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Abstract—Effectively predicting whether a given post or tweet
is going to become viral in online social networks is of paramount
importance for several applications, such as trend and break-out
forecasting. While several attempts towards this end exist, most
of the current approaches rely on features extracted from the
underlying network structure over which the content spreads.
Recent studies have shown, however, that prediction can be
effectively performed with very little structural information about
the network, or even with no structural information at all.

In this study we propose a novel network-agnostic approach
called CAS2VEC, that models information cascades as time series
and discretizes them using time slices. For the actual prediction
task we have adopted a technique from the natural language
processing community. The particular choice of the technique is
mainly inspired by an empirical observation on the strong simi-
larity between the distribution of discretized values occurrence in
cascades and words occurrence in natural language documents.
Thus, thanks to such a technique for sentence classification using
convolutional neural networks, CAS2VEC can predict whether a
cascade is going to become viral or not. We have performed
extensive experiments on two widely used real-world datasets
for cascade prediction, that demonstrate the effectiveness of our
algorithm against strong baselines.

I. INTRODUCTION

In online social networks, it is common to see posts or
tweets that start from a few sources and then suddenly spread
like a wildfire. Just to mention a recent example, the post
celebrating the landing of the Falcon-Heavy rocket sent from
the SpaceX1 Twitter account on February 6th, 2018, has been
retweeted more than 75k times within the same day of posting.
Such diffusion events are called viral cascades. Predicting
cascades virality is vital for different applications, for example
to forecast trends and rumor break-outs [1]. However, it is
challenging to effectively predict the virality of such kinds of
events as early as possible, especially when little supporting
information is available. Many research works have dedicated
effort and attention to the prediction of content popularity with
the focus of achieving good predictions in the shortest possible

1https://twitter.com/SpaceX
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Fig. 1. Examples of two recent hashtag campaigns. (A) The tweeting
frequency of each hashtag; #metoo achieved more spread compared to
#gamergate. (B) The network properties of the participating nodes in each
hashtag in terms of average number of followers; the nodes engaged in the
first 12 hours almost achieve similar reachability in both hashtags.

time, with the least information possible about the underlying
network structure.

On social networks platforms, content is usually diffused
over the underlying social graph that represents the connec-
tions among the users in these frameworks. Early research
on predicting cascade virality assumed strong correlations
between the spread of content and structural properties of
users who started these events. Therefore, most of the early
attempts towards predicting the virality of cascades have relied
on manually extracted features from the underlying network
structure and the cascade itself [2]–[7]. Information such as the
number of followers/followees that engaged users have, users
connections and community structure, activity level, etc., have
been exploited.

This, however, poses two kinds of issues. First, manual
feature crafting is an expensive and challenging task. In most
cases, domain knowledge and external information about the
content in question is required. For instance, content popularity
may be linked to several parameters, such as event topic,
external events or the content relevance to given periods of
time (e.g., posting about football during world cup period),



etc. Besides, the optimal number and relevance of features that
need to be extracted is not obvious, making it difficult to de-
cide when to stop looking for additional ones [8]. Furthermore,
some recent cascade examples show different spread patterns
even when showing similar network properties of the engaged
nodes in the underlying social graph; thus, network properties
may not be the best or the only indicator for virality. For
example, Fig. 1(A) shows the spread patterns of two hashtag
campaigns #metoo and #gamergate that happened almost
at the same time2. As shown, #metoo went viral in the first
two days. The hashtag #metoo was tweeted more than 200k
times by the end of October 15, 20173. On the other hand,
#gamergate did not become viral like #metoo even though
they have reasonably similar network properties such as the
expected number of followers (indicator for potential spread
in the future), as shown in Fig. 1(B).

In addition to that, acquiring information about the social
network structure is usually very expensive for those who
work outside the companies hosting the data. For example,
for popular social networks such as Twitter and Facebook,
it may take several months to extract just a portion of the
network. Moreover, due to privacy constraints and policies
of such systems, the extracted network is usually lacking a
significant amount of structural information, such as edges of
some users participating in hashtag campaigns who set their
connections to be private [9].

For the reasons above, it becomes important to design algo-
rithms that do not require any type of features or information
about the underlying network, but still are able to effectively
predict cascade virality in the very early stages of the spread.
Some initial but also strong attempts towards exploring this
network-agnostic approach have already demonstrated the
potential for effective and timely prediction based only on
information that could be learned from the cascades them-
selves without requiring any other additional information [10].
However, most of the works available in the literature are
mainly adopting either “network-aware” or at best “quasi-
network-agnostic” approaches [1], relying on “less expensive”
structural information, such as node degrees.

