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Abstract. Sequences of event intervals occur in several application do-
mains, while their inherent complexity hinders scalable solutions to tasks
such as clustering and classification. In this paper, we propose a novel
spectral embedding representation of event interval sequences that re-
lies on bipartite graphs. More concretely, each event interval sequence
is represented by a bipartite graph by following three main steps: (1)
creating a hash table that can quickly convert a collection of event in-
terval sequences into a bipartite graph representation, (2) creating and
regularizing a bi-adjacency matrix corresponding to the bipartite graph,
(3) defining a spectral embedding mapping on the bi-adjacency matrix.
In addition, we show that substantial improvements can be achieved with
regard to classification performance through pruning parameters that
capture the nature of the relations formed by the event intervals. We
demonstrate through extensive experimental evaluation on five real-world
datasets that our approach can obtain runtime speedups of up to two
orders of magnitude compared to other state-of-the-art methods and
similar or better clustering and classification performance.

Keywords: event intervals · bipartite graph · spectral embedding ·
clustering · classification.

1 Introduction

The problem of sequential pattern mining has been studied in many application
areas, and the main goal is to extract frequent patterns from event sequences [10,
22] or cluster instances that are characterized by similar patterns [13]. However,
a major limitation of traditional sequential pattern mining algorithms is their
assumption that events occur instantaneously. As a result, they fail to capture
temporal relations that may occur between events, in application areas where
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events have a time duration. To overcome this limitation, a wide body of research
has been developed where the notion of event is extended to that of event interval.
The advantage of this representation is that it can model event durations and
hence the relationships between different event intervals based on their relative
time positions, providing further insights into the nature of the underlying events.
A wide range of application areas employ event interval representations, including
including medicine [18], geoinformatics [14], or sign language [11].
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Fig. 1. Example of an sequence of eight event intervals of three event labels (A, B, and
C). The time-span of the sequence is 22 time points.

Example. Fig. 1 represents a sequence of nine event intervals defined over an
alphabet of three labels, A, B, and C. Each event interval is characterized by a
specific label, as well as its start and end time points. Over time, the same event
label can appear multiple times, and a different type of temporal relation can
occur between each pair of event labels.

A multi-set of event intervals arranged in chronological order constitutes an event
interval sequence. Relative relations between many events that occur within a
sequence can lead to various forms of temporal compositions, e.g., by considering
the temporal relations between the events using Allen’s temporal logic [1]. In this
setting, one challenging problem is finding robust and computationally cheap
distance or similarity functions that can effectively capture the commonalities
between pairs of such complex sequences. Such functions can then be used to
provide scalable solutions to the problems of clustering and classification.

1.1 Related work

Early research on classification and clustering of sequences of temporal intervals
has been focusing mostly on defining proper distance functions between the
sequences. One such distance metric is Artemis [7], which calculates the distance
between two event interval sequences by computing the ratio of temporal relations
of specific pairs that both sequences have in common. In this case, the absolute
time duration of each sequence is ignored, which makes Artemis oblivious to the
length of the sequences. However, this method requires a substantial amount of
computation time for checking all temporal relations occurring before and after
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each and every event interval in a sequence. The application of this metric to
k-NN classification demonstrated promising predictive performance.

An alternative measure, called IBSM [8], calculates the distance between
two event interval sequences by constructing a binary matrix per sequence
that is used to monitor the active event labels at each time point without
explicitly considering any temporal relations between the events. Each time point
is represented by a binary vector of size equal to the number of event labels
in the alphabet, having its cells set to 1 for those labels that are active during
that time point, while all other cells are set to 0. The main difference between
IBSM and Artemis is that the former considers the time duration of each event
interval to be crucial for the distance computation while the latter only considers
their temporal relations irrespective of time duration. Moreover, in the case of
IBSM, the distance computation between the binary matrices is fast. Nonetheless,
since each sequence’s absolute time points are different, extra processing time is
required for interpolating the sequences to match their size. As a result, the time
computation can be substantially slower when it involves sequence pairs with
the highly disproportional number of event labels and time durations.

Recently, STIFE [2] has been proposed for classifying sequences of event
intervals by using a combination of static and temporal features extracted from
the sequences. The temporal features include pairs of event intervals that can
achieve high class-separation (e.g., with respect to information gain). Nonetheless,
the feature extraction time can make the algorithm even slower than IBSM.
Furthermore, the extracted features are calibrated for feature-based classification
and cannot be directly applied to other tasks, such as clustering.

