods [11]. We
decided to include the Embedding dimension as it is strongly
connected to the size of the architecture, thus, influencing
the number of trainable parameters. A better description of
how the two are influenced is explained in Section III-A. The
number of hyperparameters shown here gives an intuition on
how difficult it is to perform fine-tuning for each algorithm. All
the models must deal with the following 6 hyperparameters:
the number of epochs, learning rate, embedding dimension,
lookback, batch size, and optimizer. The difference is in terms
of regularization and encoder-decoder size. In TNodeEmbed
we have the lowest number of hyperparameters due to the
simple architecture; DynAE, DynRNN and DynAERNN have
the maximum number hyperparameters; our model has 8
hyperparameters including the above-mentioned 6 and the
following 2: qqtent, controlling the contribution of latent
loss in the objective function and .. On average, TEEN
provides a lower number of hyperparameters thanks to the
latent loss regularization which makes useless other types of
regularization such as dropout or 11-norm and 12-norm, which
were explored in TEEN but did not show any improvement
on its performances.

4427

VI. RELATED WORK

The techniques to solve the Dynamic Link Prediction prob-
lem are numerous: on a recent survey of Divakaran et al [17],
the authors identify 8 different classes of algorithms. However,
only some of the methods of studying these approaches are
valuable to mention in this background section because some
of them focus only on the new link prediction task. One of
them is TNodeEmbed, [10], where the authors employ static
embedding nodes in sequential temporal order having the
goal of enriching the node representation through time and
performing the prediction of the link. The algorithm works
in the following way. Firstly, the embedding is computed for
every node at every time step. Secondly, the output vectors
are aligned in pairs of 2 consecutive embeddings applying
the Orthogonal Procrustes technique [24], an algebraic linear
transformation. Finally, the authors employ the output from
the application of Orthogonal Procrustes of each node into
a Recurrent Neural Network (RNN) model, in particular, a
LSTM multi-layered model using embedding to infer the link
prediction at the next step.

Important algorithms relevant for this paper are the ones
presented in the DynamicGEM framework [11]. It comprises
the implementation of three relevant deep learning techniques
for dynamic graph analysis. The first architecture introduced
in [18] is dynamic2vecAE, where Deep-AutoEncoders are
employed on every static graph of the temporal snapshots G,
then, every output embedding graph representation Y%, is
connected one sequentially such that the new task becomes
not the reconstruction, but the prediction of the following
step adjacency matrix. For this purpose, a new parameter [is
introduced, the loopback, which is the number of time steps to
take into account for the training process of the algorithm (how
long is the chain of interconnected graph embeddings). One
limitation of dynamic2vecAE is the incredibly high number
of parameters employed, which is O(nld"), with n = |V|
the number of vertices, 1 the loopback and d* the number
of neurons for the embedding layer. k£ is the number of
the layer where embedding is created. Secondly, the authors
adopt a RNN to solve this issue with the model named dy-
namic2vecRNN. Every node representation is passed through
multiple RNN and encoded in a lower-dimension space, and
then decoded with other multiple LSTM gates. Even applying
the RNN, still, the model has a huge number of parameters,
mainly because the representation of the node neighborhood
is a sparse vector of dimension n. The third architecture solves
this issue: the authors introduce dynamic2vecAERNN where
the inputs are now the embeddings computed with the deep-
autoencoders model.

Other important works in the area of Network Representa-
tion Learning are [25] and [26]. In the first, the authors build
a 4-step framework for link prediction: Graph Embedding,
Manifold alignment, Trajectory Prediction, Graph Reconstruc-
tion, to which follows the evaluation on the link prediction
task (both for repeating links and new links). The alignment
is performed with the Orthogonal Procrustes procedure [24]

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on March 31,2021 at 11:39:14 UTC from IEEE Xplore. Restrictions apply.

also employed in TNodeEmbed [10]. In the second [26], the
authors provide a distinction between the formation of new
edges with the dissolution of the present ones at the previous
step, identifying two distinct objective functions which are
computed based on the different link formation and link
dissolution prediction task.

VII. CONCLUSION AND FUTURE WORK

In this work, we have proposed TEEN, a novel method
of repeating link prediction over dynamic graphs using Deep
Learning. TEEN includes a number of improvements con-
cerning the other SOTA approaches considered. The edge
embedding representation turned out to play an important role.
Firstly, node embeddings are learned independently from each
other using two deep encoders to preserve their role in the
graph. Secondly, these are concatenated together with their
subtraction and with the direct and inverse edge values. We
introduced an edge value concatenation which makes possible
to the model understanding the temporal patterns present in
the time series. Another improvement our work offers is in
the latent loss, which is an additional loss function optimizing
for the proximity of the two nodes latent representations at a
certain time step ¢. We validated the impact of latent loss on
the model and obtained a notably good result, as shown in
Figure 6, observing how increasing the weighting of such loss
acted as a form of regularization. Besides very encouraging
results, some limitations are present, such as the scalability
issue of the model that was not addressed in this work, also
due to the number of distinct nodes in scope were only few
thousands. We plan to address the scalability issue in the
future work, by streamlining the architecture and reducing the
number of trainable parameters.

