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Abstract—In this paper, the problem of optimal power allo- context, the optimal power allocation is investigated ihf{8
cation over flat fading additive white Gaussian noise chanrle energy-efficient capacity maximization over fading coiyeit

is considered for maximizing the average detection probality  54ig channels and similar results to those in [2] are obthin
of a signal emitted from a power constrained transmitter in the

Neyman-Pearson framework. It is assumed that the transmitr Although less numerous in the literature, dynamic power
can perform power adaptation under peak and average power allocation is also considered for performance metrics rothe
constraints based on the channel state information fed back than the channel capacity in order to utilize the commuitoat
by the receiver. Using results from measure theory and conve channel effectively. In [4], optimal power allocation stgies

analysis, it is shown that this optimization problem, whichis : : L. -
in general nonconvex, has an equivalent Lagrangian dual tha are derived in order to minimize the average bit error rate

admits no duality gap and can be solved using dual decomposi- (BER) for sc_econdary users in a cognitive radio netwprk. In
tion. Efficient numerical algorithms are proposed to determine [5], the optimal power allocation over space and time is
the optimal power allocation scheme under peak and average considered for BER minimization of multiple-input single-
power constraints. Furthermore, the continuity and monotmicity output (MISO) communications over Rayleigh fading chasnel

properties of the corresponding optimal power allocation sheme : : tA.
are characterized with respect to the signal-to-noise rati for any subject to an average power constraint and a peak-to-aerag

given value of the false alarm probability. Simulation exanples POWer ratio constraint. In [6], the optimal power allocatio
are presented to corroborate the theoretical results and lustrate  strategy is presented for the minimization of outage praiyab

the performance improvements due to the proposed optimal in fading channels and it is shown that the optimal power-allo
power allocation strategy. . _ _ cation policy is to employ the “save-then-transmit” praibc
Nel ndex Terms- Detection probability, power allocation, fading, 4 is "no power transmission occurs until the accumulated
yman-Pearson, power constraint. > ; Hmuiale
power becomes sufficiently high and then transmission is
performed continuously with non-decreasing power. In [7],
the optimal power adaptation is considered for a frequency-
) } _ selective fading channel in the context of energy efficiency
Due to time-varying nature of wireless channels, dynamigimilarly, energy-efficient optimal power allocation issal
allocation of communication resources has a significanahp stydied in [8] for an orthogonal frequency division mulépl
on the performance of communication systems. In particulaccess (OFDMA) system in which flat fading channels exist.
the use of dyna.mlc. power allocation mstgad of a fixed styategh [9], the optimal power allocation is considered for mpiké-
can lead to significant performance improvements in thgput multiple-output (MIMO) flat fading channels in order t
presence of fading. In the literature, dynamic power alioca. maximize the effective SNR under sum energy and total block
has mostly been employed for enhancing the channel capagétijgth constraints. In [10], an energy-efficient powerdiion
of communication systems (e.g., [1]-[3]). For a fading &idi method is proposed for Nakagami-flat-fading channels in
white Gaussian noise (AWGN) channel with perfect channgie presence of delay-outage probability constraint. Bope
state information (CSI) available at both the transmitted a erative wireless sensor networks, an optimized dynamicepow
the receiver, the optimal power allocation problem is stddn  control approach is proposed in [11] with the consideratibn
order to maximize the ergodic capacity subject to an averaggality of service (QoS) requirements. In [12], the optimal
power constraint in [1]. It is shown that the optimal powepower and rate adaptation scheme is investigated in order to
allocation policy corresponds to the water-filling solation  maximize the spectral efficiency of a communication system
which no power is transmitted until the received signal-tqyhere multilevel quadrature amplitude modulation (MQAM)
noise ratio (SNR) exceeds a certain threshold, and highgkonsidered over Rayleigh flat-fading channels. The commo
power levels are allocated as the channel condition imoVvehread in this line of research is to devise power allocation
In [2], the optimal power allocation strategies are obtdiney|gorithms that can adapt to varying channel conditionsnin a
to maximize the ergodic capacity and the outage capacity éfficient, preferably optimal, manner and hence improve the
secondary users in cognitive radio networks. In the presengstem performance beyond that of the conventional uniform
of average/peak transmit and interference power consstaithower allocation approach.
it is demonstrated that the average power constraints arejihough the problem of optimal power allocation over fad-
more flexible than the peak power constraints in terms of “1(9?? channels has been considered under various criterfeaguc
capacity improvements for the secondary users. In a similg{5nnel capacity (e.g., [1]-[3]), BER (e.g., [4], [5], [1B15]),
- , outage probability (e.g., [6], [16], [17]), and energy dffiacy
EISétri%glrI?r?a éiec?r'orﬁgszelgngairrllgeﬁﬁgfs%Zilllgclen?ran‘i,\vlgsi(t)%%og,e %illt(r:g,] (e.g., [3], [7], [8]), no studies in the literature have istigated
Turkey, emails:{serkan,adsezer,geZi@ee.bilkent.edu.tr. B. Dulek is with the optimal power allocation problem over fading channels
the Dﬁé’gagg“?{}ﬁk‘ﬁr;'e%?ﬁé" agdm gi?cggﬁﬂgﬁ@gggigaegém?e%e %'I:/Seél within the context of the Neyman-Pearson framework. This
?sltyv’vith the Department of X}Iathem'atics and Statistics, Qeebiversity, Can, In part, be attributed to the lack Of. C'PSG_d form sohsio
Kingston, Ontario, Canada, K7L 3N6, email: yuksel@mastemsu.ca. B. and the nonconvex nature of the optimization problem for

Dulek acknowledges the support by the National Young Rebees Career practical values of the false alarm rate. In particularuhes
Development Program (project no. 215E118) of the Sciendifid Techno- . . CL. o
logical Research Council of Turkey (TUBITAK). A. D. Sezersapported by TOf the convexity properties of the detection probabilitg a

ASELSAN Graduate Scholarship for Turkish Academicians. established in [18] for the problem of determining the pnese

I. INTRODUCTION



of a transmitted signal immersed in additive Gaussian noidecide between two hypothesgs, and#, which correspond
in the absence of fading. In addition to the convexity anialysto the absence and presence of a signal, respectively. The
the optimal power allocation strategy is derived for an ager observation model under each hypothesis is expressed as
power constrained jammer trying to reduce the detectidollows:

robability at the receiver. In a related study [19], theed&ibn
grobabilig is analyzed for cooperative spechrur]n senswvey o Ho:Y =0N, H1:Y=1\Psh+toN @)
Rayleigh fading channels in cognitive radio systems, ansl itwhere Y denotes a real-valued scalar observatiaN, is a
concluded that cooperation among secondary users impro¥ggdard Gaussian random variable with zero mean and unit
the detection performance. _ variance; i.e.,N ~ N(0,1), ¢ > 0 is the standard deviation

In this paper, the optimal power allocation problem igf the noise at the receivex/P; s denotes the transmitted
considered for maximizing the average detection prolgbilisignal, andh denotes the scalar channel gain after carrier
over a flat fading AWGN channel subject to average arghase synchronization at the receiver, which is assumee to b
peak power constraints. In order to obtain the optimal powgbnzero. Without loss of generality, it is assumed that 1 in
allocation policy, the convexity properties of the deteti (1); hencepP; represents the power allocated by the transmitter.
probability are analyzed with respect to the received SNR,is noted that the scalar observation model in (1) provides
which is subject to flat fading. Then, it is shown that an abstraction for a continuous-time system which prosesse
dual problem that admits dual decomposition with no dualithe received signal by down-conversion, matched filtering a
gap can be constructed. Based on the primal and dual fegmpling at the symbol rate with precise symbol timing; enc
mulations, various algorithms are proposed for the optimgle effects of modulator, additive noise channel, fadimg a
power allocation. Furthermore, the optimal power allawati receiver front-end processing are taken into account in the
strategies are characterized according to the desirezldlsm discrete-time baseband model [18], [20]. In addition, it is
probability and it is obtained that the optimal power alldwa assumed that the receiver has the knowledge of the channel
scheme for the maximization of average detection proligbilcoefficienth (i.e., perfect CSl) and the standard deviation of
is completely different from the uniform power allocatiorthe noise .
strategy. Numerical examples are presented to investthate |n this work, the Neyman-Pearson (NP) criterion is con-
validity of the theoretical results. The main contribusoof sidered; i.e., the receiver implements the optimal NP datis
this study can be summarized as follows: rule which maximizes the probability of detection subjext t

« For the first time in the literature, solutions to the optia constraint on the probability of false alarm, denotedoby

mal power allocation problem are proposed for averag@l].? In accordance with the NP criterion, the likelihood ratio
detection probability maximization in the presence of fldest (LRT) corresponding to (1) is obtained as follows:

fading AWGN channels. _(v—yPn)?

o The formulated optimization problem is generic in the 1 eth ay poz M
sense that it takes into account both average and peak, Y) = 2no . e e = n, (2
power constraints and it applies to any continuous fading 1 5o «jo
distribution (Sec. II). 2mo

« Using results from measure theory and convex analyswhich can be simplified into
it is shown that the Lagrangian dual problem admits no H 42 Nl
duality gap. This, in turn, provides an efficient framework sgn(h)y = Z 21 sy, (3)
for the solution of the original optimization problem, ﬁo v 2

which is nonconvex in general (Secs. 1lI-A-l1I-C).