Finally, the connection between graphs and temporal intervals is demon-
strated by converting dynamic graphs to event intervals [6]. In this paper, we
demonstrate that our proposed bipartite graph representation can be used to
define a feature space at a substantially lower computational cost by using graph
spectral embeddings, hence addressing the aforementioned scalability deficien-
cies of the three main competitors, i.e., ARTEMIS, IBSM, and STIFE. Graph
spectral embeddings constitute a common clustering technique in graph mining
for capturing community structure in graphs [12, 20, 21]. For bipartite graphs,
bi-spectral clustering is introduced to speed up the embedding process using the
bi-adjacency matrix, which removes the space for edges between instances in the
same set from adjacency matrix [9], and its variants have been introduced on
stochastic block model [24]. In recent years, the technique of regularizing this
affinity matrix has been actively studied [3, 15] and shown to work well in terms
of eigenvector perturbation on stochastic block model [5], conductance [23], and
sensitivity to outliers [4]. This embedding space of an affinity matrix can also
be used as a feature space for classification, showing better performance than
previous distance metrics [17].

1.2 Contributions

In this paper, we propose a time-efficient approach for mapping event interval
sequences to the spectral feature space of a bipartite graph representing the orig-



4 Z. Lee et al.

inal sequences. We additionally introduce space pruning techniques for achieving
further speedups for both classification and clustering. The main contributions
of this paper are summarized as follows:

– Novelty. We propose a novel three-step framework for representing se-
quences of event intervals by (1) constructing a search-efficient data structure
(G-HashTable), (2) mapping the e-sequences to bipartite graphs, and (3)
exploiting the bipartite graph representation to eventually map them to their
corresponding spectral graph embedding space (Z-Embedding);

– Efficiency. The proposed three-step mapping results in a new feature space
constructed with substantially less computation time (up to a factor of 200)
compared to existing state-of-the-art representations;

– Flexibility. the proposed representation additionally exploits vertical and
horizontal supports to represent the nature of the interval data space better,
as well as three pruning parameters {maxSup, minSup, gap} for adding
flexibility to the targeted features;

– Clustering performance. We demonstrate that the proposed represen-
tation can achieve higher clustering purity values than earlier methods for
clustering event interval sequences on five real-world datasets;

– Classification performance. Using the same datasets, we demonstrate
that the proposed feature space can achieve comparable classification per-
formance against state-of-the-art classification methods for event interval
sequences while maintaining substantially low computation time.

2 Background

Let Σ = {e1, . . . , em} be a set of m event labels. An event that occurs during
a specific time duration is called event interval. A set of event intervals for the
same entity (e.g., a patient in a medical dataset) forms an event-interval sequence
or e-sequence. Next, we provide more formal definitions for these two concepts.

Definition 1. (event interval) An event interval s = (e, ts, te) is defined as
a tuple of three elements, where s.e ∈ Σ and s.ts, s.te define the start and end
time of the interval, with s.ts ≤ s.te.

In the special case where s.ts = s.te, the event interval is instantaneous.

Definition 2. (e-sequence) An e-sequence S={s1, . . . , sn} is a collection of
event intervals. Event intervals in an e-sequence are sorted chronologically and
can contain the same event label multiple times. More concretely, they first follow
an ascending order based on their start time. If the start times are the same, the
end times are arranged in ascending order. If the end times are also the same,
they follow the order in which event labels are lexicographically sorted.

We consider seven temporal relations (see Fig. 2), defined in the following set,
I = {follows, meets, overlaps, matches, contains, left-matches, right-matches}.
Formally, a temporal relation R between two event intervals sa and sb, with
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Fig. 2. Seven temporal relations that two event intervals can have, as defined in Allen’s
temporal logic [1].

sa.e = ei, sb.e = ej , is defined as a triplet < ei, ej , r >, with r ∈ I. In [1], the
number of relations is 13, including six inverse relations, but it can be reduced
to seven by forcing the order by start time and removing six inverse relations
except for matches, which does not have an inverse form. In several applications,
we may not be interested in the absolute time values of event intervals but rather
in the temporal relations between them. Hence, a simplified representation may
be used.

Definition 3. (vertical support) Given an e-sequence S = {s1, . . . , sn} and
a temporal relation R =< ei, ej , r > defined by event labels ei, ej ∈ Σ, with r ∈ I,
the vertical support of R is defined as the number of e-sequences where event
labels ei, ej occur with relation r.

While there can be multiple occurrences of R in the same e-sequence, the relation
is counted only once.