In this paper we propose a novel network-agnostic algorithm
that predicts cascade virality based only on information explic-
itly available in the cascade itself (i.e., the time between share
events). Our main premise is that the reaction time between
the sequence of events encoded in a cascade should be a
sufficient indicator to whether it will become viral or not in
the near future. The reaction times in the early sequence of
events can be used to model the cascade initial speed (i.e.,
the speed by which a cascade starts its spread), as well as its
momentum. Analyzing the distribution of reaction times for
viral and non-viral cascades on multiple datasets, and based
on corroborating observation supporting our premise, we have
modeled cascades as a time series, where each element of the

2The dataset for these two hashtags is collected based on information
available via https://github.com/datacamp/datacamp-metoo-analysis and https:
//github.com/awesomedata/awesome-public-datasets, respectively

3https://en.wikipedia.org/wiki/Me Too movement

series is the reaction time measured from the source signal.
Furthermore, our work is partly inspired by iSAX [11], that
is used for indexing time series data. Particularly, we apply a
similar technique as iSAX on cascades to transform them into
instances of one-dimensional point processes in time space,
such that each time series of a cascade is transformed into
discrete values by using equally-sized periods of times.

For the actual prediction task, we adopt a technique from the
Natural Language Processing (NLP) community that has been
used for sentence classification [12]. The algorithm exploits a
deep convolutional neural network (CNN) model to effectively
predict sentences; instead of sentences, we feed the neural
network with the transformed time series. The choice of this
model is inspired by an empirical observation that shows a
similarity between the distribution of words appearance in
sentences and the distribution of discretized values appear-
ance in cascades (time series). Furthermore, CNNs achieve
performances as good as RNNs, which are a natural fit in
such settings, but they can be trained more easily.

Summary of contributions: CAS2VEC provides a novel
network-agnostic approach that models information cascades
as time series and discretizes them using time slices. Further-
more, CAS2VEC can predict whether a cascade is going to
become viral or not based only on the timestamps of the events
encoded in the cascade itself. To show the effectiveness of our
algorithm in cascade prediction, we have performed extensive
experiments and compared it against strong baselines. Our
results show that CAS2VEC outperforms them by an increase
between 10% and 20% in all the tasks.

The rest of the paper is organized as the following. Sec-
tion III briefly describes some basic cascade definitions and
assumptions that are related to our model. Section IV illus-
trates the design of our algorithm. We discuss the experimental
evaluation of CAS2VEC against strong baselines in Section V.
Then, Section II briefly describes the state-of-the-art methods
used for cascade virality prediction. Finally, Section VI con-
cludes the paper.

II. RELATED WORK

Many research works have dedicated effort to the prediction
of web content popularity with the focus on achieving (i) good
predictions (ii) in the shortest possible time windows and (iii)
using the least possible information. Related research predicts
cascades development either in terms of the potential size they
can grow to (i.e., regression approach [1], [13]–[15]), or in
terms of classifying them as viral or not-viral (i.e., classi-
fication approach [6], [14], [16], [17]). In both approaches,
most works are based on either topological information or on
features such as temporal properties, structure of the cascade
at its first stage, the content in question, the early adopters,
etc.

Other studies, however, have utilized little or no network
information [1], [10], [18]–[20]. Recent studies predict content
popularity based on point process models and node degree [1],
[20], where as another study uses survival analysis technique
and follows a network-agnostic approach [10]. Under the



regression approach, some works have taken the direction
of predicting the optimum future size of a cascade (e.g.,
[1]), whereas others have provided time-based predictions
of the cascade growth function (e.g., [15]). Regardless of
the approach taken, most works have been based on either
topological information or on features such as temporal prop-
erties, structure of the cascade at its first stage, the content in
question, the source or key early adopters, etc.

On one hand, some works have based on generative models
of these factors as distributions or stochastic processes that
interpret the event series in the cascade [15], [21]. On the other
hand, other works based on representative models through
handcrafted and heuristic based features that are mainly ex-
tracted from knowledge about the domain and the content in
question. These features are integrated using discriminative
machine learning algorithms that can be used to achieve either
the classification or the regression tasks [6], [14], [16].