. . . he optimum NP decision rule satisfies the constraint on
« The computational complexity of the problem is reduce " : .
significantly by applying dual decomposition. The re. e probability of false alarm with equality [21]. From (1)

sulting subproblems are coupled only through a Singg;d £3)f):{1£e(}9;0k;ab7;|l|t¥{(ﬁf Elsf?r[gg(% ?n>b% |o732?|n§d o
parameter (Sec. |11-D). Q(ii/o), where Q(-) denotes theQ-function; i.e., Q(x) =
» The proposed algorithms are guaranteed to converge om) 1 [ ¢~/2dt. Setting the probability of false alarm

the global optimum with desired accuracy (Secs. -l ; y 1
11-F). equal toa, the threshold is calculated §s= 0 Q~'(a), where

. creys . . -1 i i i isi
« For various probabilities of false alarm, the continuitgan@(+) is the inverseQ-function. Hence, the NP decision rule

monotonicity properties of the optimal power allocatiofs given by

scheme are investigated and the conditions, which must Hi
be satisfied by any optimal power allocation policy, are sen(h)Y ; Qo). (4)
derived (Theorem 1 and Theorem 2 in Sec. IlI-H). Ho

The rest of the paper is organized as follows: Sec. Il presemhe detection probability corresponding to the decisiole ru
the problem formulation for the optimal power allocationn (4) can be obtained from (1) as
subject to the average and peak power constraints. In Sec. Il

_ Prla -1
the solution of the optimization problem and the optimal pow D = Prisgn(h)Y > 0Q™ (a) | Hi] Q)
allocation algorithms are provided together with the tleews -1 VB ||\ A 1
characterizing optimal power allocation. In Sec. IV, nuinar =Q(Q (o) - pu =Q (Q (@) = v PW)
examples are presented to corroborate the theoreticdtgesu
Finally, Sec. V concludes the paper with remarks. 1The results can also be extended to vector observationsSgzeV).
2The NP framework is well-suited for applications in whicte thetection
Il. PROBLEM FORMULATION and false alarm events have different importance levels.aAsexample,

; ] ; . consider a scenario in which the transmitter, equipped wihe sensors,
Consider a transmitter and a receiver that communicate O\égﬂds a signal to the receiver whenever it detects the mes#ra person in

a flat fading AWGN channel. The task of the receiver is tarestricted area (or, fire in a forest).



wherey £ h? /02, In the presence of a signaldetermines the to solve the dual problem, the dual decomposition method is
signal-to-noise ratio (SNR) at the receiver sinkgrepresents presented, and the related algorithms are provided in order
the channel gain ane? denotes the average noise power (sde obtain the optimal power allocation strategy numerjcall
(1)). In the sequel, it is assumed thattakes values in an Finally, the properties of the optimal power allocatioraggy
intervall' ¢ R and that the transmitter has the knowledge @fre investigated for various probabilities of false alarm.

~, which is commonly provided via feedback from the receiver
in practice [22, Ch. 4]. Equipped with the knowledgeofit A

, : A. Convexity/Concavity Properties
is assumed that the transmitter can perform power adaptatio ; . . .
i.e., the transmit power can be adjusted based on the currenfC oPtain the optimal power allocation policy based on the

value of~ according to the power adaptation strategy given timization problem in (7) (equivalently, (8)), the corily
Pi(v) : T — [0,00). Consequently, the detection probabilityPTOPErties of the detection probability are discussed with

in (5) can be written as :)ebstgﬁ]c;dt(i)ntf[wlefs]transmitted signal power based on the results
Pp(Fi(7):7) =@ (Qil(o‘) VvV Pt(V)V) Lemma 1. For a € [Q(2),1), Pp(P(v),7) is a monoton-

1 /00 22 q ©) ically increasing and strictly concave function é%(v) €
=— e 'z dx. (0,00) for any given value ofy € T'. For a € (0,Q(2)),
V2T Jo-1(a)—/P.(7)7 .PD(Pt.('y),y) is a monotonically increasing function with two
Although the optimal power allocation problem in thdnflection pointsli(y) < Ix(y) such thatPp(Pi(v),7) is
presence of CSI at the transmitter has been investigated $8ictly concave forP;(y) € (0,Ii(y)), strictly convex for
various metrics such as Shannon capacity, outage capadity;y) € ({1(7),12(7)), and strictly concave forP;(y) €
and average probability of error (e.g., [1]-[17]), the ol ({2(7),o0) for any given value of; € T'.

power allocation problem for the maximization of average pyyof: The proof is similar to that of Proposition 1 in

detection probability over flat fading AWGN channels has_nc[>§_8]’ which was derived in the absence of fading (hence,

been considered to the best of authors’ knowledge. The aimyg ower allocation with respect to fading). First, the lim-
this work is to obtain the optimal power allocation stratét jis of the detection probability are noted. For any fixed

maximizes the average detection probability under an geerg,, f T Po(P _ d

power c.onstraint, i.e., to solve the following Optimizmoli?nf(v)o_mZPDe(Pt(:y),;?Pt:(wl_.)olzu?t(hetr(r’r%r?, the fi(rlst-?)rrlder

problem: derivative of the detection probability with respect/y(y) is
sup E,[Pp(Pi(v),7)] st E,[P.(y)] <P, (7) 9ivenby

P () OPp(P(v),7) VY
where E,[-] denotes the expectation over the continuous 9P, (y) a 2v271+/Pi(7)
random variabley, P denotes the average transmit power 1 9
limit, and P,(y) is a Lebesgue-measurable function with X exp{—— (Qfl(a) - \/Pt(v)v) }, ()]
0 < Pi(y) < Ppear Vv € T, and Ppeqi, denotes the peak 2
power constraint satisfying,c.. > P. More explicitly, which is positive for all values ofP,(y) > 0 andy € T.

Hence the detection probability is a strictly increasingdiion

sup / Q (Q‘l(a) -V P (7)7) p(y) dy of the transmit power?; (). Similarly, the limits of the first-

0<P(M<Poear o order derivative are given amp, ;)0 %}(J)W =

= and lim o)) — g, Differentiating once more
s.t. P, dy<P 8 . Pu(v) =00 “TOP, ()
/ () dy < P, @ with respect toP;(v) yields
yel’

0*Pp (P,
wherep(~) is the probability density function (PDF) af and M
satisfies the conditions for a valid PDF, i.e(3) > 0 Vv €T, 9 (Fi(7))

and [, . p(y)dy =1. —7 1/ s\ ?
Remmark 1: It is noted from (8) that the transmitter calcu- * 1. 2m(Pi(7))?/2 P73 (Q () = th)v) '

lates the average detection probability and the averagempow

by using the PDF ofy, which must be estimated in practice. 2AP (7))

Such an estimation process can be performed when the cha®igte A(P,(v),~) is negative for allP,(y) > 0 andy €
characteristics are constant for a sufficiently long tinterval T, the sign of the second-order derivative is determined by
(e.g., when the transmitter and the receiver stay in the sagpg first term, (vP,(v) — Q7Y (a)\/P.(7)y + 1). Letz £

environment for some time and do not move very rapidly). In/575= . - : . )
the presence of imperfect estimation, the results in thidyst Pi(7)y. Then, in order to identify the sign of thAe second

i rder derivative, we need to check the signfgf) £ =2 —
gz?egt?o;egggggilﬁj theoretical upper bounds on the ave%nﬂf(a)x + 1 for z > 0, which can be determined from its

discriminant,A = (Q*l(oz))2 —4. Fora € (Q(2), Q(-2)),
. OPTIMAL POWER ALLOCATION the discriminant is negative, which indicates thdtr) > 0

_ o ) _ _ Vz > 0. For A = (Q71(a))? —4 > 0, the real roots of
In this section, first, the convexity properties of the détec L 5
probability are analyzed with respect to the transmittegai /() occur atzis = (Q7'(a) £ 1/(Q71(@)" —4)/2. If
power. Then, the dual of the optimal power allocation proble Q! (a) > 2, we havea < Q(2) and both roots are positive.
is formulated and it is shown that the duality gap betweerhus, f(x) > 0 for 0 < z < z; andz > z9, whereasf(z) <
the original problem and the dual problem is zero. In ordérfor z; < x < x2. On the other hand, iD~!(a) < —2, that

= (vA) = @M @VRO)T + 1) (20)




is, if « > Q(—2), then both roots are negative, which implie€. Strong Duality
that f(z) > 0 for all > 0.