Let function occ(·) indicate a single occurrence of a temporal relation in an
e-sequence, such that occ(R,S) = 1 if R occurs in S, and 0 otherwise. We define
a frequency function F : [0, |D|] → [0, 1] that computes the relative vertical
support of a temporal relation R in an e-sequence database D as follows:

F(R) =
1

|D|

|D|∑
Si∈D

occ(R,Si) .

Definition 4. (horizontal support) Given an e-sequence S and a temporal
relation R, the horizontal support of R is defined as the number of occurrences
of R in S.

For horizontal support, multiple occurrences of R in the same e-sequence are
counted.

Problem 5. (relation-preserving embedding) Given an e-sequence S with u
being the total number of temporal relations in S, define a mapping function to
an embedding vector space Rd, with d ≤ u such that f : S −→ Rd, where the
underlying temporal relations in S are preserved.

By construction, the proposed embedding space achieves substantially scalable
solutions to the problems of clustering and classification of e-sequences.
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3 Z-Embedding: a spectral embedding representation of
event interval sequences

id Event intervals

1 (A, 1, 3), (B, 1, 3), (A, 14, 16)

2 (A, 1, 6), (B, 6, 8), (A, 10, 12), (C, 13, 17)

3 (A, 4, 7), (B, 11, 12)

4 (B, 1, 5), (A, 6, 14), (B, 6, 14), (A, 17, 18)

<A, A, follows>

<A, B, matches>

<A, B, meets>

<A, B, follows>

<A, C, follows>

<B, A, follows>

<B, B, follows>

<B, C, follows>
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R1 R2 R3 R4

1 1+0.01 0+0.01 0+0.01 0+0.01

2 1+0.01 0+0.01 2+0.01 1+0.01

3 0+0.01 0+0.01 0+0.01 0+0.01

4 0+0.01 1+0.01 1+0.01 2+0.01

Normalization

Embedding

HE[Si.id]
k k

Fig. 3. An example of the process of Z-Embedding with the parameters {minSup :
0.5, maxSup : 1, gap : 0.5.}

Z-Embedding is an efficient three-step framework for converting an e-sequence
database into a spectral embedding vector space representation, where important
structural information regarding the temporal relations in the e-sequences is
preserved by pruning techniques, hence facilitating scalable clustering and clas-
sification. The first two steps of the framework convert the original e-sequence
database into a bipartite graph, while at the third step, the bipartite graph is
converted into a spectral embedding space. The final space representation can
then be readily used by off-the-shelf clustering or classification algorithms. These
steps, also outlined in Figure 3 and Algorithm 1, are described below:

1. Construction of G-HashTable: This is a data structure that efficiently
stores the information needed to create a bipartite graph after scanning
an e-sequence database. We can apply various pruning processes based on
temporal relations to the table for better graph representation.

2. Conversion to a bipartite graph: The pruned table is converted to a
weighted bipartite graph with two vertex sets of e-sequences and temporal
relations. The bipartite graph is represented as a form of a bi-adjacency
matrix. We represent the bipartite graph with the two interestingness factors
defined in Section 2, i.e., vertical support and horizontal support [18]. We use
vertical support as a pruning factor because it is a measure of how prevalent
the temporal relation is across the entire database, while horizontal support
is used as a weight of the edge of the graph since it represents the strength
of a specific temporal relation in different e-sequences.
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3. Spectral embedding of the bipartite graph: After generating the bi-
adjacency matrix, the feature vector of each e-sequence is generated through
regularization and singular value decomposition, hence reducing the complex-
ity and dimensionality of the e-sequences.

Since Z-Embedding results in numerical feature vector representation of e-
sequences, we can apply a wide range of classification and clustering algorithms
compared to previous distance-based (e.g., Artemis, IBSM ) and non-numerical-
feature-based methods (e.g., STIFE ).

Algorithm 1: Z-Embedding

Data: D: E-sequence database, d: dimension factor
constraints: predefined constraints {minSup, maxSup, gap}

Result: U : Row embedding of regularized bi-adjacency matrix
1 // Step 1: Construction of G-HashTable

2 HT = {};
3 for Si ∈ D do
4 for sa, sb[sa < sb] ∈ Si do
5 r ← getRelation(sa, sb, constraints.gap);
6 if r 6= None then
7 R← (sa.e, sb.e, r);
8 if R /∈ HT then
9 HT .index(R);

10 if Si.id /∈ HT [R] then
11 HT [R].index(Si.id);