In our study, we adopt a fully network-agnostic and domain
insensitive approach, where only information available in the
cascade is being deployed. We investigate a complementary
approach using deep CNNs. A related approach has been taken
by a very recent work [22], however with different cascade
modeling schemes and classification algorithms.

III. MODEL AND DEFINITIONS

Cascades naturally capture a series of share events associ-
ated with the infection of users. Given that we are adopting
a network-agnostic approach, we shall have no assumptions
regarding the underlying connectivity of users, and we will
simply consider a cascade as a sequence of events.

A sequence of events S is represented by the ordered list
of timestamps at which the events occur:

S = [t1, ..., ts]

Timestamps are measured relatively to the first event of the
sequence, so t1 = 0. Since events are ordered, we have that
i < j ⇒ ti < tj .

We use S[i] = ti to denote the timestamp of the ith event.
We write t ∈ S to denote the fact that t corresponds to an
event that has been included in S, i.e. S[i] = t for some i
between 1 and |S|, the length of the sequence.

We use S(tb, te) to denote the sub-sequence of events whose
timestamps are between the beginning time tb (included) and
the end time te (excluded):

S(tb, te) = [t : t ∈ S ∧ tb ≤ t < te]

For the sake of brevity, we use S(te) to denote the prefix of
the subsequence including the events occurring before te since
the initial event t1 = 0, i.e.

S(te) = S(t1, te)

A cascade is an actual sequence of share events recorded
from an online social network; the set of cascades C =
{S1, S2, S3, · · · , Sm} are available as input of our problem.

There are several prediction tasks that can be computed over
cascades; in this paper, we will focus on virality prediction, i.e.
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Fig. 2. Two slices of size 2 hours, applied to the user coverage distribution
of a viral hashtag (#thingsigetalot) and non-viral hashtag (#bored),
which have reached 13711 and 43 users in an observation window size of 4
hours.

the task of deciding whether a cascade, after an observation
period, is going viral or not before a given amount of time.
From a practical perspective, this is one of the most important
issue [10].

To formally define the virality prediction problem, we
consider the subsequence O = C(to) of events occurring from
the beginning of the cascade C up to an observation time to.
We call such subsequence an observation of C; the period of
time between 0 and to is called the observation window.

Given an observation O = C(to), a prediction window is
period starting from time to and lasting ∆ time units, after
which we want to establish whether a specific cascade is going
viral or not. For this purpose, we consider the number of events
|C(to + ∆)| that have occurred in C by the prediction time
tp = to + ∆.

Similar to existing studies [3], [10], we consider two ways
of determining whether a cascade is viral or not:
• through an absolute threshold θa ∈ R+, the cascade C is

viral if |C(to + ∆)| ≥ θa;
• through a relative threshold θr ∈ (0, 1), the cascade C is

viral if |C(to + ∆)| ≥ |perc(C, θr)|, where perc(C, θr)
is the θr-percentile among the cascades in C.

Our problem is thus the following: we seek to predict
whether a cascade C is going to be viral by the prediction
time tp = to + ∆, by inspecting its observation C(to).

IV. CAS2VEC

The design of our algorithm is inspired by the observation
that most viral cascades spread like a wildfire within the very
first few hours. In contrast, non-viral cascades require several
hours just to reach merely a handful of users. For instance,
Fig. 2 shows the user coverage distribution of two hashtags in
a 24-hour period, one viral (#thingsigetalot) and one
not (#bored).

Some state-of-the-art studies [1], [20], [23] start from the
above assumption and develop elegant solutions based on point
processes. Such techniques rely on the frequency (density)
estimation of the rate of cascade growth during its observation
period to predict its ultimate size after a certain period ∆.

Our approach is partially related, in the sense that it implic-
itly utilizes the rate of growth of the number of events within
an observation period. However, it is completely network-
agnostic. Based on our main premise, intuitively we seek to



model the initial speed of a cascade (that is, the speed by
which a cascade starts its spread) or the user reaction times
at the early stage of the cascade, as well as its momentum.
As we shall empirically demonstrate in Section IV-A, this is
a strong signal for potential virality.

From a high-level point of view, our solution is organized
as follows. For each cascade C in our training data set C, we
perform three operations:
• we extract the observation C(to), where to is the obser-

vation time at which the observation period ends and the
prediction starts;

• we preprocess the observation C(to) by transforming it
into a format that can be fed to our classification task;

• we label the cascade C as viral or not viral, based on the
threshold θ according to the number of events observed
at time to + ∆, as discussed in the previous section.