From the analysis above, it follows th&p(P:(v),v) is In order to show that the duality gap between (8) and (14)
a monotonically increasing and strictly concave functidn as zero, we follow a similar approach to that employed in [23]
Pi(y) € (0,00) for @« € (Q(2),1). For o € (0,9(2)), and [25], which relies on a variant of Lyapunov theorem due
Pp(P:(v),7) is @ monotonically increasing function with twoto Blackwell [26], [27].

inflection pointsI; (v) < I2(y), where
1 2 Lemma 2. [23, Lemma 1], [25, Theorem 1] Let be a
L(y)=— <Q_1(a) /(9 1(a))® = 4) nonatomié measure on a Borel fiel§ generated from subsets

4y of a spacel'. Let g;(«(-),-) be a B-measurable function
1 . 5 2 wheneverz (-) is B-measurable fori = 1,2,...,m. Then,
R0) = (e @+ Vet 1) a o) 20
x (), )dv
such thatPp (P, (v),v) is strictly concave forP,(y) € r92( F) ) x is B-measurable & € [0, Zmax]
(0, I1 (v)), strictly convex for P,(y) € (I1(v),I2(v)), and :
strictly concave forP;(vy) € (I2(7),c0) for any given value Jrgm (@ (-),-)dv
of v e T. m IS a convex set.

Based on Lemma 1, whem € [Q(2),1), the optimization ) L
problem in (8) becomes a convex optimization problem sincelt Should be emphasized that no assumption is imposed
Pp(Pi(v),7) is a concave function of’(v) for all values M Lemma 2 on the convexity of functiong or the setl".
of P,(y) > 0. However, in many practical applications, thel N€ convexity of the image of the mapping stems from the
required values for the probability of false alarm are serallNonatomic property of measure This condition is satisfied
than Q(2) ~ 0.02275. In such cases, i.e., for < O(2), !f an absolutely continuous probablllty_ measure with Pipfy) _
the optimization problem in (8) is in general nonconvex sindS assumed in the problem formulation. Then, the following

Pp(P,(v),~) is no longer a concave function d?,(y) for resultis obtained.

all values of P;(y) > 0. Nonetheless, based on the resultg oposition 1. Let v (P) denote the solution of8) for an

established in [23], it can be shown that the duality gap : . ;
the optimization problem is zero (Sec. IlI-C). This, in turn(gl solutely continuous probability measure with PREy).

leads to efficient numerical algorithms for the solution 0‘{hen,v (P) is a concave function oP.

the nonconvex optimization problem in the dual domain, as  proof: The statement in the propositon can be
discussed in the sequel. proved based on similar2 arguments to those in Theorem 7
B. Dual Problem of [23]. Let P and P° represent two average power
limits, and let P! (y) and P?(y) denote s—optimal

For the optimization problem in (8), the correspondingy, tions of the optimization problem in (8) under average
Lagrangian function is expressed as o —2 . —i
power limits P~ and P~, respectively, so that (P) <

L(P(7),A) = /Q (Q_l(a) - \/Pt(W)W) p(vdy (12) B, — Joer @ (Qfl(a) _ pti(»y)»y) p()dy + e

yer Then, Lemma 2 implies that for eadh < 6 < 1, there
exists a nonnegative Lebesgue measurable funcipfy)

+/\(F _VG/F Pt('Y)p('Y)d'Y) such that [ . Q (Q‘l(a) — /P () 7) pMdy =

_ 6Py + (1-0)Pp - and [ P ()p()dy =
= /(Q (Q‘l(a)—\/Pt(v)v) —APt(v)) p(MAY+AP, 0 [ . PL(y)p(y)dy + (1—9)JQGFFPE Mp(y)dy <

~ver 6P + (1—0)P . This holds for every > 0; therefore,
and the dual function is given by the supremum of (8) under an average power limit
—1 =2 _ —1 =2
0P 1—-6) P satisfies v (6P 1-0)P >
g(\) £ sup  L(P(7),)) + (1-6) “( +(1-6) =

P.(v) 6Pp" + (1-6)Pp° = fu (ﬁl) (11— (?), from
st. 0< P(y) £ Ppear, ¥y €T which the concavity ob (P) with respect toP follows. m

Pi(-) is Lebesgue measurable  (13) |, Proposition 1, it is stated that the optimal valu¢P)

Then, the Lagrangian dual problem of (8) is defined as  of the objective function in (8) is a concave function of the
. average power limitP for absolutely continuoug(y). Then,

mi g (A) st.A=0. (14) it follows that the Lagrangian dual problem admits no dyalit

Let P* and D* denote the optimal values obtained as th%ipf\évlllg]wtizg gg?&“glrypirg%lg{g"i% Theorem 2], [29]. Hence,

solutions of the original problem in (8) and its dual in (14).
should be noted that the latter optimization problem is eanv corollary 1. The duality gap between the solutions(8j and
whereas the former is not necessarily so. From weak duality4) is zero.

it follows that P* < D* [24]. In general, the primal in (8) is

not equivalent to the dual in (14). In the following, it is stho

that the duality gap is zero whentakes values in an interval 3a measure is nonatomic if every set of nonzero measure hasseswith
T". Hence, strong duality holds and the solution of (8) can lsdictly less nonzero measure. The standard Lebesgue meeigsuonatomic.
obtained from the solution of its dual in (14)_ The uniform measure on a finite set is atomic [23].



D. Dual Decomposition The second algorithm, which relies on a bisection search to

Since the equivalence of the primal and dual formulations {dateA and converges in general faster than the subgradient
now established, the solution of the optimization problem ¢ Method [30], [31], is described next.
be investigated based on the dual problem. The dual functigyorithm 2. Optimal Power Allocation Algorithm - Bisection
in (13) involves the maximization of Lagrangian functionvethod
L (Py(v),A) for a given value of\. It is observed from (12) | iialize
that the Lagrangian functiofi (P;(v), A) can be decomposeddo
into

min = 0, Amqqs (described in Algorithm 3)

A = 2mintAmas
LPRON = [ L (RGN Ay +aP,  @15) SelvePT(y) = argsup O (Q7Ha) = vaY) — Az ¥y el
r : 2€[0, Ppearl
” if jVEF Pt*(’}/)p(’}/)d’}/ < Pvthen )\maz = )\7 else /\mln =

where £, (P,(v), \) 2 Q(Q*l(a) - w/Pt(m) — AP,(v). while [Amaz — Amin| > €
Evidently, the optimal power allocation that maximizes —— , - —
L£(P,(7),\) obtained from (13) should also maximize the initialization stage of the bisection based algonitfit
L, (P(7), \) for each given value of. This is known as dual IS nécessary to find a value of,., that guarantees that the
decomposition and it facilitates the decomposition of thald @verage power constraint is satisfied. Algorithm 3 tackiés t
problem into suboptimization problems which are couplg@foblem.

only throughA [24]. More explicitly, we need to compute  Ajgorithm 3. How to compute\,,a.

sup Ly (P(7),A) Amaz = 1 B
SCE while [ . P*(y)p(y)dy > P
= _swp  Q (Q’l(a) - \/Pt(w)w) “AP(y) (16) Amaz = 2Amas

0<P:(7)<Ppear solve P,"(vy) = EegglfUp]Q (Q ) = VT7) = Amazz ¥y €T
x yPpeak

for each value ofy € T'. It is also required to search throughend

values of A which place sufficient emphasis on the power

constraint term inC, (P;(v),\) so that the average power Although we have decoupled the original optimization

constraint in (8) is satisfied. problem across different values of (for fixed \) via dual

decomposition, we still need to solve a nonconvex optimiza-

) tion problem (fora < Q(2)) at each iteration to compute

E. Algorithms P (y) = argsup Q(Q *(a)— \/z7) — Az forall y € T

In this part, two algorithms are presented for the proposed z€[0,Ppear] . . ]

optimum power allocation problem over flat fading AWGNOrtunately, the optimal solution faP,"(y) can be obtained

channels. Both algorithms contain a loop that searchesveWith desired accuracy using tools from convex optimization

The first algorithm employs a subgradient method to iteedyiv 11 is explained in the next part.

update), whereas the second algorithm employs a bisection

method [4], [30], [31]. In both methods, the search dirattioE sybroutines

for A suggests thak should increase if the constraint is ex- o A _1

2 = , In Sec. IlI-A, it is shown thaPp (z) £ Q (97! («) — /77)
Ce.ed?‘d' "e'fveF Pi(v)p(y) dvy > P, and decrease other\_/wsejs a monotonically increasing and strictly concave functd
This is because a larger value bdfplaces more emphasis on,. € (0,00) for all @ > Q(2) and~ > 0. Therefore, the
the power constraint in the Lagrangian and results in a Iowﬁﬂlowinvg optimization Eroblem ' '

average power.

P*(v) = argsup Pp(z) — Az
IE[O,Ppcak]

= argsup Q(Q (@) — v&) ~ Az (17)

Algorithm 1. Optimal Power Allocation Algorithm - Subgra-
dient Method

Initialize A\, k=1 2€[0,Ppeat]
do is convex for the specified range of
* _ —1 _ _
solve P"(y) = zea;ggpspupk]g (Q (@) =y CCW) AVy €T parameter values. If Pp'(Ppear) =
El ea . I ﬁ _l 1 _ 2

Akl = {)\k +ag (f,yep P (y)p(y) dy — P)} 2V27\/Ppeak exp{ 2 (Q7(e) Fpear) } z A

k=k-+1 then P.*(v) = Ppeak- If Pp'(Poear) < A, we need

while [\ 11 — M| > € to numerically evaluatePp’(z) = X\ or more explicitly

2 . .