12 HT [R][Si.id].addHorizontalSupport();

13 for Rk ∈ HT do
14 if F(R) < constraints.minSup ∨ F(R) > constraints.maxSup then
15 remove HT [Rk]

16 // Step 2: Conversion to a bipartite graph

17 B = 0|D|×|HT |;
18 for Rj ∈ HT do
19 for Si.id ∈ HT [Rk] do
20 B[Si.id][hash(Rk, |HT |)] = HT [Rk][Si.id];

21 // Step 3: Spectral embedding of the bipartite graph
BS = spectralEmbedding(B, d);

22 return BS

3.1 Construction of G-HashTable

G-HashTable is a hash table composed of three layers constructed from the e-
sequence database for facilitating its conversion to a bipartite graph. It efficiently
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R1: <e1, e1, r1>

R2: <e1, e1, r2>

R3: <e1, e1, r3>

R4: <e1, e1, r4>

R5: <e2, e1, r1>

R6: <e2, e1, r2>

…

Ru: <e|Σ|, e|Σ|, r|I|>

S1.id
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S3.id

S7.id
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S1.id

S2.id

…

S24.id

Temporal relation
hash table

HT

E-sequence 
hash table

HE

2) Frequency Pruning 
{minSup, maxSup}
minSup ≤ F(Rk) ≤ maxSup
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{Gap}

s1.end – s2.start ≤ gap

DB

Edge 
weights
HE[i]

3

2

5
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3
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6

R1 R2 R3 … R|HT|

S1 3 2 1 … 0

S2 2 3 3 … 5

S3 5 4 4 … 0

… … … … … …

S|D| 4 5 0 … 0

Weighted 
bi-adjacency matrix

|D|x|HT|

Add e-sequences

Check F(Rk) for pruning

Add e-sequences

Check F(Rk) for pruning

getRelation()

Fig. 4. An instantiation of G-HashTable.

maintains all information for the conversion and occurrence-based pruning by
scanning temporal relations only once in the database. There are two main steps
to creating the hash table: (1) construction step (blue arrows in Fig. 4), (2)
pruning step (orange arrows in Fig. 4).

Construction step. First, we traverse all event intervals in the e-sequence
database in chronological order. For target event interval sa, we make a pair
with all event intervals sb that occur after sa. Thereafter, we check the temporal
relation between event intervals sa and sb (lines 1-5, Algorithm 1). Then, a
temporal relation between them, Rk =< sa.e, sb.e, r >, with r ∈ I is formed and
stored as a key in the first hash table HT , which we call temporal relation hash
table (lines 6-9). Whenever a relation Rk is found, we identify the e-sequence id
containing it, and use it as a key in the second hash table HE , called e-sequence
hash table (lines 10-11). We note that each record HT [Rk] ∈ HT is mapped to its
respective e-sequence hash table, denoted as Hk

E . The keys of this hash table are
the e-sequence ids where Rk occurs, while the values are the edge weights of the
bipartite graph quantifying the occurrence Rk in the e-sequence. When we firstly
create a specific key, we set the value in Hk

E equal to one, which corresponds to
the horizontal support of the temporal relation in the e-sequence. Thus, if the
same temporal relation Rk occurs more than once in the same e-sequence Si, we
add the count to Hk

E [i] to update its horizontal support (line 12).

Pruning step. The pruning step helps limit the unnecessary formation of
relations and helping graph only to represent necessary information; This step
consists of two sub-steps, which occur at different times:

1. Gap pruning: A gap constraint limits the maximum distance of follows
relations between intervals. This pruning process eliminates unnecessary
relations that occur just because they are far apart rather than having
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a meaningful relation. The gap is checked when checking the temporal
relation while scanning the database (line 5, Algorithm 1). We receive the
gap constraint with a value in the range [0, 1], meaning the ratio of the
average time duration of e-sequences and prune the follows relations having
a distance above that ratio.

2. Frequency pruning: Frequency pruning is a step of removing temporal
relations Rk, whose relative vertical supports F(Rk) are below or above the
predefined criteria after the table is completely formed (lines 13-15). To do
this, we impose the following two constraints:

– Minimum support constraint: corresponding to the minimum occurrence
frequency of each temporal relation. This helps increase the cluster’s
purity by limiting the small size temporal relations that can be different
within a cluster.

– Maximum support constraint: corresponding to the maximum occurrence
frequency of each temporal relation. This limits the temporal relations
spanning almost all e-sequences, allowing the embedding space to repre-
sent the e-sequence space holistically.