Using the transformed sequences and their associated labels,
we train our classifier based on an 1D convolutional neural
network.

A. Preprocessing Cascades

The observation period is divided into a collection of slices,
i.e. equally-sized time windows. For example, Fig. 2 illustrates
an observation window of 4 hours, divided in two slices of 2
hours each, visualized through red boxes. Slices are identified
by the slice size ts; the size of the observation window to
should be an integer multiple of ts, such that the number of
slices Ns is equal to to/ts.

Based on the slices, we generate the following two kinds
of preprocessed sequences:

a) Counter sequence: the sequence of integers represent-
ing the number of events included in each slice:

Cc = [ |C(i · ts, (i+ 1) · ts)| : 0 ≤ i < Ns ]

b) Discrete sequence: the sequence generated by dis-
cretizing all the events within each slices, i.e. by assigning
each event within a slice the index of the slice itself.

Cd = [ dC[i]/tse : 1 ≤ i ≤ |C| ]

For example, look again at Fig. 2 with cascades C1

(#thingsigetalot) and C2 (#bored). By considering an
observation window size of 4 hours and a slice size of 2 hours,
the counter sequences are equal to Cc

1 = [6 709, 7 002] and
Cc

2 = [15, 28]; in the former, there are 6 709 events in the
first 2 hours, and 7 002 in the second 2 hours. In the later, the
numbers are just 15 and 28. The discrete sequences are equal
to:

Cd
1 = [

6 709︷ ︸︸ ︷
1, . . . , 1,

7 002︷ ︸︸ ︷
2, . . . , 2]

Cd
2 = [

15︷ ︸︸ ︷
1, . . . , 1,

28︷ ︸︸ ︷
2, . . . , 2]

Counter sequences and discrete sequences have different
predicting power. Besides, counter sequences are much faster
to train as a result of a fixed length of training sequences,
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Fig. 3. The distribution of the user coverages for the viral and non-viral
classes. The user coverage distribution is computed at observation time to as
|C(to)| and virality is computed at prediction time to +∆. A cascade is viral
if |C(to + ∆)| ≥ 1, 000 and not-viral if |C(to + ∆)| ≤ 500

i.e. Ns, while discrete sequences gives us the flexibility of
choosing larger values for the length of sequences at the
expense of slower training time.

Based on our assumption regarding the dynamics of viral
and non-viral cascades, we base our algorithm on the following
conjecture:

Conjecture 1: Consider two cascades C1 and C2 and an
absolute threshold θ. Given an observation to and a prediction
windows size ∆. If the cascade sizes of C1 and C2 at time
to + ∆ are such that |C1(to + ∆)| ≥ θ and |C2(to + ∆)| � θ,
then |C1(to)| � |C2(to)|.

According to the conjecture, within the observation window,
we expect a significant number of events for viral cascades
and very few of them for the non-viral ones. For example,
looking again at Fig. 2, we have 13 711 events for the viral
hashtag #thingsigetalot and just 43 events for the non-
viral hashtag #bored. More generally, the user coverage
distribution for the two classes, shown in Fig. 3, further
establishes an empirical case for the conjecture.

B. CNN model for cascade prediction

Once cascades are preprocessed using slices, we adopt the
CNN model [12] to predict whether they will go viral or not.

The architecture of the model [12] adopted for cascade pre-
diction is shown in Fig. 4. Originally this model was proposed
for sentence classification in natural language documents, and
it has been shown to be effective for this classification task. In
addition, our choice is motivated by recent studies that have
shown the CNN-based models outperform existing state-of-
the-art techniques in time-series classification tasks [24], [25].

For the sake of being self-contained, we give an overview of
the model; however, because of space limitations, we will be
restricted to a brief description sufficient enough to replicate
our results. Interested users are referred to the original pa-
per [12]. Instead of words in sentence classification, we have
the discretized values (numbers) obtained by transforming the
sequences as shown in Section IV-A. The input of the model
is a preprocessed sequence Ci (e.g., a sequence of counter,
labeled as preprocessed sequence input in Fig. 4). Each input
ci in the sequence is represented by an embedding vector
ci ∈ Rd. The entire sequence is denoted by a matrix, referred
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Fig. 4. The CNN model adopted for cascade prediction

to as cascade embedding matrix in Fig. 4, and it is denoted
by M = [c1, . . . , cs] where s is the length of the sequence.