2\/‘24?\/5 exp{—% (@7 a) — z7) } = \. SincePp/(z) is

In Algorithm 1, k is the iteration numbery; > 0 is the 3 monotonically decreasing function (from infinity to 0) of
step size for thekth iteration (a decreasing sequenceidf . and ) is a constant, there is a uniqug*(y) which can

[-]7 = max{,0}, ande > 0 is a small number used tope calculated based on a simple bisection search, which is
signal convergence. The subgradient update is guarantee@dscribed as follows:

converge to the optimal value of as long asy;, is chosen to . .

be sufficiently small [32]. As mentioned in [31, Sec. IV-A]Algorithm 4. Solution for concavé’p (x)
when the norm of the subgradient is bounded, the choice ©f,;,, =0

ar = B/k is guaranteed to converge to the optimal for some,,.., = Ppeak

constants. do




T = W x9 = argsup Pp(z) — Az, and selecting the solution
if Pp’(x) > \,then z,,;, = 7, else Tyqp = . 2€[T3(v),00) _
while |Zmaz — Tmin| > € with the highest scorer* = argsupPp(z) — Az.* To this
] {w1, @2}

On the other hand, forr € (0,Q(2)), it is shown in €nd, the tangent point, (y) andT5(v) should be computed
Sec. Ill-A thatPp(z) = Q (Qfl(a) _ \/ﬂ) is a monotoni- first. Thls can be achieved with desweq accuracy using the
cally increasing function with two inflection poinfs(y) and following numerical method. (For a detailed explanatioge s
I»(v) (as specified in (11)) such thBp (x) is strictly concave [18, Algorithm 1].)
for z € (0, I1(v)), strictly convex forz € (I1(7), I2(7)), and ~ Algorithm 5. Computation of tangent poinf& (v) and Ts()
strictly concave forz € (I>(7),00) for any given value of whena € (0, 9(2))
~. Fig. 1 presents a generic graphical descriptiorPef(z) ; ;
as a function ofz for an arbitrary value ofy > 0 when Bmin =Pp'(11(7)) » Bmaz = Pp'(12(7))
a € (0,9(2)). Consequently, the optimization problem in (17¥min,1 = 0, Tmaz,1 = 11(7)

is not convex fora € (0, Q(2)). ﬁmm? = I(7) , Tmaz,2 = 00
o
Pp ({E) iy s Po/(2) = 0 ﬁ _ 5min‘;5maz

1 T = argsup  Pp(x) — Bz

upper boundary of 131)(1) IG(Imin,1 ’Imaz!l)
(the convex hull of Pp(z)) To = argsup PD (.T) — B.T

N 16(£m1ﬂn,27$maz,2)
if PD(:cl) — [3:01 > PD(xg) — [3:02

then Bmam = B y Tmin,1 = L1 » Tmin,2 — T2

Pp’(0) = oo
g else Bmzn = ﬁ y Tmazx,l = L1y Tmaz,2 = T2
while |Bmaw - ﬁmzn| > €

a At convergence, the tangent points and the slope of the tan-
gent line that constitutes the upper boundary of the conuéix h
5 of Pp(x) corresponding toy can be obtained &5, () ~ x4,
Ti(v)  h(7) L(7) Tz(7) x Ty(y) ~ x2, andPp'(Ti (7)) =~ Pp/(Ta2(v)) ~ f. Although
Fig. 1. An illustrative description oPp (z) for an arbitrary value ofy > 0 h(7), I2(y), Ti(y), and Ty(y) should be computed for all

h 0,0(2)). The t t poIntS Ty (). T d the inflection 7 € ' separately, they do not depend on the valueXof
\Sloiﬁ?schel((y)%((%} ari smg\}/fr? oﬁ‘i'ﬁfgrz(gﬁ, 2(7)} and the inflection employed in (17). Consequently, they can be computed offline
: . before either Algorithm 1 or Algorithm 2 is employed to find
Based on a careful analysis of the behavior ) (z) o optimal powger allocation. 9 ploy

in Fig. 1, efficient numerical methods are proposed for the o
solution of the optimization problem in (17) under diffeten It should be noted that the peak power constraint is not

; - mployed in Lemma 4. In the sequel, we first present the
cases. Prior to the description of the proposed methods, &%posed numerical method for the solution of (17) in the
following lemmas are presented.

absence of a peak power constraint, i.e.,
Lemma 3. Let « € (0,9(2)), and I;(y) and I2(v) be the
inflection points o (z) as given in(11). There exist uniqueP:”(7) = argsuPp (z)—Az = argsupQ (Q " () — y/@7) —Az
points T’ () € [0,;(7)] and Tx(y) > I»(v) such that the =20 =20
tangent toPp(x) at 7:(y) is also tangent aflz(y) and this - ajqorithm 6. Numerical method to computg,*(v) in (17)
tangent lies abové®p () for all v > 0. without peak power constraint whene (0, Q(2))
Proof: Similar to [18, Appendix A]. B Pp/(T1(7)) < A

Lemma 4. Let A > 0 and Pp(z) denote the upper boundary ~ F:"(7) = argsup Pp(z) — Az

of the convex hull of°p(z) (as depicted in Fig. 1). Then, 2€(0.T1(7)]
al’gS(l)JpPD(:zr) —Ar = args(L)JpPD (x) — Az. P*(y)= argsup Pp(z) — Az
" " T€[T(),00)

Proof: Since Pp(z) < Pp(z) for all x > 0, we get
supPp(z)—Az < sup ﬁD (x)— Mz for all z > 0. Furthermore, When a peak power constraint is imposed on the transmitter
z>0 x>0 - power as in (17), we can obtain the solution to (17) with some
Pp(z) is concave and the maximum occur§Bb)'(z*) = A, modifications depending on the relationship betwéefy),
wherez* € (0, T1(7)]U[T2(7), oo) for all values ofA > 0. But  Ty(v), and Ppeqs.
noting thatPp(z) = Pp(z) overz € (0, T1(v)]U [T2(y), 00), Case 1 Py < Ii(y) : Since Pp(z) is concave for
the result follows. m 2 < [i(v), the optimization problem in (17) is convex and

Lemma 4 is the key observation in the development of othie following algorithm computes the solution with desired
methods for the solution of (17). It indicates that the maxim accuracy.

of the nonconvex optimization problem argsBp(z) — \x Algorithm 7. Numerical method to comput®*(+) in (17)

L. i i >0 Lo i
coincides with the maximum of the convex optimizatioffor P,.., < I;(y) whena € (0, Q(2))
problem argsupPp(z) — Az, which can be computed easily “As will be seen in Algorithm 6, it is possible to improve onsthiesult as
250 well by noting that the optimal point* satisfiesPp’(¢*) = X andPp’(x)
by obtaining the solutions; = argsup PD(x) — \r and mor)otomcally decreases over the intervells T4 (y)] and [T2(7), co) with
2€(0,T1(7)] Pp'(T1(7)) = Pp'(T2(7)).



obtained such that the values Bh(z) for © > P,qi are

if Pp’(Ppear) > A not taken into account. This observation in conjunctiorhwit
P () = Ppeak Fig. 2 suggest that wheR,.qx € (I1(7y), T>(7)), the solution
else of the nonconvex optimization problem can be obtained via
P,*(y) = argsup Pp(z) — Az the following algorithm.
2€[0,Ppeak)

Algorithm 9. Numerical method to computg*(~) in (17)
Case 2 Ppear > T2(7) : In this case, the solution canfor Poear € (I1(7), T2(v)) Whena € (0, Q(2))
be obtained with a slight modification to the one obtaineg p/(C(+)) > A

assuming that no peak power constraint is imposed. This is P (7) = Preak

because the convex hull of the upper boundarPefz) is elge P

unchanged with respect to that scenario. P*(y) = argsup Pp(z) — Az
Algorithm 8. Numerical method to computg*(y) in (17) 2€[0,(C(M]

for Pooar > To(v) whena € (0, 9(2))
if PD/(Ppeak) Z A

P (v) = Ppeak
elseif PD'(Ppeak) <\ < Pp'(Tx(v))

Obviously, the value ofC(y) is required to implement
Algorithm 9. To that aim, Algorithm 10 provides an effective
bisection search method.