Example. Consider an e-sequence database of size 4 (Figure 3). For this example,
we will use the following parameter settings: minSup : 0.5, maxSup : 1, gap : 0.5.
Hence, we need to find relation pairs with absolute vertical supports from 2 to
4. Moreover, the gap constraint of 0.5 implies that the longest span of a follows
relation can be at most half the average time length of all e-sequences, which
is 16+17+12+18

4 × 0.5 = 7.875. First, we scan the database to get all temporal
relations, which is accomplished by checking the temporal relations between the
event intervals in the database. In this example, we see that (A, 1, 3), (B, 1, 3)
in the first e-sequence and (A, 6, 14), (B, 6, 14) in the fourth e-sequence form
temporal relation: < A,B,matches >. Then, we place the relation as the key
for the first layer of the hash table HT . After that, since the same temporal
relation occurs in both the first and fourth e-sequences, we can store their ids
into the second layer along with their corresponding vertical supports (left square
boxes in the e-sequence hash table HE). Finally, we compute the horizontal
support by counting how often the temporal relation has occurred in each stored
e-sequence ({1, 4} in the example). We only have a single horizontal occurrence
in both e-sequences. Hence we add ones to the values of the e-sequence hash
table (right square boxes). The gap constraint pruning is applied together with
the G-HashTable construction. Actually, (A, 1, 3) and (A, 14, 16) in the first
e-sequence must have formed a follows relation without the gap constraint.
However, since the distance between the two event intervals is 11 (> 7.875),
we skip creating a record in the G-HashTable. The same pruning holds for the
fourth e-sequence and event intervals (B, 1, 5), (A, 17, 18) having a distance
equal to 12. After constructing the G-HashTable, frequency pruning is performed
by applying {minSup, maxSup}. Since minSup = 0.5 (or support count of 2),
temporal relations with vertical support equal to 1 are subsequently excluded
from the first layer of the table (gray triplets in HT in the example).
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The advantage of G-HashTable is that we can easily consider two types of
frequencies and apply pruning techniques by scanning the e-sequence database
only once. Moreover, we can directly convert the table to its corresponding
bi-adjacency matrix weighted by the frequencies in the e-sequences. All that is
required is to scan the database once and scan the first layer of the table to apply
pruning and scan the first and second layers of the table to convert it into the
bi-adjacency matrix.

Hence, given an e-sequence database D = {S1, . . . ,S|D|}, the set of possible
relations I, and the alphabet of event labels Σ, the time complexity for creating
the bi-adjacency matrix is quadratic in the worst case as follows:

(

|D|∑
Si∈D

|Si|2 × |I|) + (|Σ|2 × |I|) + (|Σ|2 × |I| × |D|) .

3.2 Conversion to a weighted bipartite graph

In this step, we use the notion of a weighted bipartite graph.

Definition 6. (bipartite graph) A bipartite graph G = {U, V,E} is a special
form of a graph, having vertices divided into two disjoint sets U and V , meaning
that U ∩ V = ∅, and a set of edges E = {eu,v|u ∈ U, v ∈ V }.
A bipartite graph consists of edges that can only lead from the vertex set U
to the other vertex set V , while vertices belonging to the same set cannot be
connected. A weighted bipartite graph is trivially an extension of G, where each
eu,v ∈ E equals to the corresponding edge weight between u and v, or to 0 if no
edge exists between u and v.

After the construction and pruning steps resulting into G-HashTable, we
create the corresponding weighted bipartite graph by directly using each layer
of the G-HashTable. The temporal relations in the first layer of G-HashTable

are used as the right-hand side nodes, while the e-sequence ids of the second
layer are used as the left-side nodes. Furthermore, the edges are created to
link each e-sequence id (left-hand side nodes) to the corresponding temporal
relations (right-hand side nodes) it contains. Horizontal supports are used as
weights (having applied {minSup, maxSup} thresholds). The resulting graph is a
weighted bipartite graph G = {U, V,E}, with

U : {i | Si ∈ D, i ∈ [1, |D|]},
V : {HT .keys | ∀R ∈ HT : minSup < F(R) < maxSup}} and

E : {ei,j = Hi
E [j] | i ∈ [1, |D|], j ∈ Hi

E}.