Assume the model that we are going to describe is trained
and all its parameters are tuned to their optimal values. Then,
the prediction task starts by applying a set of p filters on
the cascade embedding matrix in the convolutional layer.
That is, we apply p filters (denoted by different colors) of
different sizes on every possible slice of the input (the cascade
embedding matrix). More formally,

φl = f(wi ·mk + b)

where the vector wi ∈ Rkd is the ith filter, b ∈ R is the bias, f
is an activation function, such as relu , k is the size of the ith

filter, and φl is the lth feature value. mk = M[j]⊕. . .⊕M[j+
k] ∈ Rkd is a concatenation of the k–columns of the matrix
M. Generally, the ith filter of size k is applied s−k+1 times,
to give a feature map φi = [φi,1, . . . , φi,s−k+1]. φi captures
patterns in high-level features, such as n–grams in language
documents. In our setting this corresponds to patterns within
small sub-sequences depending on the filter size.

Next, a max-pooling (or a max-overtime-pooling) opera-
tion is applied over each feature map, which is simply a
max(φi) = φ̂i ∈ R of each feature map φi. Intuitively,
this corresponds to selecting the best feature that is activated
when a certain pattern in the input space is detected. The max-
pooling output, more formally z = [φ̂1, . . . , φ̂p], is followed
by a fully connected logistic classification layer. The vector
z can be viewed as the final set of features extracted for the
current cascade, and it will be used to predict the cascade into
one of the two classes y = {1 = viral, 0 = non–viral}.

a) Training the Model: The above description assumes
that the model is trained; to perform the training, the optimiza-
tion objective of the model is specified as the minimization of
the misclassification error of the preprocessed sequences. More
formally, we adopt the standard binary cross-entropy objective
function:

min
∑
i

yi log(h(Si)) + (1− yi) log(1− h(Si))

Here, Si and yi ∈ {0, 1} are the ith preprocessed sequence
and class label, respectively. h is the proposed model that
produces a probability distribution (prediction) y for the given
input sequences S over the classes (viral and non-viral):

y = w · (z ◦ v) + b

where v is a Bernoulli distribution used for dropout regular-
ization as proposed in [12].

Ultimately, the model parameters [M, b,wi,w] are trained
using the back-propagation algorithm.

V. EXPERIMENTS AND RESULTS

In this section, we report on the experiments we performed
to evaluate our approach. Before discussing the actual results,
we introduce the datasets that have been used as input; we
discuss the competing approaches against which we compare
our results; and finally, we describe the experiment settings.

A. Datasets

We have evaluated our approach over two well-known
datasets:
• Twitter: This dataset has been widely used for cascade

prediction [1], [10]. It contains a full month of Twitter
data from October, 7th to November 7th, 2011. There are
a total of 166,076 tweets that have been retweeted at least
50 times.

• Weibo: This dataset contains 225,126 tweets recorded on
the Chinese micro-blogging site Weibo [4], [5].

B. Baselines

We have compared our algorithm against three competing
approaches; nevertheless, some well-known baselines have not
been included, because their source code is not available [10].
• SEISMIC: This is a recent, state-of-the-art study that

predicts the popularity of tweets using a self-exciting
point process model [1]. It estimates the infectiousness
of a tweet at time t, based on the number of reshares
Rt at time t, then the estimated infectiousness is used to
predict the ultimate size R∞ of the tweet. We follow a
similar strategy as [10] to label tweets based on R∞, that
is viral if and only if R∞ ≥ θ. We have used the source
code provided by the authors 4.

• Logistic Regression (LOR): This baseline has been used
in previous studies [6], [10]. We use a set of features
X = [x(1), . . . , x(Ns)] computed based on the notion of
slices in Section IV-A, where x(i) is the number of users
in slice i and Ns is the number of slices.

• Linear Regression (LR): This is also a baseline similar
to the one used in [1], [10]. It is specified as:

logR∞ = log(α ·Rt) + b+ ε,

where ε is a noise term with Gaussian distribution. We
apply a similar thresholding as we did with SEISMIC to
label R∞ as viral and non-viral, taking into account the
log transformation.

4http://snap.stanford.edu/seismic/
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C. Evaluation Settings

To evaluate the performance of our algorithm against the
baselines, we have used the following settings. Recall that
the prediction problem is based on an observation time to
and a prediction window ∆. So, in all the reported results
for all the classification algorithms, we have trained a single
classifier for every given value of ∆. Furthermore, since the
class distribution is highly skewed and the viral class is very
rare, we use down-sampling in all the experiments.