P*(v)= argsup Pp(z)— Az Algorithm 10. Computation of tangent pointC(y) for
@€[T2(7),Ppeak] I < Ppear < T¢ whena € (0, Q(2
clse A > Po/(Ta(n)) 1(7) peak 2(7) ,( 2(2))
Pt*(’y) = argsup PD (,CC) —\z ﬁmin = PD (Il (7)) ) ﬁmam = PD (Tl (7))
z€[0,T1 (7)) Tmin = Tl (7) sy Tmax = Il Y
do
Case 3 I1(v) < Ppear, < To(7) : Since the transmitter B = LmintPmas
power z cannot take values greater thdf..., the upper r= argsup Pp(z)— Bz
boundary of the convex hull oPp(z) over the interval TE(Trmin,Tmaz)
[0, Pyear] is different from the previous cases. In order to  if Pp(z) + Pp’(2)(Ppeak — ) > Pp(Ppeak)
present the solution of the optimization problem in (17) emd then B0 =8, Tmin =
this scenario, we need the following lemma. else Bin =0 ) Tmaz =

Lemma 5. Let a € (0, Q(2)), and ;(7) and Ly(y) be “P1e P = Omin =€

the inflection points oPp(z). Suppose also thdf () and .
T () be the contact points of the tangent line as described%'nAt convergence, the tangent point and the slope of the
Lemma 3. Given a poinByear € [11(7), T»(7)], there exists angent line that constitutes the upper boundary of the @onv
a unique poinC(~) € [T (7), I1(v)] such that the tangent at Mull of Pn(2) for z € [0, Pyeqx] can be obtained aS(y) ~ «
C(y) passes through the poifiP,.ox, Pn(Poear)) and lies andPp'(C(y)) = B. A!though C(y) must be computed for
abovePp (z) for all = € (0, P, k’)’ P all v € T separately, it does not depend on the value\of

_ T peeRs _ _ employed in (17). Consequently, it can be computed offline
A graphical description of the tangent poi@ty) is pre- together withl; (v), I>(v), T1(v), andT(~) prior to the start

sented in Fig. 2. of the power adaptation algorithm.
At this point, it should be emphasized that all the sub-
Pp(x) routines that are proposed to obtain the solution of the

optimization problem in (17) under different cases involve
convex problems. Furthermore, the bisection search destri
in Algorithm 4 at the beginning of Sec. IlI-F can be em-
ployed to solve all the problems that are of the general form
P*(y)= argsup Pp(z)— Az (as seen in Algorithms 5-
Ie[wmﬂuwmam]
10) due to the fact that the interval,,;, , a2 ] iS SO arranged
thatPp(z) is concave over the specified interval.

1

upper boundary of ﬁD(.’L‘)
(the convex hull of Pp(z) for = € [0, Ppear])

G. Implementation and Complexity

In this section, the implementation of the proposed power
01 Ti(v) Cv) L(v) Bpat Ta(7) z allocation approach is discussed. Based on the dual decom-
position method, the optimal power allocation strategy lsan

Fig. 2. Pp(z) and the upper boundary of the convex hull Bf, (z) for ; ; iz ati i
2 € (0, Pouy) for an arbitrary value ofy > 0 whena € (0, 0(2)) and obtained by solving the optimization problem in (16) for leac

Pyear € (I1(7), T2(7)). The corresponding tangent poit(y) is also given value ofy. Since the optimal value of is not known

shown on the graph. at the beginning of the iterations, is initialized to a certain
Based on a similar argument to that presented wlue.and updated at each iteration based on Algorithm 1 and
Lemma 4, it can be shown that argsupp(z) — Az = Algorithm 2. In order to calculate the optimal power level
2€[0, Ppeak] for a given~ value and a fixed\ value, the subroutines are
argsup ﬁD(x)—/\:v,whereﬁD(x) denotes the upper bound-Provided in Section IlI-F. For different values of the false
2€[0, Ppeak] alarm probability &), the following statements specify the

ary of the convex hull oPp(x) for = € [0, Ppeqr], Which is  algorithms that can be used to calculate the solution of: (16)



1) If « > Q(2), the optimization problem in (16) becomesvhere A\, u(y), and v(v) are the KKT multipliers. The

convex and Algorithm 4 addresses the problem. stationarity condition in (18) can also be written as
2) If a € (0,Q(2)) and there is no peak power constraint, ,
then Algorithm 6 can be used. Nal _(971“")+ VEOT)” A v(y) — p(y)
3) When there is a peak power constraintdoe (0, Q(2)), 2v27/P,(7) € =AT p(7) '
the optimization problem in (16) can be solved by using (23)
one of the algorithms described in Algorithm 7, Algo-
rithm 8, and Algorithm 9. From (19)—(22), one of the following cases must be satisfied

) ) for eachy: (i) Pi(y) = 0, u(y) > 0, andv(y) = 0, or
~ For complexity comparisons, suppose that there eXi§h) 0 < Pi(y) < Ppeak, p(7) = 0, andw(v) = 0, or (iii)
finitely many possible values of, and let N, denote the p, () — r u(y) = 0, andv(y) > 0. In Case(i), the
number of differenty values. Also, consider the subroutinegeft-hand-side (LHS) of (23) becomes infinity for any> 0;

(i.e., Algorithms 6, 7, 8, and 9), each of which solvegence A\ must be infinity in that case singe(y) > 0 and
a 1-dimensional convex optimization problem, and assu )>0Vy €T andpu(v) = 0 for all v such thatP, (+) = 0.

that each of those algorithms has a computational compl@xn the other hand, in Cadeéi), the LHS of (23) is finite for
ity of (’)_(C1D), Whe_re O(_C’lD) denotes th_e _computatlonalany,y and it must be equal ta sincep(v) = 0 andv(y) = 0.
complexity of a 1-dimensional convex optimization prOblenTherefore, if Casei) holds for anyy > 0 (meaning that\
with bound constraints. The main algorithm, Algorithm 1 opecomes infinity), then Cagéi) cannot hold for any value of
Algorithm 2, in Section IlI-E checks the convergence of the - ) |eading to the violation of the average power constraint
A value and decides whether the optimal power allocatigR (19). Hence, Caséi) cannot hold for anyy > 0; that is,
strategy obtained by the subroutines for a fixedalue satisfy P,(y) > 0 must be satisfied fory > 0. (Sincep(y) is a
the average power constraint. In those algorithms, theeeorgontinuous random variable, this implies that for an optima
sponding optimal power levels for ajl values are calculated power allocation policy,P;(y) > 0 almost surely.) For the
in each iteration. For that reason, in each iteration, thexmagge WithP,(7) = P,cqr for somey € I (i.e., Cas€(iii)), the
algorithm calls a total ofV., subroutines in order to Ca|CU|atestatemenPD’(Ppea;:7) > \ is satisfied since:() = 0 and

the optimal power levels for aH/.vaIues. In the context of v(y) > 0 for thaty € I'. Based on these cases, the solution
the convergence of, the subgradient method in Algorithm 1 ¢ (8) must satisfy

requiresO(1/¢?) iterations in order to achieve a given tol-

erance level ok, whereas the bisection method employed iRp'(P;(v),v) = (24)

Algorithm 2 requiresO(log((Amaz — Amin)/€?)) iterations, (2 @1-/FiT7)?

where \.in = 0 and A4, iS @ parameter used in Algorithm | % 75— _ M, if 0 < Pi(y) < Ppear

2 that can be obtained by employing Algorithm 3. As a) 2v27vVP:(7) )

result, if Algorithm 1 is employed to obtain the optimal pawe Nai _ (Q’”“)*Zv peak?)

allocation strategy, the overall complexity of the prombse \ 2v2r\/Ppear ¢

solution is in the order o® (N, x 1/e?) x O(C1p). Otherwise, X _

if Algorithm 2 is used to find the optimal strategy, the overaRnd [i. Pi(v)p(v) dy = P (cf. (6) and (9))? _

complexity isO(N,, x log((Amaz — Amin)/€2)) x O(Cip). T_he following Iemma specifiegy valqes for which the
optimal power level is equal t&,e.; that is, P () = Ppeak-

Lemma 6. For 9(2) < a < 1, if Pp/(Ppeak,y) > A* for
somey € I, then P () = Ppeqr for those values of.

Proof: Consider thaQ(2) < o < 1 andPp’(Pyear, ) >
In this section, the properties of the optimal power allmoat A\* for some~ € I'. Then, suppose tha®; (y) # Ppeqr fOr
strategy are analyzed. To that aim, first, it can be showose values ofy € T'; that is,0 < P/ () < Ppear. Since
that the average power constraint must hold with equaliBn’(P:(v),~) is monotone decreasing fat(y) € (0, Ppeak)
for the solution of (8) since any power allocation policy lwit in the case ofx € (Q(2),1), PD’(Pt(w),y) satisfies for all
Jr P.(v)p(v)dy < P cannot be optimal as it can be improved?; () € (0, Ppear) thatPp’(Py(7),7) > Pp’(Ppeak,7) = A*.
by allocating higher power levels for some valuesyofuch However, Pp/(Pf(7),v) = A* for 0 < Pf(y) < Ppeak
that [.. P.(y)p(y)dy = P (due to the monotone increasingoased on (24), which contradicts with the inequality that
nature of the probability of detection). Then, the Karusip'(P;(v),v) > A*. Therefore,P;(y) = Ppear if there exist

Z )\*, |f Pt(’}/) = Ppeak

H. Characterization of Optimal Power Allocation

Kuhn-Tucker (KKT) conditions [24] can be stated for they € I which satisfyPp’(Ppear, ) > A*. ]
optimization problem in (8) as follows: Based on Lemma 6 and the expression in (24), it can be
stated forQ(2) < « < 1 that the optimal power level is
_ Pr = P,.qr if and only if there exists such that
ZICCRITRI TR NSRRI (S £ iy )
9 (Pi(7)) To provide a further analysis, the expression in (24) can

(18) also be motivated based on dual decomposition. As discussed
in Sec. lll-D, the optimal power allocation policy can be

B determined by choosing the optimum po for each
P, dy=P, P,(y) >0 r 19 y g P powder()
x(p() dy » P) 20, 7€ (19) value ofy € I" based on the dual decomposition approach. Let

ver the minimizer\ of the dual problem in (14) be denoted by
n(y) 20, v(y) 20, yel (20)

— 5From (19)—(23), it can be shown th& = 0 for v = 0 in the optimal
M(V)Pt (7) 0, veTl (21) solution. In addition, via (19) and (241?t((~7))—> 0 as~7—> 0, implying that
V() (Ppeat — Pi(7)) =0, v €T (22) the optimal power allocation policy is continuous-at= 0.