Using G, we construct its bi-adjacency matrix B (lines 17-20, Algorithm 1).
The bi-adjacency matrix B ∈ R|U |×|V | is a two-dimensional matrix representing
G, with the dimensions corresponding to vertex sets U and V , and edges between
sets U and V are defined as the elements of the matrix, with

Bu,v =

{
eu,v > 0, if and only if eu,v ∈ E
0, otherwise
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A bi-adjacency matrix is computationally efficient as it reduces the matrix size
from |U + V | × |U + V | to |U | × |V |, while storing the same information. In
Figure 4, we see an example of a conversion from the set of temporal relations to
a bipartite graph G and its corresponding weighted bi-adjacency matrix B.

Example. After the construction and pruning step, we have four temporal rela-
tions {< A,A, follows >,< A,B,matches >,< A,C, follows >,< B,A, follows >
} and four e-sequence ids {1, 2, 3, 4} that meet all the constraints. Then we
can create a 4× 4 bi-adjacency matrix and fill the values of the third layers of
the G-HashTable as key of the second layer, key of the first layer in the matrix
shown in Step 2 in Figure 3. For example, since the horizontal support of pair
< B,A, follows > and e-sequence 4 is 2, we can insert the value 2 into the matrix
with key {< B,A, follows >, 4}, which is the right bottom value in the matrix. If
no edge occurs between an e-sequence and a relation pair, we can set that value
to zero by following the definition of the adjacency matrix. The third e-sequence
will have all zeros in the matrix since all of its relations are pruned.

3.3 Spectral embedding of Z-Embedding

Algorithm 2: spectralEmbedding

Data: B: a bi-adjacency matrix of intervals where B ∈ R|U|×|V |
d: dimension factor

Result: U : Embedding of the rows
1 BR = B + α ∗ 1|U|×|V |

2 NUR
B = D

− 1
2

1 BRD
− 1

2
2

3 calculate SVD NUR
B = MΣWT

4 pick leading d singular values and corresponding d columns from M
5 return M [: U, : d]

After constructing the bipartite graph and its bi-adjacency matrix, we proceed
with defining a reduced-rank spectral embedding [24]. First, we apply regulariza-
tion with a regularization factor α to ensure noise and outlier robustness of the
spectral embedding. The factor α is determined by prior knowledge based on the
properties of the datasets. We used the most recent technique introduced in [4],
which is adding a constant α equally to all elements of the bi-adjacency matrix
(line 1, Algorithm 2). From a graph perspective, this means adding small-weight
edges to every pair of nodes between the sets (green edges in Fig. 3).

Next, using the bi-adjacency matrix we create the normalized Laplacian
matrix NB . We only calculate NUR

B , the top-right part of NB (line 2).

Definition 7. (Normalized Laplacian matrix) We define a normalized Lapla-

cian matrix N of a graph as N = D−
1
2LD−

1
2 = I|U | − D−

1
2AD−

1
2 , where

DU ∈ R|U |×|U | is a diagonal degree matrix where Dii = deg(ui), with i ∈ [1, |U |].
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Note that we can only use the bi-adjacency matrix part (top-right), since N can
be expressed as a bi-adjacency matrix as follows:

N =

[
I|U | −D−

1
2

U BD
− 1

2

V

−D−
1
2

V BTD
− 1

2

U I|V |

]
(1)

The normalized Laplacian matrix provides an approximate solution for finding
the sparsest cut of the graph, providing a good graph partition [19].

The next step is to define the spectral embedding space of NUR
B , hence

reducing the horizontal dimension of the matrix, which can have a maximum size
of |Σ|2 ∗ |I|, to create reduced-size feature vectors that can be processed at a
faster speed. The spectral embedding space is achieved by constructing a new
embedding space and obtaining the leading eigenvectors of the adjacency matrix.
Since the bi-adjacency matrix is not square, we apply SVD as an equivalent
process of eigendecomposition [16]. Then we sort the singular values and choose
the d leading values, where d ≤ min(|U |, |V |), and the corresponding columns
from M . The target dimension parameter k is set based on prior knowledge
and the dataset properties. Finally, we return the selected d columns of M (size
U × d), which defines the spectral embedding space of each e-sequence.

The intuition behind these three steps is that pruning in the spectral space
will result in e-sequences of the same class label having similar but unique
distributions of pairwise relations.

4 Experiments

We demonstrated the applicability of the Z-Embedding representation on five
real-world datasets for clustering and classification, and compared it against two
state-of-the-art competitors for the task of clustering and three for classification.
For repeatability purposes, our datasets and code can be found on github1.

4.1 Setup

Datasets. We used five public datasets collected from different application
domains. Table 1 summarizes the properties of datasets. Detailed information for
each dataset can be found in earlier works (e.g., [7]).