Further future work includes extending of the study on
multiple datasets, multiple baselines to compare, and a deeper
exploration of the hyperparameters. An interesting direction
for future work would be to test our model also on new edges:
we believe that the improvements over the pair proximity
would be able to achieve interesting results compared to other
baselines. Another promising direction for the this work is on
improvement of the node embeddings’ quality in the graph.
In our model, we did not use any additional attributes for
the nodes even though many advanced embedding techniques
are using a vector of features for every node to do it [27]-
[29]. Some of these features can also be extracted by the
graph itself; in TEEN we tried to do it creating two different
embeddings for a node: the first associated with the source
node and the second for the target node, as shown in figure
2. Furthermore, we plan to explore context sensitive GRL and
extract multiple embedding for the same node relative to the
multiple roles it has. The idea, as explained in the paper of
Kefato et al [30], improved the performance in many graph
analytics tasks. We believe that, especially for transactional
datasets, computing context-sensitive embeddings would be
beneficial and would allow us to improve the explainability of
the model, for instance, being able to distinguish the features
associated to the different roles of each node.

4428

[1]

[2]

[3]
[4]

[5

[t}

[6]

[7

—

[8

—

[9]

[10]

(11]

(12]
[13]
[14]

[15]

[16]

(17]

(18]

[19]
[20]
[21]
[22]
[23]
[24]

(25]

[26]
[27]
[28]
[29]

(30]

REFERENCES

D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for
social networks,” Journal of the American society for information
science and technology, vol. 58, no. 7, pp. 1019-1031, 2007.

M. Al Hasan, V. Chaoji, S. Salem, and M. Zaki, “Link prediction using
supervised learning,” in SDMO06: workshop on link analysis, counter-
terrorism and security, vol. 30, 2006, pp. 798-805.

X. Yu, Q. Gu, M. Zhou, and J. Han, “Citation prediction in heteroge-
neous bibliographic networks.” SIAM, 2012.

Y. Yang, R. N. Lichtenwalter, and N. V. Chawla, “Evaluating
link prediction methods,” Oct 2014. [Online]. Available: http:
//dx.doi.org/10.1007/s10115-014-0789-0

T. Tylenda, R. Angelova, and S. Bedathur, “Towards time-aware link
prediction in evolving social networks,” 06 2009.

S. Oyama, K. Hayashi, and H. Kashima, “Cross-temporal link predic-
tion,” in 2011 IEEE 1lth International Conference on Data Mining.
IEEE, 2011, pp. 1188-1193.

M. LANKESHWARA et al., “Time-aware methods for link prediction
in social networks,” 2013.

A. Patel, J. Agrawal, and S. Sharma, “Link prediction-based multi-label
classification on networked data using apriori algorithm.”

R. Hisano, “Semi-supervised graph embedding approach to dynamic link
prediction,” in International Workshop on Complex Networks. Springer,
2018, pp. 109-121.

U. Singer, I. Guy, and K. Radinsky, “Node embedding over temporal
graphs,” 03 2019.

P. Goyal, S. R. Chhetri, N. Mehrabi, E. Ferrara, and A. Canedo,
“Dynamicgem: A library for dynamic graph embedding methods,” arXiv
preprint arXiv:1811.10734, 2018.

T. Li, J. Zhang, P. S. Yu, Y. Zhang, and Y. Yan, “Deep dynamic network
embedding for link prediction,” IEEE Access, vol. 6, 2018.

A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” vol. 2016, 07 2016, pp. 855-864.

D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,”
2016. [Online]. Available: https://doi.org/10.1145/2939672.2939753

M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric transitivity
preserving graph embedding,” p. 1105-1114, 2016. [Online]. Available:
https://doi.org/10.1145/2939672.2939751

M. Hasan, V. Chaoji, S. Salem, and M. Zaki, “Link prediction using
supervised learning,” 01 2006.

A. Divakaran and A. Mohan, “Temporal link prediction: A survey,”
New Generation Computing, 2019. [Online]. Available: https://doi.org/
10.1007/s00354-019-00065-z

P. Goyal, S. R. Chhetri, and A. Canedo, “dyngraph2vec: Capturing
network dynamics using dynamic graph representation learning,”
Knowledge-Based Systems, 2020. [Online]. Available: http://dx.doi.org/
10.1016/j.knosys.2019.06.024

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, p. 1735-1780, Nov. 1997.

M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality
reduction and data representation,” Neural Comput., vol. 15, no. 6, 2003.
D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014.

F. Chollet et al., “Keras,” 2015.

V. Shumovskaia, K. Fedyanin, I. Sukharev, D. Berestnev, and M. Panov,
“Linking bank clients using graph neural networks powered by rich
transactional data,” 2020.

C. Wang and S. Mahadevan, “Manifold alignment using procrustes
analysis,” p. 1120-1127, 2008. [Online]. Available: https://doi.org/10.
1145/1390156.1390297

C. Fang, M. Kohram, X. Meng, and A. L. Ralescu, “Graph embedding
framework for link prediction and vertex behavior modeling in temporal
social networks,” 2011.

R. Hisano, “Semi-supervised graph embedding approach to dynamic link
prediction,” pp. 109-121, 2018.

W. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” 06 2017.
Z. T. Kefato and S. Girdzijauskas,
pooling,” 2020.

M. Zhang and Y. Chen, “Link prediction based on graph neural net-
works,” arXiv preprint arXiv:1802.09691, 2018.

Z. T. Kefato and S. Girdzijauskas, “Gossip and attend: Context-sensitive
graph representation learning,” 2020.

“Graph neighborhood attentive

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on March 31,2021 at 11:39:14 UTC from IEEE Xplore. Restrictions apply.