A*. Then, from the dual decomposition approach, the optimiaterval after which it decreases monotonically for higher

power allocation is specified as values of~. Based on these scenarios, the characterization
. i of the optimal power allocation policy in Theorem 1 can
Pi(y)= argsup Pp(P:(v),7) —A"Pi(y)  (25) be interpreted as follows: For low values of (i.e., for

0P (V)< Ppear unfavorable channel conditions), the transmitter employs

for any given value ofy € T (cf. (5) and (16)). This Power levels fo_r the transmitted signal, and it !ncreases th
implies that the optimum poweP; (y) must satisfy (24), POWer level agy increases. However, aﬂer_acertam valuey pf
that is, Pp’ (P (7),7) = A if 0 < P(7) < Ppear and it becomes more preferable to transmit with lower powerlkeve
PD/(P;"(’V) ,y)t >\ if Pr(y) = tk Recall that by Since high detection probabiliies can already be achievitid

) - - peak - ’

Lemma 1, fora € (0,Q(2)), Po'(P,(7),~) is monotone lower power levels (as the channel condition is very favtepb
decreasing forP;(7) € (0.1;(7)), monotone increasing which leads to savings in the average transmit power.

for Pi(y) € (L1(7),12(v)), and monotone decreasing forrheorem 2. Let 0 < o < Q(2). Then, the optimal power
Pi(y) € (I2(v),00) for any given value ofy € T', where allocation policy is continuous everywhere except at oriatpo
I, () andI>() are the two inflection points d?p (P;(7),7) and there exists a positive jump at the discontinuity point.
with 1) (y) < I(v) (see (11)). Thus, if* > Pp'(I2(y),y) Further, in the absence of the peak power constraint, the
or \* < Pp'(Ii(y),7), then Pp'(P(v),7) = A* has a optimal power level can never take values betw&gn) and
unique solution PF(~); otherwise, there exist three (or.,(v); ie., either Py () < I () or Pr(v) > L(y).

two) candidates for the optimal power level. From (6), _

(9), and (11), it can be shown that the inflection points _ Proof: Please see Appendix B. -
I(7) and Ir(7) decrease asy increases; however, the Theorem 2 specifies the discontinuous nature of the optimal
value of Pp’ at the inflection points increases with Let POWer allocation strategy for low false alarm levels, i.e.,
v and v, be defined such thay* = Pp/(I»(v,),7) and for & < Q(2). The statements in Theorems 1 and 2 are

A = Pp/(I1(7a),7.), respectively. From (9) and (11), investigated via numerical examples in Sec. IV.
* !/ _
A" =Pp(L2(m),m) = = Q,l(a)gl/(gfl(a))z_él) exp — IV. NUMERICAL EXAMPLES
1(29 Y(a) (0~ (a)?—4 : . . . In this section, the proposed optimal power allocationtstra
5( 7 2 is obtained, which results in g o1 the maximization of the average detection probigbili
—x o= A1 12 1(29 '(a) s investigated via numerical examples. In the exampleth) bo
=X 2;(% (@)+y/ (@7 () 4) eXp{?( 2 exponential distribution (corresponding to Rayleigh fadi
e o ) A .
(Q 2( ) 4) } Similarly, \* = Pp/(Ii(7e),7) = channels) and uniform distribution ar2e C20n3|dered for para
. eter~ in (8), which is defined ag = h*?/o“. For comparison
(o ok — eXp{ — %(QT(Q) + purposes, the results for the uniform power allocationtesta
27 (Q L)~ V(@ 1 (@)’ —4) are also presented. In the simulations, the average pomvir li

7W)2} implies that v, = )\*\/%(Q—l(a) _istaken as one; i.eF = 1 in (8), and the peak power limit in
. NCET Rt (8) is set toP,..1 = 20. For the maximization of the average
/(@) — 4) exp {%(QT(‘") + W) } detection probability according to the proposed approtiah,

* ’ solution of (16) is obtained for a givek for every« and~;
I)-\Le nc<e, i\DD'(I>1 (ﬁ%)(l?éz)g/)er;o; e;/er);uyv Wﬁich%imapr;g then, the bi(sec)tion-based update gmethod is u;gd to ot?tain th
that Pp/(P,(7),~) = A* has a unique solutiod;(v), and optimal A and the corresponding power allocation strategy.
consequently,P; (y) = min{P}(y), Pyear}. Therefore, it In Fig. 3, the average detection probabilities of.the prepos
is concluded that the optimal power allocation policy is §Ptimal power allocation strategy and the uniform power
continuous function of, for v < ~; and fory > ... However, allocation strategy are plotted versus the probability adéé

the behavior of the the optimal power allocation for valués g\larm, a, for exponentially distributed;, where the average

~ between; and~, depends on the false alarm level, as Values ofy are specified byy = 1 andy = 2. In addition,
specified in the following theorems. Fig. 4 illustrates the region of low false alarm rates in more

detail by zooming into Fig. 3 for € [0, 0.1]. From the figures,
Theorem 1. Let Q(2) < a < 1. Then, the optimal power levelit is observed that the proposed power allocation strategy
according to(8) is a continuous function of, which satisfies achieves higher detection probabilities than the unifoower

one of the following conditions: allocation strategy for all values of the probability of dal
(i) It increases withy up to some unique value and therftlarm, which indicates that employing a constant powerlleve
decreases as increases. Is not an optimal strategy for the considered problem. In par

(ii) It increases up t0P,..; as~y goes toy, > 0, stays at ticular, significant gains are achieved in the average tietec

Pyear for a certain interval ofy € [3;,7.], and then probability for small values ofv in this example (see Fig. 4).
dgcreases as > 7, increases In addition, as expected, improved detection performasce i
u .

achieved as the mean of increases as it leads to a more
Proof: Please see Appendix A. B favorable distribution for the SNR.

From Theorem 1 and Footnote 3, it is concluded for Next, uniform distribution is employed fory, and the
a > Q(2) that only two possible scenarios exist for theverage detection probabilities of the proposed optimelguo
optimal power allocation policy. In the first scenario, thallocation strategy and the uniform power allocation syt
optimal power level starts from zero at= 0 and increases are plotted versus the probability of false alarm in Fig. 5,
monotonically with+ up to a unique value, after which itwhere the intervalqd0,2] and [0,4] are considered for the
decreases monotonically. In the second one, the optimaépowniform distribution. Also, Fig. 6 zooms into Fig. 5 for
level starts from zero af = 0 and increases monotonicallya € [0,0.1]. As in the exponentially distributed case, the
with v up to Pyeqr, and then remains ab,... for a certain proposed power allocation strategy leads to higher detecti
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Fig. 3. Average detection probability versus the probgbitif false alarm Fig. 5. Average detection probability versus the probgbitif false alarm
for the proposed optimal power allocation strategy and thidform power for the proposed optimal power allocation strategy and thiorm power
allocation strategy, where is exponentially distributed with meahor 2. allocation strategy, where is uniformly distributed oveff0, 2] or [0, 4].
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Fig. 4. The zoomed version of Fig. 3 fer € [0, 0.1].

Fig. 6. The zoomed version of Fig. 5 far € [0,0.1].

probabilities than the uniform power allocation strateg/ex- ~ > 5,. On the other hand, fon = 0.01 and o = 0.001,
pected. In addition, higher detection probabilities areesbed the condition in Theorem 2 is satisfied; i.ey, < Q(2),
when~ is distributed betweef and4. and discontinuities are observed in the optimal transthitte
To illustrate the results in Section llI-H, the transmittegpower curves. In particular, the transmitted power level is
power levels are plotted versus for the proposed optimal continuous before and after a certain valueygfand there
power allocation strategy in Fig. 7, whefeis exponentially exists one positive jump in the optimal power level, which
distributed with a mean of, « is set t00.001, 0.01, 0.03, and are in compliance with Theorem 2. To specify the application
0.1, and the peak power limit is given by,... = 3. Also, the of Theorem 2 in more detaiky = 0.001 is considered as
transmitted power according to the uniform power allogatican example, for which parameteygs andv,, are obtained as
strategy is shown in the figure for comparison purposeg. = 0.488 and~, = 2.508. As stated in the theorem, the
(In addition, Fig. 8 zooms into Fig. 7 foy € [0,20].) In optimal power allocation policy forx = 0.001 is continuous
accordance with Theorem 1, the optimal transmitted powerfer v < +; = 0.488 and~ > ~, = 2.508, and there exists
a continuous function of for o = 0.1 anda = 0.03 in Fig. 7, a positive jump fory; < v < 7., Which is aty = 1.11.
wherea > Q(2). In addition, the optimal power allocationAnother observation from Fig. 7 is that as decreases,
policy for a = 0.1 satisfies conditiorfi) in Theorem 1, which the optimal transmission strategy becomes more peaky in
first increases up to a unique value-pfnamely,y = 1.636) order to satisfy the false alarm constraint while maxingzin
and then decreases monotonically. For= 0.03, condition the average probability of detection. Regarding the unifor
(#¢) in Theorem 1 holds, which states that the optimal powgower allocation policy, it is noted that the employed power
level increases ag increases toy; = 1.61, stays atP,.., =3 allocation strategy is significantly different from the opal
for 4, < ~ < 4, wherey, = 1.97, and then decreases forone.
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Fig. 7. The transmitted power level versudor the proposed optimal power Fig. 9. The transmitted power level versugor the proposed optimal power
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In Fig. 9, the transm'tted power levels a_re pIOtted VEIrSYRy 10. The optimal average detection probability ver$esaverage power
~ for the proposed optimal power allocation strategy anghit, 7.