Competitor methods. We demonstrated the runtime efficiency of Z-Embedding
and its applicability to the clustering tasks and classification tasks. More con-
cretely, for clustering, we benchmarked k-means and k-medoids under the Eu-
clidean distance in the Z-Embedding space, and compared them against using
two alternative state-of-the-art distance functions, Artemis and IBSM. Moreover,
for classification, we benchmarked four different classifiers using the Z-Embedding
feature space, i.e., 1-Nearest Neighbor (1-NN), Random Forests (RF), Support

1 https://github.com/zedshape/zembedding
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Table 1. A summary of the properties of the real-world datasets.

Dataset
# of
e-seq.

# of
event
labels

# of
event

intervals

Avg.
interval
length

Avg.
e-seq.
length

# of
unique

temp. rel.

# of
total

temp. rel.

BLOCKS 210 8 1,207 5.75 54.13 174 3,245
PIONEER 160 92 8,949 55.93 57.19 26,429 252,986
CONTEXT 240 54 19,355 80.65 191.85 6,723 804,504
SKATING 530 41 23,202 43.78 1,916.08 4,844 516,272
HEPATITIS 498 63 53,921 108.28 3,193.55 20,865 3,785,167

Vector Machine (SVM) with the Radial Basis Function (RBF) kernel (SVM RBF),
and SVM with the 3-degree polynomial kernel (SVM Poly). These were compared
against 1-NN using Artemis and IBSM. For completeness, we additionally com-
pared against STIFE, a RF feature-based classifier for e-sequences. All clustering
and classification algorithms were implemented using the scikit-learn library.

4.2 Results

All algorithms were implemented in Python 3.7 and run on an Ubuntu 18.10
system with Intel i7-8700 CPU at 3.20GHz and 32GB main memory. All results
contain the average values of 10-fold cross-validation (for classification) and 100
trials (for clustering). If the algorithm required hyperparameters, we followed
the parameter setup defined by the authors of each paper for a fair comparison.
For the dimension factor d for spectral embedding, we chose d = 4 for BLOCKS
dataset as it has comparably smaller in terms of the number of temporal relations
compared to other datasets (Table 1), while for the rest of the datasets we
set d = 8. Throughout this process, the resulting feature vectors provided a
compressed version of the original space by almost 99% for all datasets, which has
contributed to the high computation speedups obtained. Using Z-Embedding ,
we could achieve speedups of up to a factor of 292 compared to the competitors2.

Clustering results. We set the expected number of clusters to the actual
number of class labels in the dataset, and computed the total runtime and purity
values required for all the algorithms. Since Artemis is only calculating distances,
k-means was inapplicable. K-medoids was generally faster than k-means because
it could be run after pre-calculating the pairwise distances between the data
e-sequences. To construct the embedding space for Z-Embedding, we used the
same regularization factor, α = 0.001, for every dataset.

Table 2 shows the results in terms of clustering purity and runtime. For
each method, we set a one-hour time limit to its runtime. We firstly applied
each algorithm to create the feature vectors, and then k-means and k-medoids
were applied, respectively. In terms of runtime, Z-Embedding was faster in both

2 This is even an underestimate as for the cases where competitors that did not finish
within the one-hour execution time limit, our approach is at least 300 times faster.
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Table 2. Clustering results for Z-Embedding and all competitors in terms of clustering
purity (%) and runtime (seconds).

Dataset
Artemis IBSM Z-Embedding

K-medoids K-medoids K-means K-medoids K-means
Purity Time Purity Time Purity Time Purity Time Purity Time

BLOCKS 85.62 1.20 95.30 0.71 99.09 10.57 93.81 0.02 99.82 0.04
PIONEER 66.13 15.64 63.94 4.41 64.09 74.13 74.75 0.89 83.12 0.91
CONTEXT 65.13 122.23 75.22 5.19 82.66 204.82 77.54 1.99 82.36 2.02
SKATING 36.52 180.48 70.21 286.10 - >1h 62.45 1.48 74.40 1.52
HEPATITIS - >1h 67.91 444.77 - >1h 71.70 9.60 70.08 9.63

cases compared to two competitors. In particular, Artemis did not complete the
calculation within an hour on the HEPATITIS dataset. IBSM showed deficient
runtime performance for the datasets with long e-sequences, such as SKATING
or HEPATITIS. Specifically, when k-medoids was used on SKATING, the speed
was even slower than that of Artemis. Moreover, k-means could not complete
within an hour on SKATING and HEPATITIS, while Z-Embedding with k-means
completed in 1.52 seconds on SKATING and 9.63 seconds on HEPATITIS.