We tune the hyper-parameters, e.g. the number and size of
filters, using a development set (dev-set) during the training
process. Once the hyper-parameters are tuned, then for all the
experiments we fix the parameters at these values and evaluate
the performance of algorithms. Towards this end, we have used
a 3-fold cross validation that does not include the dev-set and
reported the average result along with the error margins.

Similar to previous studies [10], we have used are the F-
score with β = 3 (since it is a rare class prediction) and
recall as the evaluation metric . In all the experiments, the
threshold for labeling cascades is θa = 700 that is equivalent
to θr ≈ 98%.

D. Results

a) Predicting Virality: In the first set of experiments, we
evaluate the performance of our algorithm and the baselines in
predicting the virality of cascades based on a given observation
to and prediction window ∆ expressed in hours. Here, our
goal is to evaluate the performance of algorithms in effectively
classifying both classes. Fig. 5 reports the evaluation results.
All the variants of our algorithm (CAS2VECcount, CAS2VECdisc,
CAS2VECfusion) outperform the baselines, and provide very
similar results. The strongest baselines are SEISMIC and LOR;
in the Twitter dataset, SEISMIC achieves F-scores between 94%
and 60% for to = 0.3 hours and between 96% and 63% for
to = 1 hour. LOR is more robust than SEISMIC and it achieves
F-scores between 90% and 83% for to = 0.3 and between 93%

and 86% for to = 1 hour. Whereas, CAS2VEC variants are very
robust in predicting far in the future than all the baselines and
achieves F-scores between 97% and 88% and between 97%
and 91% for to = 0.3 and to = 1 hour respectively.

For the Weibo dataset, LOR achieves F-scores between 64%
and 59% for to = 0.3 hour and between 75% and 66% for
to = 1 hour. SEISMIC’s performance on Weibo is poor and it
achieves F-scores between 49% and 22% and between 81%
and 31% for to = 0.3 and to = 1 hour respectively. CAS2VEC
on the other hand achieves a significantly high performance,
which is more than the performance of other baselines by at
least 10%, i.e. F-scores between 85% and 67% for to = 0.3
hour and between 92% and 76% for to = 1 hour.

In the following, unless stated otherwise, we focus on
CAS2VECcount, as it is faster to train.

The above experiments give us a perspective on how far
an algorithm can effectively predict in the future stages of
a cascade life. As we can see from the plots, performance
decreases as ∆ increases, as it is difficult to predict far in
the future. This, however, does not tell us how early can an
algorithm predicts a virality.

b) Early Prediction: The next step is to analyze how
early in time virality can be predicted. Subbian et al. have
observed that most of the events occur within twice the median
virality time measured over all the cascades [10]. In our
datasets, the median time to virality is 8 hours for Twitter
and 17 hours for Weibo. Based on that, we select a distinct
(but fixed) prediction time tp = to +∆ for each of the dataset,
i.e. 16 hours for Twitter and 34 hours for Weibo.

We then vary the size of the prediction window size ∆, from
1 hour to tp − 1 hours and evaluate how early the algorithms
can predict virality. Parameter ∆ is similar to the time-to-
virality parameter defined in [10]. Note that having fixed the
prediction time, these means that the observation time to varies
inversely w.r.t. the prediction windows size, from tp−1 hours
to 1 hour. In both cases, the variation step is 1 hour.
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Fig. 6. Evaluation results of early prediction experiments for the Twitter and
Weibo datasets. The same hyper-parameter values as Fig. 5 is used

In the following experiment (Fig. 6), we evaluate the recall
score only for the viral calls, that is measured by the fraction
of viral cascades detected by an algorithm out of all the viral
cascades.

CAS2VEC obtains the best result in all of them. As one
might expect, the algorithms achieve good results for small
values of ∆. For example, all algorithms except linear regres-
sion achieve more than 96% recall in the Twitter dataset, with
SEISMIC achieving the highest of all, i.e. 99%. Such result is
trivial, however, and we want algorithms to be robust in their
prediction as we increase ∆.