the uniform power allocation strategy, wheyeis uniformly
distributed betweefi and2 and the peak power limit is set to
Ppear = 5. Similar to the previous scenario, the statements
in Theorem 1 and Theorem 2 can be verified based on
the transmitted power levels of the optimal power allogatio |n this study, the optimal power allocation problem has
strategy for various values of. For example, forv = 0.1, the  been proposed to maximize the average detection prolyabilit
optimal power level increases untjl= 1.917 and decreases for detecting the presence of a signal in an AWGN channel
after that value in accordance with Theorem 1. In additien, @ith flat fading. An optimization problem has been formuthte
the false alarm limit decreases, the transmitter employséti under average and peak power constraints when perfect CSI
power levels for some values of while sending very low is available at the transmitter and the receiver. Utilizing
powers at other values, leading to a more peaky transmissiag analytical properties of the detection probability, wald
strategy as in the previous scenario. problem with no duality gap with the original problem has
Finally, the concavity property of the optimal average déseen obtained. The dual decomposition approach has been
tection probability with respect to the average power limiemployed and various algorithms and subroutines have been
P, is illustrated in Fig. 10, where both uniform distributiorproposed to specify the optimal power allocation scheme&und
(between0 and?2) and exponential distribution (with a mearmaverage and peak power constraints. In addition, for allesl
of 1) are considered. As stated in Proposition 1, the averagkthe false alarm probability, the continuity and monotani
probability of detection corresponding to the solution®¥is ity properties of the optimal power allocation scheme have

V. CONCLUSIONS ANDEXTENSIONS
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been characterized with respect 49 the ratio between the solution by the existence and uniqueness theorems for first-

channel power gain and the noise power. Numerical examptasler ordinary differential equations (ODESs) [33]. Henge,

have provided some examples of the theoretical results d@addifferentiable inz, which implies thaty is a continuous

illustrated the improvements achieved via the optimal pow&inction of z, or, equivalently,”;(v) is a continuous function

allocation approach. of v. This proves the continuity of the power allocation policy
Although scalar observations are considered in (1), ther o > Q(2).

results can also be extended to vector observations in th&Sincez = /4 andy = /P(y), dz = dv/(2\/7)

presence of AWGN since the detection probability can gg ay = dP,(y)/(2\/Pi(7)) are obtained. Then, from
expressed similarly to (6) by updating the definitionof

v - _u _ 1+ m) in the previous paragraph,
APPENDIX the following relation is achieved:

A. Proof of Theorem 1 dP(v) _ VP()dy

The proof consists of two parts. In the first part of the proof, dv V7 ode
the aim is to prove that iPD’(Ppeak,'y) < X* forall v €
T, then the optimal power allocation policy is a continuous_ _Pt(V) 14 2
function ofy, which increases witly up to some unique value v P ( “1a) — S~ ) 1/
and then decreases asncreases. SINCED' (Ppeak, ) < A* v (@7 Hy
forall v € T, Py(v) # Pyeax for all v € I based on (24); that Based on the observations at the beginning of the proof,
is, P;'(v) satisfies) < Py () < Ppear forall y € I'. First, the  lim_p, )0 P(y)/y = c1, where ¢; is some pos-
limiting cases of the equation in (24) are investigateddfer  itive constant andlim,p,,)- 2 (7)/y = 0. Thus,
Pj(y) < Ppea- Namely, it is observed that asP,(y) goes . dPi(v) _ i iti
to zero,P;(v)/~ converges to a constant. Similarly, 88, () limy P, (7) 0 =5 ¢z, Wherec; is some positive constant

. dp; _ . .
goes to infinity,P; (v)/y converges to zero. Let 2 /7,y £ andlim, p,;) o d—v(w_) = 07. From the analysis of the limit
P d s g 1 /A1 2 cases above, the optimal power linearly increases withesp
1(7), andG(z, y) = 2v2mar OXP {__5 _(Q (C_“) - zy) } to ~ for small values ofy and decreases with respect-tdor
Then, from (24), the following relation is obtained: large values ofy.

Up to this point, it is shown that the optimal power increases

y=G(x,y) = _r exp {_1 (Qfl(a) — xy)z} . (26) linearly for small~y, and decreases for large Hence, there
2v/2mA* 2 must be a maximum power value, which can be found by
. OP,
Now suppose that{’ exists. Then,q% — 9994 4 99, settlng% to zero.
which leads togY :I 1?%%% £ ]-"Z(g,y). 'If'thse derivative 9P;(y) 0= 14 2 _0
expressions are_ calculated, from , as follows: - _ -
58@7?)) — 1 exp f_i (Q(l(C))é) _ Iy)Q? 87 (Q 1((1) - \/th(/}/)) \/’}/Pt(’}/) -1
ox 242 \* 2
X (1 +ay(Q o) — :Cy)) = % (14 2y (Q () —zy)) = YP(7) = @ Ha)VAP(y) =1 =0
oG(x,y)  a® Ll 2 QM) +1/(Q 7 (a)* +4
0y~ avon P g (@) — ) = VP(7) = 5 (27)
X (Q*l(a) — xy) =zy (Q H(a) - zy) From (24) and (27), they, P;(v)) pair that specifies the power
) level and~ for which the maximum power is employed can
Fla,y) = L(1+2y(Q ' (a) —2y)) be obtained uniquely as follows:
T T—ay (97N e) —y)
y (1 9 > v = XV2m <Q1(a) +/(97(a))?* + 4) (28)
== —|—
2\ ey (@) —ay) — 1 | s
OF(ry) _ 1, 2 X exp {g(g-w — /(01 (@))? +4) }
dy x ay(Q ' (a) —ay) — 1 h
2y (Q M)z — 227y) ) Pi(y) = W (Ql(a) + (Q_l(a))2 + 4)
z(zy (Q1(a) — ay) —1)° T ,
Note thatF(x,y) and d.F (z,y)/dy are continuous functions X exp {—1 (Q‘l(a) /(9 ) + 4> } .
for x > 0 andy > 0 except at the points that satisfy 8

oy (Q '(a) —ay) —1=0. Lett = zy. Then, the solutions | the second part, the aim is to prove that if
of h(t) £ ¢* = Q7' (a)t+1 = 0 are sought. In Lemma 1, it iS Pp/(P,.q,~) > A* for somey € T, the optimal power alloca-
shown that ifee > Q(2), h(t) > 0 for ¢ >0, and ifa < Q(2), tion policy is a continuous function ef, which increases up to
there are two roots, < » wheret, — 9 M- (29*1(60)274 Ppmk_asw incre_ases tgy;, stays atPp., for a cgrta_in interval
01 (a) /(0T (@)P . . (i.e., % < v < ), and then decreases as> 7, increases.
andt, = 5 with h(t) >0 for ¢ <t and To that aim, considePp’(P,cqk, ) for all v € T and note that
t > ty, andh(t) < 0 fort; <t <ty Thus, ifa > Q(2), Pp/(Pyear,7) is a continuous function of, which increases
F(z,y) anddF (z,y)/0y are continuous functions far > 0 up to a certain value and decreases for higher values. of
andy > 0, which implies thatﬁ—ﬁ = F(z,y) has a unique Then, it is stated that iPD’(Ppeak,y) > \* for somey €T,
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then there exists only a unique intervalg [¥;,%,], such that must satisfy Pp’ (P3(y),7) > A* based on (24) if the
Pp/(Ppear;7) > A* for all v € T wherel' = [3,7,] and optlmal power level |sP 3 SlncePD (Pi(7),7) < \* for
' C T. Based on the statement in Lemma 6, it is obtameplt (pt* 1(7) ( )) (7) = P,ear Cannot be

that P (y) = Ppear for all v T'. Next, considery € I'\ T optlmal it PN(y) < Ppeak < P ?(~) and the optimal power
and note thabp) (P, ) =\ fory = 3 andy =3, a0 eyl is py(y) = B4, I Pri() < BP2(0) < Preak,