In terms of purity, Z-Embedding also showed remarkable results. In the k-
medoids trials, Artemis had the lowest purity values on all data sets except
for PIONEER. IBSM showed the highest purity only on SKATING with k-
medoids, but it was about 193 times slower than Z-Embedding. On the other
datasets, Z-Embedding showed the fastest runtime performance and achieved
the highest purity. In the k-means experiment, Z-Embedding showed the highest
purity values, except for CONTEXT. IBSM led by a slight difference of 0.3
percent on CONTEXT but was also about 101 times slower than Z-Embedding.

Classification results For each competitor method, we used the classifiers
suggested by the authors in the corresponding papers. Since Artemis and IBSM
are distance-based algorithms, the number of applicable algorithms is highly
limited. Therefore, for these two competitors, the 1-NN classifier was applied. On
the other hand, since STIFE generates non-numeric feature vectors, distance-
based algorithms cannot be applied, and in this case, RF was applied. For STIFE,
we applied the recommended optimal parameters [2]. In order to adjust the
parameters of Z-Embedding for each dataset, we performed a grid search on
1-NN classification accuracy within the range of [0, 1] for each of the three
parameters {maxSup, minSup, gap}, in increments of 0.1. The top 10 parameter
settings and the experimental results are available in the supplementary materials.

Unlike existing algorithms, Z-Embedding can apply a wide range of algorithms
as it forms numeric feature vectors. In this experiment, we applied the ones that
previous methods used, such as 1-NN and RF, and we also ran two SVM with
RBF kernel and polynomial kernel. Table 3 shows the classification accuracy
and runtime for each competitor method, while Table 4 shows the results for
Z-Embedding. 1-NN under Artemis had the longest runtime and lowest accuracy
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Table 3. Classification results for all competitors in terms of classification accuracy
(%) and runtime (seconds).

Dataset
Artemis IBSM STIFE

1-NN 1-NN RF
Acc Time Acc Time Acc Time

BLOCKS 98.57 1.43 100 0.77 100 2.96
PIONEER 95.00 19.27 93.75 4.43 98.75 8.51
CONTEXT 92.50 130.22 97.08 5.32 98.33 12.1
SKATING 84.92 208.79 97.74 286.24 96.42 21.4
HEPATITIS - >1h 77.91 445.83 82.13 83.7

Table 4. Classification results for Z-Embedding in terms of classification accuracy (%)
and runtime (seconds).

Dataset
Z-Embedding

Constraints 1-NN RF SVM RBF SVM Poly
minSup maxSup gap Acc Time Acc Time Acc Time Acc Time

BLOCKS 0.0 0.4 0.0 100 0.02 100 0.12 100 0.02 100 0.02
PIONEER 0.0 0.7 0.1 100 1.49 100 1.62 100 1.50 100 1.49
CONTEXT 0.4 0.5 0.2 95.00 1.35 96.25 1.46 97.50 1.36 97.08 1.36
SKATING 0.5 0.6 0.1 91.32 0.98 92.07 1.10 93.58 0.99 92.45 0.99
HEPATITIS 0.0 1.0 0.1 76.30 10.83 82.13 11.27 83.73 10.82 83.34 11.04

for all datasets except for PIONEER, while on HEPATITIS it failed to complete
within the 1-hour runtime limit. On the other hand, IBSM achieved the best
performance on SKATING, but it is 13 times slower than STIFE and up to
292 times slower than Z-Embedding . Finally, STIFE was the algorithm with
the highest speed and accuracy performance (except for SKATING) among
the other competitors. It even achieved better performance than Z-Embedding

on CONTEXT and SKATING, but it was about up to 9 times slower than
Z-Embedding on CONTEXT, and 21 times on SKATING.

5 Conclusion

We proposed a novel representation of event interval sequences using a bipartite
graph for efficient clustering and classification. We benchmarked our represen-
tation on five real-world datasets against several competitor algorithms. Our
experimental benchmarks showed that the proposed spectral embedding represen-
tation can achieve substantially lower runtimes compared to earlier competitors
and even higher values of purity (for clustering) and classification accuracy (for
classification) than some of its competitors. Future work includes extending the
bipartite graph representation to tripartite or higher multipartite by calculating
higher orders of temporal relations, investigating the usage of our framework
for providing scalable solutions to other machine learning problems, and also
exploring alternative link-analysis ranking methods such as rooted PageRank.
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