As we get close to ∆ = 15 hours (Twitter) and ∆ = 33
hours (Weibo), which is equivalent to observing the cascade
growth just for 1 hour, the performance of the baselines
drop faster than CAS2VEC, which achieves the best recall.
SEISMIC achieves the best results up to ∆ = 8, which is
after observing for more than 7 and 25 hours for Twitter and
Weibo respectively. However, as we go beyond, SEISMIC starts
to decrease quickly; when ∆ = 15 (Twitter) and ∆ = 34
(Weibo), it recalls only 86% and 42% of the viral cascades,
respectively. The other strong baseline, LOR, at the end points
drops to 89% and 56% of recall, while CAS2VEC outperforms
the baselines and gets to 95% and 62% for Twitter and Weibo
respectively.

Besides the virality predictions shown previously, these
experiments demonstrate that CAS2VEC is highly robust com-
pared to the state-of-the-art method, SEISMIC, and the strong
baseline, LOR, in predicting cascades virality as early as
possible.

c) Break-out Coverage: One of the important tasks in
cascade prediction is detecting break-out events. Towards this
end, similar to [1], [10], we take the top-k viral cascades and
evaluate the performance of algorithms in effectively covering
such cascades in their prediction. That is, the fraction of
correctly predicted cascades out of the top-k viral cascades.

The results of this experiment are reported in Fig. 7-
8. Yet again, CAS2VEC consistently achieves a significant
performance gain, specially as ∆ increases. Note that even
though LOR was a strong baseline in the earlier experiments,
its performance degrades when it comes to detecting just the
top-k break-out cascades. Similar to the previous experiment,
it is important to achieve a high coverage as we increase
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Fig. 7. Break-out coverage for k = 100 and k = 200 for the Twitter dataset.
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Fig. 8. Break-out coverage for k = 10 and k = 20 for the Weibo dataset.
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Fig. 9. Effect of the number of slices on virality prediction at to = 1 hour
and ∆ = 12 hours.

∆. In particular, the strongest baseline in this experiment
achieves only 83% break-out coverage for k = 100, and
76% for k = 200. CAS2VEC, however, achieves a remarkable
performance of 95% and 90% for k = 100 and k = 200,
respectively. For the Weibo dataset all the baselines score
below 50% and 60%, where as CAS2VEC achieves a more
than 90% for k = 10 and 20, respectively.

d) Effect of hyper-parameters: In order to further val-
idate our proposal, we conducted two brief experiments on
the effect of its hyper-parameters. First, we analyzed how the
performance varies with the number of slices. As shown in
Fig. 9, the performance increases as we increase the number
of slices – up to a certain value. For Twitter, as we go from
10 to 30 the performance drops and starts to improve until we
get to Ns = 50, which is the best spot. Where as in Weibo
the best F-score is achieved at Ns = 30. We have found out
that values between 30 and 50 give the best results.

The other hyper-parameter of our algorithm is sequence



●

●

●

●

●

0

100

200

300

400

0.1 0.2 0.3 0.4 0.5

to

R
un

 ti
m

e 
(s

ec
on

ds
)

Preprocessing
Techniques

●CAS2VECcount CAS2VECdisc

Fig. 10. Effect of sequence length on running time.

●

●

●

●

●

0.90

0.92

0.94

0.96

50 100 150 200 250
Sequence Length

F
−

S
co

re

Fig. 11. Effect of seq. length on virality prediction.

length; in particular, it is the major factor in the run time
of our algorithm. Fig. 10 show the effect of sequence length
(determined by to) for the two variants of our algorithms.
Particularly CAS2VECdisc requires more time to finish an epoch
as we increase the sequence length. However, Fig. 11 shows
that increasing the sequence length beyond a certain value (150
in the figure) does not give significant performance gain.

VI. CONCLUSIONS

This paper presents CAS2VEC, a novel algorithm for the pre-
diction of the virality of social network cascades. Traditionally,
network structure parameters and features extracted from the
underlying domain have been used to perform the prediction
either as a regression or a classification tasks. However,
network information and predictive features are expensive to
get either because of privacy constraints or need for domain
knowledge and awareness on external affecting factors.

Unlike previous work, our approach is fully network-
agnostic: it is solely based on timing information explicitly
encoded in the cascade. We make use of state-of-the-art
techniques for sentence classification using CNNs for the
actual prediction over time series. Our experiments show that
time sequences in cascades are sufficient to make timely and
accurate virality predictions.

CAS2VEC achieves an increase in prediction accuracy be-
tween 10% and 20% in all the tasks w.r.t. F-score and recall
compared to strong baselines in the field, while being fully
network-agnostic. As future work, we plan to extend the model
by incorporating extra features like content, early adopters, and
analyze the interpretability of the learned features.
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