; q %t(%) —  peak 9 ¢ () e peak: [HETL L pr3(h) = Ppear. Cannot be optimal due to the similar reason.
rom (24) and Lemma 8P’ (P (7), ) = A" for v € (0, 7] Then the maximizer oPp (P} (v),7) — A*P(y) is either

or 7y € [Yu,00) WherePj(y) € (0, Ppeqr]. Based on a similar 2 ;
approach to that in the first part of the prod?:(y) is a P (y ) and P;”"(v), which can be found by the comparison

continuous function ofy for v € (0, %], which increases with
v Uup to Pf(7y) = Ppear for v = 7;. Similarly, Pf(v) is a prl
continuous function ofy for vy € [, o), which reduces as 1 _yx pl > 2  yx 2

increases. Overall;* () is a continuous function of where Po(F (7)) = AR () = Po(B(),7) = A ()
v € I' and satisfies the second condition in Theorem 1 if ¢

Pp’(Ppeak,y) > \* for somey € T [ | (29)

*,1

PD(Pt*ﬂl(’Y)?’Y) _PD(Pt*72(7)7’Y) PtS )\* (30)

B. Proof of Theorem 2 P (y) — P2 () o
Consider the relation in (24), which must be satisfied

for the optimum power levels. Since the inflection points o1 o

I1(y) and Iy(y) decrease as increases, and the value ofSince Po’(P(7),7) < A* for Fi(y) € (B (7), B (7)),

Pp’(P,(v),~) at the inflection points increases asncreases, o2 Eﬂ]) N-Po(P " ()9« Then, P/2(y) cannot be

there exists different cases with respect tg* and the value P () =PI ()

*,1 *,2 *,2
f P/ (P t the inflecti ints f iven. Th optimal. Lastly, if ;" (y) < P/"(v) = Ppear, P/7(7) =
::)aseDs (octézg ’ix)tﬁe Oredlenr gfhczgrllr_)ggwssv i(glrc;a\eglsveeg ese Ppeqr cannot be optimal due to the comparison of the candi-

1) \* > Pp/(Iz(7),~) : This case is valid fory € (0, 7). dates as in (30). Thus, the optimal power levelfoe +; can

* . *,1
In this case, allP,(7) values that satisyPp/(P,(7),7) > P¢ Selected ad; () —*mm{Pf (7), Ppear}- o
A* cannot exceed, (v); that is, P,(v) < I1(v). Therefore, 3) Pp'(12(7),7) > A" > Pp'(Li(y),7) : This case is valid
Pi(y) < Li(y) for all ¥ € (0,7,). Also, Pp'(P,(v),7) is for v € (vi,7.). In this casePp’ (P (7),7) = A* has three
monotone decreasing fd?;(y) € (0, I1(y)). Then, based on solutions; i.e., there are three candldates for the optimal
the equation in (24), one of the following conditions holds: power level. Let these cand|dates ke ( ) Pt*"z(y)

e If Pp'(Ppear,7) < AN for all v e (0,y), andB°(y) with P '(y) < P*(y) < P(y). Note

Pp/(Pr(y),y) = A* for all v € (0,%). Also, that P“() e 0.6, P € (h()kG)
Pp/(Pi(7),7) = A* has only one solution (optimaland P;*(v) € (I2(7y),00). Also notice that
power level) P/ (), where P(y) < Ii(y). Based Pp(P:(y ) v) — MP(y) is an increasing function
on the definitions in the proof of Theorem 1, ifof P(y) for P(y) € (O P/'(v)), a decreasing
Pi(y) < L(y), thent = =zy = +/vP(y) < function for Pi(y) (5 '(v), P/*(%)), increasing
(21w~ (Qfl(a))z_él)z for P(y) € gPt*Q(y) ““(v)), and decreasing for
711( ) = v = Pt( ) € (Pt (v ),oo). Thus from the candidates

N VTN _ e also haveh(t) > 0 B Y(), P*(v) and P;"*(y), either P! (y) or P’(v)

for t < tl Thus, due to a similar reasoning to that i @ maximizer for Pp(Fi(v),7) — A"P(y). Since

*,1 *,3 :
the proof of Theorem 1P} (v) constitutes a continuous (7)) < Li(y) < L(y) < P/"(v), the optimal power
function ofy for v € (0, 7). level cannot take any values betwedn(y) and I2(7)

. / * for the case that no peak power constraint is considered.
gDI()gpii’f“’;’;))\* %ori\e ]E%r’ Wi?nJSeWto tfle f(l?ﬁZéi)én O9lthe other hand, the optimal power level may not be
properties ofPp’(Pyear, ) wherey, and, are positive £z (7) or P () due to the peak power constraint. If
finite values. If3, < 7, < v holds, P;(y) = Pyear  Drear < P71 (7) < P (7); then, the optimal power level is
for v € [%,7%.) and P;(y) is continuous function of £ (7) = Ppear SinC€Pp’(F;(7),7) is monotone decreasing
~ for v € (0,7,), which increases fory € (0,%) and for P.(y) € (0,I1(7)) and Ppear < P/'(v) < Li(%).
decreases fory € (7.,7;) based on a similar approachOtherwise, if P;"'(7) < P, the optimal power level
to that in the first condition. Otherwise, 4 =~ < 7., is either P/"'(y) or min{Pt*’?’(v),Ppeak}- Note that
P/ () is a continuous function of for y & (0, 7). which - pe1(y and p*3(y) are differentiable functions ofy for
increases fory € (0,7;) and becomes equal .. for " ¢ [%%] as shown in Case-1 and Case-5, respectively,
vE [%WJ' _ o since P ( ) < L(y) and P/*(y) > Iy(y). Then,

2) \* =Pp'(l2(7),7) : This case is valid fory = ~. min{P;"*(y), Pyear} is a continuous function ofy for

In this case,Pp’(P:(v),7) = A* has two solutions; i.e., y e [%%] and may not be differentiable atqavalue where
)

there are two cand|dates for the optimal power level. th* () Ppear- Let p*=3 2 min{P" ( )s Ppeak }
these candidates b&"'(y) and P;"*(y) with P"'(y) < Sty 2 (P (P ().y) — AP )) -
L(y) < I(y) = P*Q( ) Also, there is another candidate, - b Th ¢\

P2 (y) = Ppear- It P () = Ppear < PPN (7) < P2 (y); (PD(P S(y),7) — /\*Pt*’?’('y)), which are continuous
then, the optimal power level i%;(y) = Pt*’3(7) = Ppeak in v for v € [y,7.]. Then, via (29), the optimal power
due to the peak power constraint. AlsB,*(y) = weak:  lEVel can be chosen by comparisgy) against zero; that is,



for P.(y) € (Yu,

14

oo). Based on (24), one of the following

S(y) Z 0. In addition, Case-2 (the equivalence case can E@ndmons holds
py® o If Pp (Ppeak,y) < A* for al v € (vyy,00),
obtained by comparing,! (v,) andP;"*(v;) = P/%(v)) and  Pp/(Pr(7),7) = A* for all v € (y4,00). Also,

Case-4 (the equlvalence case can be obtalned by compaitmgd(P;(v),

P/ (vy,) and P % () = P! (v,)) imply S(v) > 0 and
S(v) <0, respectwely. Note the following identity:

v) = A* has only one solution (optimal power

level) Pf(v), whereP; () > I>(). By using the definitions
in the proof of Theorem 1, iP.(y) > I»(y), thent = ay =

Q-1 (@)+/(Q () —4)°
OPp(R(7),7) _ VIR() > Vh(y) = \/7( = )
9 (Fi(7)) Qo) y/(@ (a7
A 1 9 We also haveh(t) > 0 for
= exp {—— (Q‘l(a) - Pt('y)'y) } t > ta. Thus due to a 5|m|Iar reasoning to that in the proof
2V2m\/Py() 2 of Theorem 1,P;(v) constitutes a continuous function in
P 1 2 for v € (7u,00).
— P’(Y ) 2\/2_t(7) exp {—5 (Q’l(a) — Pt('y)'y) } o If Pp'(Ppear,y) > A* for somey € (yy,),
t\Y vl Pp'(Ppeak,y) > A* for v € [%,7,) due to the function
_ v OPp(Ba(v),7) properties ofPp’(Pyear, v) Wherey, andy, are positive finite
Pi(7) Dy values. If% <N < Yu hoIds,]_Dt* (7) = Ppear fory € ["yl,?u]
OPp(Pi(7),7) .. P(7) and Py (v) is continuous function of for v ('yq_“ o0), which
= 3 = (31) increases fory € (y4,y:) and decreases fare (7,, o) based
v v on a similar approach to that in the first condition. Otheeyis
Then, from (31) if % = v < 4, PY(7) is a continuous function ofy for
s v € (Yu,00), which becomes equal tB,cqx for v € [vu, Yul
ds(y) and decreases for € (7,
dy Considering the analyses of the different cases above, the
OPp (P (),7) AP () OPp (Pt (7),7) )\*de’l(W) ollowing summary can be stated:
= 2 (P (7)) dy + Oy - dry 1) For v < 7, the optimal power allocation policy is
continuous iy and the optimal power level is always lower
OPp (P %(),7) AP (v) . dPp(P*(7),7) /\*dpg’?’(y) han,(v), wherey € (v, 7). _ _
- 5 (P dvy + 9y - d 2) At v = 7, the optimal power allocation policy has a
( ¢ (7)) positive jump.
AP () WP ) AR () 3) For v > 7, the optimal power allocation policy is
B G v & continuous iny. |
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